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Background: To determine the pattern of immune cell subsets across the life

span in rural sub-Saharan Africa (SSA), and to set a reference standard for cell

subsets amongst Africans, we characterised the major immune cell subsets in

peripheral blood including T cells, B cells, monocytes, NK cells, neutrophils and

eosinophils, in individuals aged 3 to 89 years from Uganda.

Methods: Immune phenotypes were measured using both conventional flow

cytometry in 72 individuals, and full spectrum flow cytometry in 80 individuals.

Epstein-Barr virus (EBV) IFN-g T cell responses were quantified in 332 individuals

using an ELISpot assay. Full blood counts of all study participants were

also obtained.

Results: The percentages of central memory (TCM) and senescent CD4+ and

CD8+ T cell subsets, effector memory (TEM) CD8+ T cells and neutrophils

increased with increasing age. On the other hand, the percentages of naïve T

(TN) and B (BN) cells, atypical B cells (BA), total lymphocytes, eosinophils and

basophils decreased with increasing age. There was no change in CD4+ or CD8+

T effector memory RA (TEMRA) cells, exhausted T cells, NK cells and monocytes

with age. Higher eosinophil and basophil percentages were observed in males

compared to females. T cell function as measured by IFN-g responses to EBV

increased with increasing age, peaking at 31-55 years.

Conclusion: The percentages of cell subsets differ between individuals from SSA

compared to those elsewhere, perhaps reflecting a different antigenic milieu.

These results serve as a reference for normal values in this population.
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Introduction

Chronic herpesvirus infections are common across the globe (1,

2); 90% of the adult human population worldwide is infected with

Epstein-Barr virus (EBV) (3) and 83% are infected with

cytomegalovirus (CMV) (4). However, in sub-Saharan Africa

(SSA), the prevalence of herpesvirus infections is higher than

elsewhere, and primary infections occur early during childhood.

By age five years, over 90% of children in SSA are seropositive for

HSV-1, CMV and EBV (5–8) compared to <50% in high-income

countries (9–11). Early infection with chronic viruses has

implications for increased risk for the diseases associated with

these viruses (6). Similarly, acute, repeated infections, such as

Plasmodium falciparum malaria are also common in SSA (12).

Differences in the antigenic milieu in SSA may impact the immune

profiles of individuals, compared to other settings (13). Such data,

however, are scarce, at least for SSA.

Immunosenescence and immune exhaustion play a role in

disease sever i ty and suscept ib i l i ty g lobal ly (14–16) .

Immunosenescence is characterised by shortened telomeres,

reduced telomerase activity, a reduced frequency of naive T cells

and reduced cellular proliferative ability (17, 18), and an increase in

terminally differentiated T cells. In addition to ageing, chronic viral

infections such as HIV, CMV, EBV and hepatitis B viruses have

been shown to drive premature senescence in young individuals

(19). T cell exhaustion is characterised by high expression of

inhibitory molecules on cell surfaces such as PD1, TIGIT, LAG3,

TIM3 and CTLA4, low proliferative capacity and impaired effector

functions (cytokine production and cytotoxicity) (20). It has been

hypothesised that, in SSA, where both chronic and acute infections

are both widespread and frequent , both ear ly onset

immunosenescence and T cell exhaustion may be more

common (21).

Using conventional flow cytometry, single-cell analysis of

immune markers has been limited to up to 18 cellular markers

due to spectral overlap of the fluorophores (22). As a consequence,

immunophenotype analysis of human clinical samples typically

focuses on single lymphocyte subsets (e.g. evaluation of CD4+ T

cell subsets or CD19+ B cell subsets). The advent of full spectrum

flow cytometry addresses this challenge by using differences in full

emission spectra signatures across all lasers, allowing much larger

fluorescent panels (>40 antibodies) to be used in a single analysis

(23). We characterised the major cell types in peripheral blood,

including T cells, B cells, monocytes and NK cells using both

conventional and full-spectrum flow cytometry.

Methods

Study design

In 2017, we nested a cross-sectional study of 975 individuals

within the rural Ugandan General Population Cohort (GPC),

investigating the determinants of Kaposi’s sarcoma-associated

herpesvirus transmission (24). The GPC is a rural community-

based cohort of about 22,000 people in 25 adjacent villages in

southwestern Uganda (25, 26). After stratification for age and sex,

HIV-negative, healthy individuals (without reported illnesses) aged

3 to 89 years were randomly selected for enrolment in this cross-

sectional study. Blood was collected in both ACD and EDTA tubes,

and demographic data were recorded using questionnaires.

Peripheral blood mononuclear cells (PBMCs) were isolated from

whole blood using density gradient centrifugation within two hours

of sample collection. Viable PBMCs in freezing media (10% DMSO,

90% FBS) were stored in liquid nitrogen. Plasma from ACD tubes

was stored at minus 80°C.

Ethical approvals

The study was approved by the Uganda Virus Research Institute

Research and Ethics Committee (UVRI-REC, reference number:

GC/127/16/09/566), the Uganda National Council for Science and

Technology (UNCST, reference number: HS2123) and the London

School of Hygiene and Tropical Medicine Ethics Committee

(reference number: 11881). Written informed consent was

obtained from all adults aged 18 years and above. Children below

18 years consented to the study via a parent or guardian; we also

sought, in addition to parental consent, written assent from children

aged between 8 and 17 years.

