
This is a repository copy of Hyper-Heuristics for Irregular Object Multi-Container Packing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211528/

Version: Accepted Version

Proceedings Paper:
Webster, A., Jia, X. orcid.org/0000-0001-8590-7477 and Xie, S.Q. orcid.org/0000-0002-
8082-9112 (2024) Hyper-Heuristics for Irregular Object Multi-Container Packing. In: 
Proceedings of 2023 29th International Conference on Mechatronics and Machine Vision 
in Practice (M2VIP). 2023 29th International Conference on Mechatronics and Machine 
Vision in Practice (M2VIP), 21-24 Nov 2023, Queenstown, New Zealand. IEEE . ISBN 
9798350325621 

https://doi.org/10.1109/m2vip58386.2023.10413433

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Hyper-Heuristics for 2D Irregular Object

Multi-Container Packing

Aron Webster∗, Xiaodong Jia†, Sheng Quan Xie‡

∗†School of Chemical and Process Engineering ‡School of Electronic and Electrical Engineering

University of Leeds

Leeds, UK

{∗pmaow, †X.Jia, ‡S.Q.Xie}@leeds.ac.uk

Abstract—This paper presents a preliminary study on the use
of hyper-heuristics for solving multi-container irregular object
packing problems. The work is part of a larger project which
aims to develop a robotic packing system for the application of
packing nuclear waste into containers. As part of this project,
a novel packing optimisation scheme is proposed to plan how
to pack the objects into given containers. We propose a new
hyper-heuristic algorithm for optimising both packing order and
placement heuristics for each object. We analyse the performance
and highlight the strengths and weaknesses of the proposed
approach. The work presented in this paper is conducted on
2D datasets, however all the methodology can be adapted to 3D
packing. Based on the comparison of our results against a 2D
multi-container packing algorithm from literature, our approach
shows promise, however it suffers primarily from needing large
computation times to find good solutions owing to the large
number of combinations to the problem. Future work will focus
on ways to cut down the number of combinations (without
degrading the quality of solutions) as well as trying to speed
up the packing algorithm by limiting the number of rotation
angles for the objects.

Index Terms—2D packing, Multi-container packing, Hyper-
heuristic, Genetic algorithm, Optimisation

I. INTRODUCTION

For a given set of objects, packing optimisation (PO)

describes the task of determining what position/orientation

each object will have within a container such that the number

of objects in the container is maximised, subject to constraints

(e.g. maximum weight limit on a container). PO has attracted

numerous studies over the years, due of its relevance in areas

such as the transportation of goods (shipping and home de-

livery by the likes of Amazon), additive manufacturing (more

parts printed per tray), engineering design (component layout

in engine compartments), garment manufacturing (packing

shapes to minimise wasted fabric), etc.

One popular method of PO in literature is sequential pack-

ing, where objects are placed one by one into a container

according to given placement rules (or placement ‘heuristics’).

Most existing sequential PO algorithms only consider a single

placement heuristic and focus on optimising the structure

by optimising the order that objects are packed [1,2]. The

problem is that by only using a single placement heuristic,

the number of sites where an object can be placed is lim-

ited. In contrast, a hyper-heuristic approach employs multiple

placement heuristics to expand the number of potential sites

for an object [3-6]. Hyper-heuristics have shown promise with

packing problems in the past, however the number of studies

focusing on irregular object multi-container packing using

hyper heuristics is very limited.

This paper presents a multi-container packing algorithm

with 4 placement heuristics (outlined in section 3.B), com-

bined in a novel hyper-heuristic algorithm for the packing

of 2D irregular shapes, where both the order that objects are

packed, and the placement heuristics used for each object are

optimised. The efficacy of the proposed approach is tested

using benchmark datasets and the results are compared to

previous results in literature. Based on the results, several areas

for future work are proposed.

II. PROBLEM DEFINITION

In this study, the goal of optimisation is to find both an

ordering for the set of objects, and a placement heuristic for

each object such that, when the objects are packed in this order

with each object placed according to its prescribed heuristic,

the number of containers N needed to pack all the objects is

minimised.