Study participants selection and
laboratory analysis

A full blood count was performed on 975 individuals (24) but

only 697 individuals aged 3 to 89 (mean age of 37) were included in

this manuscript. This was because we wanted to include only

healthy individuals; those with parasitic infections (Plasmodium

falciparummalaria and helminths) and incomplete health data were

excluded. Study participants were analysed for immune phenotypes

using both conventional flow cytometry and full-spectrum flow

cytometry. Conventional flow cytometry was undertaken at the

Uganda Virus Research Institute (UVRI) before gaining access to

the more advanced full-spectrum flow cytometer (5 laser Aurora

Cytek) at the University of Colorado. Due to variability between

instruments, data from the two machines were not directly

compared or added together. Using data acquired from

conventional flow cytometry, cell subsets were compared across

four age groups (4-15, 16-30, 31-55 and 56-89). Using data acquired

from full spectrum flow cytometry, cell subsets were compared

across three age groups (16-30, 31-55 and 56-89). In addition,

conventional flow cytometry analysis included children, whereas

full spectrum flow cytometry did not.

Laboratory analysis

Full blood count and multiplex bead assay

Blood in EDTA tubes was analysed for immune cell parameters

using the Ac.T 5 diff CP haematology analyser (Beckman Coulter)
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following the manufacturer’s instructions. IgG antibody levels to the

EBV viral capsid protein VCA were measured in plasma using a

multiplex bead assay on a Luminex BioRad Bio-plex200 system as

previously reported (27).

Enzyme-linked immunosorbent Spot
(ELISpot) assay

IFN-g T cell responses to a cocktail of latent and lytic EBV

peptides (Supplementary Table 1) were measured using the ELISpot

assay. The MABTECH Human IFN-g ELISpot kit (Code: 3420-

2AST-2) was used for the assay, with a few alterations to the

manufacturer’s protocol. Briefly, the ELISpot plates with the

capture antibody from the kit were washed five times with 200ml

of 1xPBS per well. Afterwards, thawed cells were added to the plates

in a volume of 100ml AIM-V medium containing 150,000 cells per

well. The plates were covered with the lid, wrapped in aluminium

foil and transferred to a 5% CO2 37°C incubator for a 24-hour

resting period. To stimulate them, 100ml per well of the EBV peptide

pool, anti-CD3 and media (AIM-V media, Gibco 12055091) at

working concentrations of 5mg/ml/peptide were added to the wells.

The plates were then incubated at 5% CO2 37°C for a further 46-48

hours. Following stimulation, cells were washed 5 times with 200ml

of PBS per well and 100ml of anti-human IFN-g IgG conjugated to

alkaline phosphatase (Code: 7-B6-ALP) was added at a dilution of

1/200 in PBS + 0.5% FBS. The plates were incubated at room

temperature (25°C) for 2 hours. After the incubation, the plates

were washed 5 times with 200ml of 1xPBS per well and 100ml of

filtered 5-bromo-4-chromo-3-indolyl-phosphate (BCIP)/nitroblue

tetrazolium (NBT)-plus substrate were added per well. The plates

were then incubated at room temperature for 6.5 minutes and the

reaction was stopped by washing the plate with running tap water.

The plates were dried in the dark overnight and the spots were

subsequently counted using an ELISpot reader (CTL ImmunoSpot

Analyzer). This protocol has been reported elsewhere (28, 29).

Flow cytometry
Fluorochrome antibody conjugate titration and reference

control type selection were carried out prior to study participants’

PBMCs staining (Table 1). For conventional flow cytometry, beads

(BD CompBeads (BD Biosciences, 552843) were used for

compensation of all fluorochrome antibody conjugates apart from

the live/dead stain where PBMCs were used (Table 1). The most

appropriate reference control type beads (Ultra Comp eBeads

Invitrogen, 01-2222-42) or PBMCs were used for full spectrum

flow cytometry (Table 1). Live/dead staining using the fixable

viability dye eFluor 780 (eBioscience) for conventional flow

cytometry, or fixable blue dead stain kit for full spectrum flow

cytometry (Thermo Fisher) was carried out in 1mL of PBS

containing 1 million PBMCs. IgG FC receptor (FCR) blocking was

performed prior to fluorochrome antibody conjugate staining using

a human FCR binding inhibitor (eBioscience). Fluorochrome

antibody conjugate cocktails were made in FACS buffer (1X PBS,

0.5% BSA, 0.5M EDTA and 0.05% sodium-azide) using the

predetermined optimal concentration (Table 1). Brilliant stain

buffer (BD Biosciences 566349) was added to the antibody

cocktail following the manufacturer’s recommendations. Study

participants’ PBMCs were stained with a cocktail of fluorochrome

antibody conjugates in 100ul or 50ul of FACS buffer for full

spectrum or conventional flow cytometry, respectively, for 30

minutes at 4°C. Stained PBMCs were fixed using the FluoroFix

buffer (BioLegend, 422101) before acquisition on BD LSR-II flow

cytometer (conventional flow cytometer) or a 5-laser Cytek Aurora

(full spectrum flow cytometer). A total of 200,000 events from each

study participant sample were recorded.

Conventional flow cytometry

Three different panels were used to identify T and B cells using

conventional flow cytometry. Panel one contained CD3, CD4, CD8,

CCR7, CD45RA and live/dead, panel two contained CD3, CD4,

CD8, CD57, CD28, HLADR, PD-1 and live/dead. Panel three

contained CD19, CD10, CD5, CD27, IgD, CD21, CD38, IgM, IgG

and the live/dead stain. Single cells were gated using forward scatter

area and forward scatter height. Lymphocytes were gated using side

scatter and forward scatter followed by the exclusion of dead cells

using the live/dead stain (Supplementary Figure 1 and

Supplementary Table 1).

Full spectrum flow cytometry

Using a single panel of 23 antibody-fluorochrome conjugates

and one live/dead stain (fixable blue dead cell stain kit (Thermo

Fisher, L34961) T cell, B cell, NK cell and monocyte subsets were

identified (Figure 1; Supplementary Table 1). Single cells were gated

using forward scatter area and forward scatter height. Lymphocytes

and monocytes were gated using side scatter and forward scatter

followed by exclusion of dead cells using the live/dead stain

(Figure 1). Using CD3 and CD19 three main subsets were

classified including CD3+ (T cells) CD19+ (B cells) and CD19-

CD3- (NK cells and monocytes).

EBV real-time PCR

EBV DNA was quantified in PBMCs and saliva using primers

(Balf5 EBV forward: 5’ – CGG AAG CCC TCT GGA CTT C – 3’, -

Balf5 EBV reverse: 5’ – CCC TGT TTA TCC GAT GGA ATG – 3’)

and probe (Balf5 EBV Probe: 5’ -/56-FAM/TGT ACA CGC ACG

AGA AAT GCG CCT/3BHQ_1/- 3’) previously reported to be

specific to the Balf5 gene (6, 30). Additionally, B-Actin was

amplified in the same sample as an internal positive control

using primers (B-Actin forward: 5’ – TCA CCC ACA CTG TGC

CCA TCT ACG A – 3’, B-Actin reverse: 5’ – CAG CGG AAC CGC

TCA TTG CCA ATG G – 3’) and probe (B-Actin Probe: 5’ -/5HEX/

ATG CCC TCC CCC ATG CCA TCC TGC GT/3BHQ_1/- 3’) as

previously reported (31).

Statistical analysis

Flow cytometry data were acquired on an LSR-II (for

conventional flow cytometry) and Cytek Aurora (for full

spectrum flow cytometry) and analysed using FlowJo software

version 10.8.1. Statistical analysis was performed using STATA

Nalwoga et al. 10.3389/fimmu.2024.1356635
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TABLE 1 Specifications of antibodies used in flow cytometry.