Let O = {o1, o2, ..., on} denote a set of n 2D irregular

objects which are to be packed into identical rectangular

containers, with width and length denoted as W and L

respectively. Additionally, let H = {h1, h2, ..., hk} denote a

set of placement heuristics available to the packing algorithm,

where k is the number of placement heuristics available.

The optimisation variables can thus be defined as a 2-tuple

set: Ω = {(o1, h
1

i ), (o2, h
2

i ), ..., (on, h
n
i )} where i ∈ 1, ..., k.

Each entry in the set Ω contains an object o ∈ O with an

associated placement heuristic h ∈ H which is used to pack

that object.

Assuming the objects are packed in the order they appear

in Ω the goal of optimisation can be stated as a desire to

minimise N by optimising 1) the order of objects in the set

Ω (by changing the permutation of the pair entries in the set),

and 2) the choice of placement heuristics used to pack each

object (by changing the index i of each h associated with each

object in Ω), subject to the following constraints:

1) No overlap between packed objects.

2) All packed objects are within the container boundary.



Using N directly as the optimisation objective will result

in tied solutions for cases where there are multiple solutions

with the same number of containers. Hence, we instead adopt

the same objective as in [7] which aims to maximise the

percentage usage of each container. This is expressed as:

F =

∑N

j=1
U2

j

N
(1)

Where Uj is the utilisation ratio of each container j ∈ 1, ..., N
and is defined as:

Uj =

∑nj

m=1
am

LW
(2)

Where am is the area of object m ∈ O.

III. SOLUTION ALGORITHM

To start packing a set of objects, a single container is opened

and the objects are placed one by one into the container

starting with the first object in the list. Each object is placed

according to the placement heuristic assigned to it. If the next

object in the list cannot be packed into the current container,

the container is closed off and a new container is opened.

The algorithm then continues packing the objects into the new

container until the next object cannot fit. This process repeats

until all the objects have been packed.

The optimisation of object ordering and placement heuris-

tics is performed by a Genetic Algorithm (GA) and the packing

of the individual objects into the containers is performed

by a packing software called DigiPac™ [8] developed by

StructureVision© at the University of Leeds.

A. Optimisation Algorithm

As stated, the optimisation of the packing order and heuris-

tics for each object is performed by a GA. The population of

the GA is made up of individual solutions, or ‘chromosomes’,

where each chromosome is equivalent to an instance of Ω and

the number of chromosomes is set by the user. Each gene

in a chromosome is equivalent to a 2-tuple in the set Ω and

contains one object and a heuristic to pack it. The order of

the genes determines what order the objects will be packed.

In each generation, the GA employs crossover and mutation

operators to create a new population of solutions (‘offspring’)

for the next generation. For selecting parent chromosomes for

crossover or mutation, tournament selection is used. When

generating the new population, the algorithm will generate a

random number between [0,1]. If the number is less than the

user defined crossover rate, the algorithm performs crossover

(producing two offspring), otherwise the algorithm performs

mutation (producing a single offspring). This process iterates

until a full population of new solutions has been generated.

For crossover, Davis’s order crossover [9] is used to generate

two offspring with different gene permutations. Each gene in

the each child chromosome will retain the placement heuristic

is possessed in the parent chromosomes. For mutation, the

operator selects two different genes at random from a parent

chromosome and swaps their positions. The operator then

randomly changes the value of i for each h in the two selected

genes to a different value of i from 1, ..., k.

The GA also utilises elitism to retain a small portion of the

best solutions from each generation to carry over to the next

generation. In doing so, the best solution found is retained

throughout the GA run.

B. Packing Model

The packing software DigiPac™ is used to pack a set of

shapes. DigiPac™ works by digitising objects, to pixels in

2D or voxels in 3D, which enables the algorithm to easily

represent arbitrary shapes. The packing space is likewise

digitised (to form a lattice grid) with the resolution of the

lattice grid (and in turn the objects) being set by the user.