Antibody Fluorochrome Clone Volume (mL)
Reference
control

Catalogue
number Vendor

Full spectrum flow cytometry

CD4 Brilliant Violet 510 OKT4 2.5 Beads* 317443 BioLegend

CD57 PE HNK-1 5 PBMCs** 359611 BioLegend

CD16 Brilliant Violet 785 3G8 2.5 Beads* 302045 BioLegend

CD38 Brilliant Violet 421 HIT2 2.5 Beads* 303525 BioLegend

KLRG1 PE/Cy7 SA231A2 1 Beads* 367719 BioLegend

CD223 (LAG-3) APC/Fire 750 11C3C65 5 Beads* 369329 BioLegend

CD279 (PD-1) Brilliant Violate 711 EH12.2H7 5 Beads* 329927 BioLegend

HLADR PE/cy5 L243 2 Beads* 307607 BioLegend

CCR7 Brilliant Violet 750 G043H7 2.5 Beads* 353253 BioLegend

CD45RA Brilliant Violet 650 HI100 2.5 Beads* 304136 BioLegend

CD21 PE/Dazzle 594 Bu32 0.625 Beads* 354921 BioLegend

IgD Alexa fluor 700 1A6-2 0.625 Beads* 348229 BioLegend

CD10 PerCp-Cy5.5 HI10a 5 Beads* 312215 BioLegend

CD8 BUV 805 SK1 2.5 PBMCs 612889 BD Biosciences

CD19 BUV 395 SJ25C1 1.25 PBMCs 563551 BD Biosciences

CD3 Alexa fluor532 UCHT1 5 PBMCs 58-0038-41

ThermoFisher

scientific

CD28 Brilliant Violet 605 CD28.2 5 PBMCs 302967 BioLegend

CD27 APC O323 2 PBMCs 302809 BioLegend

CD56 BUV 737 NCAM16.2 0.5 PBMCs 564448 BD Biosciences

CD96 BB515 6F9 5 Beads* 564774 BD Biosciences

CD314 (NKG2D) Alexa Fluor 660 1 Beads* 320841 BioLegend

CD14 Brilliant Violet 480 M5E2 5 Beads* 746304 BD Biosciences

NKG2A (CD159a) BUV 615 131411 5 Beads* 752302 BD Biosciences

fixable blue dead cell

stain kit L34961

Thermo

Fisher Scientific

Conventional flow cytometry

CD5 PE UCHT2 0.5 Beads*** 555353 BD Biosciences

IgM PE-Cy5 G20-127 1 Beads*** 551079 BD Biosciences

CD38 PE/Cy7 HB-7 0.5 Beads*** 356608 BioLegend

IgD PE-CF594 IA6-2 0.25 Beads*** 562540 BD Biosciences

IgG Alexa Fluor 700 G18-145 2.5 Beads*** 561296 BD Biosciences

CD27 Brilliant Violet 421 O323 0.25 Beads*** 302824 BioLegend

CD28 Brilliant Violet 421 CD28.2 1 Beads*** 562613 BD Biosciences

CD57 PE NK-1 0.03 Beads*** 560844 BD Biosciences

HLA-DR PE-Cy7 G46-6 0.25 Beads*** 560651 BD Biosciences

CD4 PE/Cy5 RPA-T4 0.03 Beads*** 300510 BioLegend

CD279 (PD-1) FITC EH12.2H7 2.5 Beads*** 329904 BioLegend

(Continued)
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version 13 (StataCorp, College Station, Texas USA) and GraphPad

Prism version 8.0.1 for graphical representation. Both

nonparametric tests including Mann-Whitney and Kruskal

Wallis, Spearman’s rank correlation as well as parametric tests

including one-way ANOVA and student T-test were used for

statistical analysis of quantitative data appropriately. False

Discovery Rate (FDR) was used to adjust for multiple

comparisons. Logistic regression analysis adjusting for testing

batch and sex as well as the chi2 test were used to analyse

qualitative IFN-g responses to EBV by age groups.

Results

A total of 72 individuals aged 4 to 88 years with a mean age of 36

years were tested for immune phenotypes using conventional flow

cytometry. Eighty individuals aged 16 to 89 years with a mean age of

45 years were tested for immune phenotypes using full spectrum

flow cytometry. These same 80 individuals were tested for EBV

IFN-g T cell responses. Additional individuals were tested for IFN-g

responses to EBV, bringing the total to 332 individuals aged 3 to 89,

with a mean age of 34 years, tested for EBV IFN-g T cell responses.

More details of the characteristics of the participants selected for all

the analyses are shown in Table 2.

CD4+ and CD8+ T cell subsets by age

Naïve, central memory, effector memory and
terminally differentiated T cells

We compared CD4+ and CD8+ T cell subsets in the 4-15, 16-

30, 31-55 and 56-89 age groups using the Kruskal Wallis test.

Overall, the percentage of naïve CD4+ and CD8+ T cells decreased

with increasing age groups (Figures 2A, C, 3A, C; Supplementary

Figures 2-5, Supplementary Tables 2, 3). The median of naïve CD4+

T cells was 46% interquartile range-IQR (41-54) of total CD4+ T

cells in the 4-15 age group, 28% IQR (25-37) in the 16-30 age group,

30% IQR (18-34) in the 31-55 age group and 26% IQR (15- 32) in

the 56-89 age group (Figure 3A; Supplementary Table 3). The

median percentage of naïve CD8+ T cells of total CD8+ T cells was

39% IQR (31-45) in the 4-15 age group, 34% IQR (23-38) in the 16-

30 age group, 28% IQR (22- 32) in the 31-55 age group and 30%

IQR (24-31) in the 56-89 age group (Figure 3C). Overall,

percentages of central memory CD4+ and CD8+ T cells increased

with increasing age groups (Figures 2A, C, 3A, C). Individuals aged

4-15 years had a lower percentage of effector memory CD4+ T cells

compared to their older counterparts (Figure 3A). The percentage

of effector memory CD4+ T cells didn’t change between 16 to 89

years (Figures 2A, 3A). When age was analysed continuously, the

percentages of effector memory CD4+ T cells slightly increased with

increasing age (Supplementary Figures 2, 3). The percentage of

effector memory CD8+ T cells increased with increasing age groups

(Figure 2C). The percentage of total CD4+ T cells, total CD8+ T

cells and TEMRA didn’t change by age group (Figures 2A, C, 3A, C).