To pack a shape, the algorithm fixes the rotation angle

of the object to pack and then systematically translates the

object, in discrete steps, across each grid cell in the packing

space lattice, from the bottom of the container to the highest

point of the existing packing structure. Each time the object is

moved, an overlap detection is performed to test if the current

object overlaps with any of the previously packed objects or

the container boundary. If there is no overlap, the algorithm

stores this location as a feasible packing site. Once the lattice

grid has been traversed, the object is rotated by a fixed angle

increment (which is set by the user), and the shape is once

again translated across the lattice grid. This process is repeated

until the object has completed a full rotation. The algorithm

then searches through all the stored feasible sites and selects

a site based on the placement heuristic assigned to that object.

Currently, there are 4 placement heuristics implemented in

DigiPac™:

• Height Minimisation – the object is placed in a location

which minimises the height of the object in the packing

structure.

• Seat Position Minimisation – the object is placed in the

lowest available site in the packing structure.

• Contact Area Maximisation – the object is placed in the

location which results in maximum contact area between

the object and the packed objects in the container.

• Contact Number Maximisation – the object is placed

in the location which maximises the number of packed

objects the new object is in contact with.

IV. IMPLEMENTATION

DigiPac™ is implemented in C++ and the GA is imple-

mented in MATLAB. To pack the shapes, MATLAB writes

the shape vertices to a text file, calls DigiPac™ which then

reads in the shape data, pixelises the shapes and then packs

them. The packed shapes and utilisation ratio are then printed

to a text file from DigiPac and read back into MATLAB. The

programme is run on a PC with an AMD Ryzen 5 5600x

processor and 16Gb of RAM.

The initial population of solutions comprises randomly

ordered solutions with the heuristics assigned to each object

likewise generated at random. For all the tests in this paper

the algorithm was run for 100 generations with a population



size of 50. The Crossover rate was set to 0.5, the number of

elite solutions was set to 5 and the number of solutions for

tournament selection was set to 10.

A. Data

For testing the algorithm, 5 datasets were selected, all of

which are available on the ESICUP website (https://www.euro-

online.org/websites/esicup/data-sets/). The datasets are shown

in Table 1 along with the number of objects in each set (n)

and the permitted rotations as given by the original authors of

each set.

The results are benchmarked against the results for the

same datasets used in [7] for the ‘Nest-MB’ (Medium Bins)

instances, under the same container size conditions. For the

rotation angles of the objects, two separate trials were run on

each set of shapes; one where the rotations were the same

as the given rotations and another where the shapes were

permitted a full rotation in 1-degree increments.

In [7], the authors test packing the shapes using the given

angles as well as using free rotation. Within the context of their

paper, free rotation refers to the fact that objects can have any

angle between 0 and 360 degrees, however this does not mean

that objects are continuously rotated when being packed. The

authors use a pre-processing step before packing each object

to identify promising angles for that object, after which, the

object is packed for each identified angle (where the angle

remains fixed in each case).

V. RESULTS

Table 2 lists the results of this study along with the results

obtained in [7] for the same data sets, both of which are

averaged over multiple runs. Fig. 1. shows an example of a

packed structure obtained using full rotation. For our data, the

algorithm was run 10 times for each dataset in both cases

(given rotation and full rotation). The best results for each

dataset are highlighted in bold.

Looking at our results in table 2, our algorithm performed

better on all cases using full rotation in 1-degree increments

when compared to using the given rotation angles. This is

unsurprising as using full rotation allows the algorithm to

find more potential sites for each object. When comparing

our results (using full rotation) with the results from [7], our

algorithm outperformed theirs for the ‘Albano’ and ‘Swim’

datasets and achieved close results for the ‘Fu’ dataset.

For the datasets with a higher number of objects (‘Poly5b’

and ‘Shirts’), our algorithm performed noticeably worse.

Compared to the algorithm in [7] which uses an allocation

TABLE I: Datasets used with number of objects and given rotation angles.