However CD4+ T cells, CD8+ T cells and TEMRA had a weak

positive correlation with increasing age (Supplementary Figures 2-

5). However, the ratio of CD4+:CD8+ T cells was highest in the 16-

30 age groups, and lowest in the 31-89 groups (Figure 4C). Direct

comparison between conventional flow cytometry and full

spectrum flow cytometry was not possible with the current data,

however, CD4+ naïve CD4+, effector memory CD4+, TEMRA CD4+,

naïve CD8+, central memory CD8+, TEMRA CD8+ T cells followed

a similar pattern in both results from the two flow cytometry

methods. On the other hand, the pattern of central memory

CD4+, CD8+, effector memory CD8+ by full spectrum flow

cytometry was different from the pattern of the same cell subsets

by conventional flow cytometry (Figures 2, 3; Supplementary

Tables 2, 3). We were not equipped to investigate the differences

in cell sub sets by the two flow cytometry methods due to sample

limitations but these differences could be partially attributed to the

TABLE 1 Continued

Antibody Fluorochrome Clone Volume (mL)
Reference
control

Catalogue
number Vendor

Conventional flow cytometry

CD197 (CCR7) PE-CF594 150503 0.5 Beads*** 562381 BD Biosciences

CD8a Brilliant Violet 570 RPA-T8 1 Beads*** 301038 BioLegend

CD3 Brilliant Violet 650 5K7 1 Beads*** 563999 BD Biosciences

CD38 Brilliant Violet 421 HIT2 0.25 Beads*** 562444 BD Biosciences

CD10 Brilliant Violet 650 HI10a 2.5 Beads*** 563734 BD Biosciences

CD21 FITC Bu32 0.03 Beads*** 354910 BioLegend

CD19 APC SJ25C1 0.125 Beads*** 345791 BD Biosciences

IgG Alexa Flour700 G18-145 2.5 Beads*** 561296 BD Biosciences

CD45RA APC HI100 1 Beads*** 550855 BD Biosciences

Fixable viability dye eFlour 780 NA PBMCs** 65-0865-18 eBioscience

*Ultra Comp eBeads (Invitrogen, Catalogue number: 01-2222-42); **PBMCs, peripheral blood mononuclear cells, ***BD CompBeads (Catalogue number: 552843).
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TABLE 2 Study population characteristics.

Full spectrum
flow cytometry

Convectional
flow cytometry

Full
blood count

EBV*
ELISPOT**

Age, median (IQR)-years 46 (26-64) N=80 35 (14-55) N=72 35 (18-52) N=697 32 (16-50) N=332

Age groups-years

percentages

3-15

16-30

31-55

56-89

31% (25/80)

38% (30/80)

31% (25/80)

31% (22/72)

17% (12/72)

30% (21/72)

24% (17/72)

21% (144/697)

23% (157/697)

36% (254/697)

20% (142/697)

23% (76/332)

26% (87/332)

27% (106/332)

24% (63/332)

Age groups-years

median (IQR)

3-15

16-30

31-55

56-89

22 (18-24) N=25

46 (35-51) N=30

69 (66-74) N=25

10 (5-13) N=22

23 (21-26) N=12

48 (40-53) N=21

68 (61-71) N=17

9 (7-13) N=144

23 (18-27) N=157

43 (37-50) N=254

67 (62-72) N=142

7 (6-10) N=76

22 (18-26) N=87

43 (27-48) N=106

69 (65-73) N=63

Sex, males 50% (40/80) 44% (32/72) 49% (336/691) 52% (171/332)

*EBV, Epstein-Barr virus, **ELISpot, Enzyme linked immunosorbent spot, IQR, Interquartile range.

FIGURE 1

Gating strategy using full spectrum flow cytometry. CD4+, CD8+ T cells, B cells, NK cells and monocytes were gated using flowJo 10.8.1 software

following acquisition on a 5 laser Cytek Aurora cytometer. TD, terminally differentiated; N, naïve; CM, central memory; EM, effector memory; TEMRA,

terminally differentiated effector memory; PBMCs, peripheral blood mononuclear cells.
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FIGURE 2

The distribution of CD4+ T cells, CD8+ T cell, B cells, NK cells and monocytes subsets in individuals aged 16 to 89 years (16-30, N= 25 31-55, N= 30

56-89, N= 25) using full spectrum flow cytometry. CD4+ T cells, CD8+ T cell, B cells, NK cells and monocytes were gated using flowJo 10.8.1

software following acquisition on a 5 laser Cytek Aurora cytometer. DN, double negative; CM, central memory; EM, effector memory; TEMRA,

terminally differentiated effector memory. P values obtained from a Kruskal Wallis test. False discovery rate (FRD) used to adjust for multiple

comparisons. Parent population is shown in Y-axis label (B, D, E, G, H) or below the subset label (A, C, F).
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The distribution of CD4+ T cells, CD8+ T cell and B cells subsets in individuals aged 4 to 89 years (4-15, N=22 16-30, N= 12 31-55, N= 21 56-89,

N= 17) using convetional flow cytometry. CD4+ T cells, CD8+ T cell and B cells were gated using flowJo 10.8.1 software following acquisition on an

LSR-II flow cytometer using three antibody panels. DN, double negative; CM, central memory; EM, effector memory; TEMRA, T effector memory RA.

P values obtained from a Kruskal Wallis test. False discovery rate (FRD) used to adjust for multiple comparisons. Parent population is shown in Y-axis

label (B, D, F, G) or below the subset label (A, C, E).
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inclusion of the 4-15 years age group in conventional flow

cytometry analysis but not the full spectrum flow cytometry.

Activated, exhausted and senescent T cells

We next obtained the percentages of CD4+ and CD8+

senescent (CD57+ CD28-), activated (HLADR+CD38+) and

exhausted (PD1+ or LAG3+) subsets from the total CD4+ and

CD8+ T cells respectively. Whilst Follicular Helper T cells do

express PD1, they don’t express LAG3. Whilst we cannot rule out

TFH cells, we can be reasonably sure that LAG3 expressing cells are

not this subset and are likely exhausted. Although percentages of

senescent CD8+ T cells were higher than the percentages of

senescent CD4+ T cells [median 27% IQR (18.6 – 39.7) vs. 1%

IQR (0.37 – 2.85)], both senescent CD8+ and CD4+ T cells

increased with increasing age (Figures 3B, D). The percentages of

activated (HLADR+) CD4+ and CD8+ T cells were low and

increased with increasing age groups (Figures 3B, D). The

percentages of exhausted T cells were very low and did not

change with increasing age (Figures 2B, D, 3B, D).

B cells
Concurrently, we obtained the percentages of B cell subsets out

of the total CD19+ B cells and compared them the 4-15, 16-30, 31-

55 and 56-89 age groups using the Kruskal Wallis test. The

percentages of total CD19+ B cells decreased with increasing age

groups (Figure 3E). Naïve B cells also reduced with increasing age

groups (Figures 2E, 3E). Resting naïve B cells were relatively high in

individuals aged 4-55 and lower in 56-89 year-olds (Figure 3E).

Activated naïve B cells increased with age (Figure 3E). Atypical B

cells are mature B cells double negative for both CD27 and IgD.

These double negative (DN) mature B cells were classified into

DN1 and DN2 using CD38 and CD21 (32). Atypical B cells, DN2

and IgG+ double negative B cells increased with increasing age

groups (Figure 3F). DN1 B cells decreased with increasing age

groups (Figure 2F). DN IgM+ B cells increased with increasing

age groups and started reducing in the 31-55 age group (Figure 3F).

Memory B cells increased with increasing age groups and dropped

in the 56-89 age group (Figure 3G). Activated memory B cells

increased with increasing age groups while IgG+ memory B cells

increased with increasing age groups and reduced in the 56-89 age

group (Figure 3G). Other B cell subsets did not change over time.

The pattern of naïve B cells, CD38+ CD21+ naïve B cells with

increasing age, measured using full spectrum flow cytometry were

similar to the pattern of the same B cell subsets measured using

conventional flow cytometry. However, the pattern of CD19+

CD38- CD21- naïve B cells, DN, DN1, DN2 measured using

full spectrum flow cytometry were different to the pattern of the

same B cell subsets measured using conventional flow cytometry

(Figures 2, 3; Supplementary Figures 6-8).

Differences by sex and other cell types

Using the Kruskal Wallis test, NK cells and monocyte subsets

did not change with changing age (Figures 2G, H; Supplementary

Figure 9). Neutrophils and lymphocytes obtained from full blood
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counts were the most abundant and basophils were the least

abundant (Figure 4). Using the one-way ANOVA, neutrophils

increased while lymphocytes decreased with age, both plateauing

in the 16-30 age group (Figure 4A). Both eosinophils and basophils

from full blood counts decreased with increasing age groups,

plateauing at the 6-30 year age group, while monocytes did not

change in the different age groups. Although the different T, B, NK

cells, neutrophils and monocyte subsets were not different between

males and females (Supplementary Figures 10, 11) using a student T

test, eosinophil and basophil percentages were higher in males

compared to females (Figure 4B).

T cells, antibody responses to EBV and EBV
viral load

All individuals tested had antibodies to the EBV VCA antigen,

implying that all were infected with EBV. Using the Chi2 test, the

percentage of individuals with a positive T cell response to EBV was

highest in individuals aged 31-55 years and lowest in the youngest age

group (3-12 years) (Figure 5A). After adjusting for sex and testing

batch using logistic regression modelling, individuals in the older age

groups were more likely to have a positive EBV T cell response

compared to the youngest age group (3-12 years) (Figure 5B).

Nonetheless, using the Wilcoxon Ranksum test individuals with

a positive EBV T cell response had lower percentages of exhausted

CD8+ T cells (LAG3+) compared to those without a detectable EBV T

cell response (Figure 5C). No difference in other cell types were

observed between individuals with and without an EBV T cell

response (Figure 5C; Supplementary Figure 12C). Furthermore, the

proportion of naïve B cells but not memory or atypical B cells

(Supplementary Figures 12A, B) negatively correlated (Sperman’s

rank correlation) with the amount of IgG to EBV-VCA antigen

(Figure 5D). There was no association between EBV viral load in

PBMCs and saliva with the presence of a positive T cell response to

EBV (Supplementary Figure 12D). Furthermore, EBV viral load in

PBMCs was not associated with the frequency of T cell subsets

(Supplementary Figure 12E).
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The proportion of individuals with a T cell response to EBV (A, B) the percentages of exhausted T cells in individuals with and without an IFN-g

responses to EBV (C) and correlation between naïve B cells and IgG responses to EBV (D). IFN-g responses to EBV (Epstein-Barr virus) peptide pool

were measured using enzyme linked immunosorbent spot (ELISpot) assay; IgG to EBV-VCA (viral capsid antigen) was quantified using multiplex bead

assay. Statistical analysis methods used include chi2 test (A), logistics regression (B), Wilcoxon Rank Sum Test (C), Spearman’s rank correlation (D).

naïve B cells were classified as IgD+ CD27- CD10- CD19+ cells.
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Discussion

We have shown, in the current study, the pattern of immune

cell subsets in healthy individuals across the age span from rural

Uganda, as a basis for reference immune values in this, or similar,

populations across SSA. Several immune cell subsets varied by age.