Dataset n Given Rotations

Fu 12 [0,90,180,270]

Albano 24 [0,180]

Swim 48 [0,180]

Poly5b 75 [0,90,180,270]

Shirts 99 [0,180]

algorithm to allocate subsets of objects to different containers

(which are then optimised individually), our algorithm aims

to solve the problem in a more global fashion by optimising

the entire object set, rather than splitting it into subsets. The

result is that, in theory, our approach can achieve better results

as it is better able to explore the solution space, however the

downside is that the solution space quickly becomes very large

for an increasing number of objects.

The number of combinations for our approach can be

calculated as:

ncombinations = n!(kn) (3)

Where n! is the number of ways to order a list of objects, n,

and kn is the number of heuristic combinations for k heuristics

with n objects. As an example, using equation 3, the number

of solutions for ‘Fu’ (n = 12, k = 4) and ‘Shirts’ (n = 99, k =

4) is approximately 8x1015 and 3.7x10215 respectively.

Consequently, whether our algorithm achieves good solu-

tions or not will depend heavily on both the quality of the

initial solutions in the GA, and on the number of generations

the GA is allowed to run for. For example, for the ‘Shirts’

dataset, the best F score achieved by our algorithm was 0.593,

which is better than the average score (0.570) for the same

dataset in [7]. However, this was only achieved in one of

the runs, with the rest producing much worse results. As

such, future work needs to be done to reduce the number of

combinations for the problem so the algorithm can consistently

achieve good solutions without requiring very long run times

or multiple runs.

Regarding computation times, our algorithm took much

longer to run than the algorithm in [7]. The authors of [7]

provided the run time, averaged over all datasets in ‘Nest-MB’,

as 116 seconds. For the full rotation case, our average run

time was 217 minutes. This longer run time can be attributed

to the fact that our approach tests many more packing orders

and rotation angles for objects when compared to [7]. In [7]

the authors keep the order of objects fixed from largest area to

smallest and only test a small number of different orientations.

Using a fixed order with only heuristic optimisation was tested

with our algorithm however it was found to produce poor

results. Using a fixed order works well when the object set is

pre-allocated and the containers are optimised individually (as

in [7]), because for each container, large objects end up at the

bottom of the container with the smaller object packed in the

gaps. With our approach however, it was found that keeping

the order fixed from largest to smallest area resulted in the

first few containers all having only large objects (with many

gaps between them) and the last container having many small

objects (which only occupied a small portion of the container).

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel hyper-heuristic GA with

4 placement heuristics for the 2D irregular object multi-

container packing problem. Based on the results presented,

the algorithm shows promise, being able to outperform results

from literature for some test cases, however it suffers from



TABLE II: Comparison of our results to literature results

Our Results Results From [7]

Given Rotations Full Rotation (1o) Given Rotations Free rotation

Dataset N F N F N F N F

Fu 4 0.421 4 0.436 4 0.443 4 0.440

Albano 3 0.522 3 0.551 3 0.480 3 0.510

Swim 5.9 0.334 5.3 0.404 5 0.397 5 0.390

Poly5b 8.7 0.371 8 0.439 7 0.478 7 0.480

Shirts 9 0.457 8.8 0.520 8 0.518 8 0.570

Fig. 1: Example of a packing structure. This was the best packing result for
the ‘Albano’ dataset using full rotation.

long computation times and degradation in quality of results

for large object sets. Based on this observation there are

two main areas for future work: 1) reduce the number of

combinations to the problem so the algorithm is less dependent

on the quality of initial solutions/number of generations, and

2) reduce computation times by improving the DigiPac™

algorithm and limiting the number of object rotations.

For Task 1, the algorithm will be adapted to use the same

approach as in [7], whereby the object set will be split into

subsets which will then be allocated to separate containers

before the hyper-heuristic packing algorithm is applied to each

container in turn. In doing so, the global search ability of the

algorithm would likely be lost, however this is considered an

acceptable trade off since the chances of finding the global

optimum within such a large solution space is very limited.