We have shown that CD4:CD8 T cell ratios of individuals tested, in

the current study, were mostly above one and those aged 16-30

years had the highest CD4:CD8 T cell ratio. CD4:CD8 T cell ratio is

used to assess immune recovery in immunocompromised

individuals (33). Consequently, lower CD4: CD8 T cell ratios

have been associated with old age in people living with HIV (34).

Since all individuals tested in the current study were HIV-negative

and healthy, we anticipated that their CD4:CD8 T cell ratios would

be above one as observed.

We have shown a decrease of both naïve CD4+ and CD8+ T

cells with increasing age. This has been attributed to thymic

involution in adults (35) reducing the number of naïve T cells

produced with increasing age. The proportion of naïve CD4 and

CD8 T cells we observed was comparable to data from other sub-

Saharan African countries (21). However, the proportion of naïve

CD4 and CD8 T cells we observed was lower than that observed in

age-matched individuals from resource rich countries (13). This

difference could be attributed to the high burden of infectious

diseases in SSA driving immune ageing. Infection rates of

herpesviruses such as CMV, EBV, HHV8, HSV are more

common in sub-Saharan Africa (SSA) than elsewhere (5).

Furthermore, in SSA, Additionally, herpesvirus infections occur

in childhood in SSA as opposed to adolescence in other perts of the

world (6–8). Similarly, acute repeated infections such as P.

falciparum malaria, flu causing viral infections, bacterial

infections are very common in SSA (12). These infections

accelerate immune aging for example Infection with CMV has

been shown to drive immune aging (36) The reduction in naïve T

cells is a marker of immune senescence in combination with

increased proportions of terminally differentiated T cells (18).

Immune senescence is known to increase with increasing age. In

the current study, immunosenescent T cells were more frequent in

CD8 T cells compared to CD4 T cells. Both CD4+ and CD8+

immunosenescent T cells increased with increasing age,

corresponding to the reduction of naïve T cells with age.

immunosenescent T cell frequencies in older individuals from the

current study were comparable to those reported elsewhere (37). On

the other hand, the frequency of immunosenescent T cells amongst

younger individuals in the current study were higher than those

reported elsewhere (37). The infectious disease burden in SSA

including early CMV infections, recurrent P. falciparum

infections coupled with viral and bacterial infections throught

childhood (38) could drive cell replicative senescence in younger

adults from SSA. Additionally, activated CD4+ and CD8+ T cells

increased with increasing age, implying that immune activation also

increases with age.

We observed differences in some cell substes between data

analysed using conventional flow cytometry and full spectrum

flow cytometry. However, we were not equipped to investigate the

differences in cell sub sets by the two flow cytometry methods due to

sample limitations but these differences could be partially attributed

to the inclusion of the 4-15 years age group in conventional flow

cytometry analysis but not the full spectrum flow cytometry.

T cell function, as measured by IFN-g production by memory

EBV-specific T cells, increased with age but reduced in the 55-89

age group. Since infection with EBV in SSA occurs in childhood

(39), viral reactivation over the years could have led to the increase

in memory EBV-specific T cells with age, while immune senescence

may have led to the reduction in older individuals. Additionally,

immune-exhausted CD8+ T cells were more frequent in individuals

without detectable T cell function, based on this finding, we

hypothesise that immune exhaustion plays a role in impairment

o f immune func t ion to chron ic in fec t ions such as

herpesvirus infections.

As with T cells, B cell production reduces over time, with older

individuals having more autoantibodies and less efficient antigen-

specific antibodies (40). In the current study, we observed

decreasing numbers of CD19+ B cells with increasing age.

Previous studies from resource rich countries have reported either

decreasing or unchanged B cells with increasing age (41, 42) and no

evidence to suggest declining B cell production by the bone marrow

with age (43). Furthermore, fewer naïve B cells correlated with

increased IgG to EBV VCA, suggesting that either risk factors

causing EBV reactivation like infection with P. falciparum (31) or

infection with EBV reduces the pool of naïve B cells. B cells were

classified into three major groups, naïve (IgD+CD27-), memory

(IgD-CD27+) and atypical/double negative B cells (IgD-CD27-)

(44). The reduction in naïve B cells with age in the current

population was compensated by the increase in both atypical/

double negative and memory B cells with increasing age. Of these

three B cell subsets, memory B cells were the least prevalent.

Previous studies, not from SSA have reported an increase in NK

cell percentages with age (45, 46). In the current study we report no

difference in NK cell subsets with increasing age, although our study

may not have been powered to detect significant changes in

NK cells.

Conclusion

We have shown the pattern of immune cell frequencies in an

African population across a wide age range including both children

and older individuals in addition to younger adults. Major immune

cells follow a similar pattern as those reported elsewhere but the

frequencies in each age group differ. These differences may be

attributed to environmental factors including the higher burden of

infections unique to SSA.
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SUPPLEMENTARY TABLE 1

Cell subsets and their markers. TN: naïve T cells; TEMRA: T effector memory RA;

TEM: effector memory T cells; TCM: central memory T cells; BN: naïve B cells;

BM: memory B cells; BDN: double (CD27 and IgD) negative B cells.

SUPPLEMENTARY TABLE 2

Median and IQR of major peripheral blood immune phenotypes in each age

group by full spectrum flow cytometry . Median and interquartile range (IQR)

computed in STATA version 13. TN: naïve T cells; TEMRA: T effector memory

RA; TEM: effector memory T cells; TCM: central memory T cells; BN: naïve B

cells; BM: memory B cells; BDN: double (CD27 and IgD) negative B cells.

SUPPLEMENTARY TABLE 3

Median and IQR of major peripheral blood immune phenotypes in each age

group by conventional flow cytometry . Median and interquartile range (IQR)

computed in STATA version 13. TN: naïve T cells; TEMRA: T effector memory

RA; TEM: effector memory T cells; TCM: central memory T cells; BN: naïve B

cells; BM: memory B cells; BDN: double (CD27 and IgD) negative B cells.

SUPPLEMENTARY FIGURE 1

gating strategy of conventional flow cytometry data CD4+, CD8+ T cells and

B cells, were gated using flowJo 10.8.1 software following acquisition on an

LSR-2 flow cytometer of three different panels. N: naive, CM: central memory,

EM: effector memory, TEMRA: terminally differentiated effector memory. TD:

terminally differentiated, PBMCS: peripheral blood mononuclear cells.

SUPPLEMENTARY FIGURE 2

CD4+ T cell subsets measured using full spectrum flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on a 5 laser

Cytek Aurora cytometer. CM: central memory, EM: effector memory, TEMRA: T

effector memory RA. R2 and P values obtained using linear regression.

SUPPLEMENTARY FIGURE 3

CD4+ T cell subsets measured using conventional flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on an LSR-

II flow cytometer. CM: central memory, EM: effector memory, TEMRA: T effector

memory RA. R2 and P values obtained using linear regression.

SUPPLEMENTARY FIGURE 4

CD8+ T cell subsets measured using full spectrum flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on a 5 laser

Cytek Aurora cytometer. CM: central memory, EM: effector memory, TEMRA: T

effector memory RA. R2 and P values obtained using linear regression.

SUPPLEMENTARY FIGURE 5

CD8+ T cell subsets measured using conventional flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on an LSR-

II flow cytometer. CM: central memory, EM: effector memory, TEMRA: T effector

memory RA. R2 and P values obtained using linear regression.
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SUPPLEMENTARY FIGURE 6

B cell subsets measured using full spectrum flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on a 5

laser Cytek Aurora cytometer. DN: double (CD27 & IgD) negative.

SUPPLEMENTARY FIGURE 7

B cell subsets measured using conventional flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on an

LSR-II flow cytometer. DN: double (CD27 & IgD) negative.

SUPPLEMENTARY FIGURE 8

B cell subsets measured using conventional flow cytometry by age. Cell

subsets were gated using flowJo 10.8.1 software following acquisition on an

LSR-II flow cytometer. DN: double (CD27 & IgD) negative.

SUPPLEMENTARY FIGURE 9

NK cells and monocytes subsets measured using full spectrum flow

cytometry by age. Cell subsets were gated using flowJo 10.8.1 software

following acquisition on a 5 laser Cytek Aurora cytometer.

SUPPLEMENTARY FIGURE 10

Percentage frequency of CD4+ T cells, CD8+ T cells, B cells NK cells and

monocytes subsets in males and females. CD4+ T cells, CD8+ T cell, B cells,

NK cells and monocytes were gated using flowJo 10.8.1 software following

acquisition on a 5 laser Cytek Aurora cytometer. DN: double negative, CM:

central memory, EM: effector memory, TEMRA: terminally differentiated

effector memory.

SUPPLEMENTARY FIGURE 11

Percentage frequency of CD4+ T cells, CD8+ T cells and B cells subsets in

males and females.CD4+ T cells, CD8+ T cell and B cells were gated using

flowJo 10.8.1 software following acquisition on an LSR-II flow cytometer

using three antibody panels. DN: double negative/atypical, CM: central

memory, EM: effector memory, TEMRA: terminally differentiated

effector memory.

SUPPLEMENTARY FIGURE 12

Correlation between B cell subsets and IgG responses to EBV (Epstein-Barr

virus) viral capsid antigen-VCA (A, B). The percentages of T cells subsets in

individuals with and without an IFN-g responses to EBV (C); EBV viral load in

individuals with and without a positive T cell response to EBV (D), T cell

subsets in individuals with and without EBV virus in peripheral blood

mononucleaf cells-PBMC (E). IFN-g responses to EBV (Epstein-Barr virus)

peptide pool were measured using enzyme linked immunosorbent spot

(ELISpot) assay; IgG to EBV-VCA (viral capsid antigen) was quantified using

multiplex bead assay. Statistical analysis methods used include linear

regression (A, B), Wilcoxon Rank Sum Test (C–E).
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