Additionally, by considering the optimisation of each container

individually, the object ordering can also be fixed from largest

area to smallest. This would reduce the global search ability of

the algorithm even further; however it would also remove the

n! term from equation 3, significantly reducing the number of

combinations to the problem. Finally, we will also implement

additional placement heuristics and then test subsets of these

heuristics to see if good results can be obtained with fewer

than 4 heuristics. In doing so the k term in equation 3 could

be decreased, decreasing the number of combinations further.

For Task 2, the first modification will be to re-write the

entire algorithm in C++, utilizing parallel computation to boost

the speed further. Additionally, the number of search sites on

the lattice grid will also be reduced by only searching for

sites near the top of the packing structure. Currently, when

searching for a site for each object, DigiPac™ will search over

the entire space from the bottom of the container to the highest

point of the existing packed structure. This means that small

objects can end up being placed in gaps near the bottom of the

structure. For 2D applications (such as strip packing for the

garment industry), this is desirable. However if the algorithm

is to be adapted to 3D for the packing of nuclear waste,

this is unsuitable since objects cannot be placed underneath

previously packed objects without collision. By limiting the

search to only the top part of the packing structure, not only

will this make the algorithm more suitable for the planning of

packing real-world objects, it will also cut down the number

of search sites on the lattice grid, increasing the speed further.

The final, and most significant task will be to seek ways to

limit the rotation angles for the objects. In [7], the authors

considered the edges of the object to pack as well as the

edges of the packed objects and container to calculate angles

which result in edge alignment between packed objects or the

container wall. In [10], the authors used principal component

analysis to identify convex features of the object to pack and

use this to calculate angles which aim to promote good nesting

of the object with the packed pile. Future work will seek to

find additional methods like these as well seeing if the methods

can be adapted for 3D packing.

REFERENCES

[1] L.J.P. Araújo, A. Panesar, E. Özcan, J. Atkin, M. Baumers, I. Ashcroft,
”An experimental analysis of deepest bottom-left-fill packing methods
for additive manufacturing”, International Journal of Production Re-
search, 58:22, 6917-6933, 2020.

[2] E. Lo Valvo, ”Meta-heuristic Algorithms for Nesting Problem of Rect-
angular Pieces”, Procedia Engineering. 183. 291-296 , 2017.

[3] E. López-Camacho, H. Terashima-Marin, P. Ross, G. Ochoa, ”A unified
hyper-heuristic framework for solving bin packing problems”, Expert
Systems with Applications, Volume 41, Issue 15, 2014, Pages 6876-
6889.

[4] M. Beyaz, T. Dokeroglu, A. Cosar, ”Robust hyper-heuristic algorithms
for the offline oriented/non-oriented 2D bin packing problems”, Applied
Soft Computing, Volume 36, 2015, Pages 236-245.

[5] J. Thomas, N.S. Chaudhari, ”Design of efficient packing system using
genetic algorithm based on hyper heuristic approach, Advances in
Engineering Software, Volume 73, 2014, Pages 45-52.

[6] C. Tu, R. Bai, U. Aickelin, Y. Zhang, H. Du, ”A deep reinforcement
learning hyper-heuristic with feature fusion for online packing prob-
lems”, Expert Systems with Applications, Volume 230, 2023, 120568.

[7] A. Martinez-Sykora, R. Alvarez-Valdes, J.A. Bennell, R. Ruiz, J.M.
Tamarit, ”Matheuristics for the irregular bin packing problem with free
rotations”, European Journal of Operational Research, Volume 258, Issue
2, 2017, Pages 440-455.

[8] DigiPac, structurevision.com, https://www.structurevision.com/digipac.htm
(accessed June 14, 2023).

[9] A. Moraglio, R. Poli, ”Geometric crossover for the permutation repre-
sentation”. Intelligenza Artificiale. 5. 49-63. 2011.

[10] B. Guo, Z. Liang, Q. Peng, Y. Li, F. Wu, ”Irregular Packing Based on
Principal Component Analysis Methodology,” in IEEE Access, vol. 6,
pp. 62675-62686, 2018.


