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Forecasting the ecological 
footprint of G20 countries 
in the next 30 years
Rafael M. Eufrasio Espinosa * & S. C. Lenny Koh 

The Ecological Footprint evaluates the difference between the availability of renewable resources and 
the extent of human consumption of these resources. Over the past few decades, historical records 
have shown an accelerated decline in the availability of resources. Based on national footprint and 
biocapacity accounts, this analysis aims to advance the forecasting of the G20 countries’ ecological 
footprints over a 30-year time frame. We employed a time series forecasting approach implemented in 
Python, which included-modular regression (Prophet) and Autoregressive Integrated Moving Average 
(ARIMA & Auto-ARIMA) methods. We evaluated and combined the performance of these three 
methods. The results indicated that among the largest economies of the G20, only four countries are 
projected to have a positive ecological footprint balance by 2050. These countries share the common 
denominator of large land areas and a moderate population growth projection. However, the overall 
trend of the indicator suggests that it will continue to decline.

One of the main objectives of the United Nations Sustainable Development Goal (SDG) 12, which focuses on 
responsible production and consumption for sustainable growth, is to mitigate the environmental degradation 
associated with population and economic growth, thereby facilitating a transition to a greener and more socially 
inclusive global  economy1,2. However, this transition towards reducing our ecological footprint may be com-
promised, as all countries tend to prioritise economic growth over implementing mitigation  actions3,4. Due to 
policies favouring economic growth and the advent of cheaper and more optimised energy sources, the demand 
for natural resources and their subsequent processing has dramatically increased since the last century, conse-
quently enlarging our ecological  footprint5–7. In some instances, this has caused severe harm to  humankind8. 
Since 1961, humanity’s global ecological footprint has doubled, and currently, we consume renewable resources 
20 to 50% faster than the planet can renew  them9. Globally, no country has achieved sustainable resource use; 
in fact, we are moving further away from sustainable  principles10,11. The overshoot of biophysical boundaries 
is set to continue escalating, and it is estimated that within just a few decades, the Earth’s resource capacity will 
need to nearly double to keep pace with the current rate of population growth, production, and  consumption12.

A few years ago, to grasp the extent of environmental challenges, an indicator developed by Wackernagel 
and Rees gained attention for its ability to measure and assess the sustainability of ecosystems. This gave rise to 
the concept of the ecological footprint (EF)13. Essentially, the EF aims to quantify the consumption of natural 
resources and the extent to which this consumption can be replenished by  nature14. Within the EF terminology, 
‘biocapacity’ refers to the capability of natural environments to regenerate the land surfaces utilised by  humans3. 
The EF is considered an appropriate environmental quality index because it includes land use for crops, grazing, 
forests, fishing grounds, built-up areas, and the carbon footprint. It also sheds light on how economic activities 
affect the environment, both directly and  indirectly15. Consequently, for many researchers, the EF emerges as a 
critical indicator, surpassing others that focus solely on specific environmental concerns like air pollution, carbon 
emissions, or global  warming16. Historical records of this measurement system, dating back to 1961, are updated 
 annually17. These records reveal that problems related to the global environmental footprint are intensifying, 
posing an increasing concern among managers, economists, and environmentalists. This concern is particularly 
pronounced in the G20  countries18,19.

The G20 consists of the world’s most influential economies, a combination of developed and developing 
nations, representing about two-thirds of the global population, 85% of the world’s gross domestic product, and 
over 75% of global  trade15. Therefore, should the G20 nations achieve consensus on policies to mitigate the EF, 
the group could serve as an ideal platform for addressing these environmental issues, with the potential for these 
strategies to be adopted by other nations  thereafter16.
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Initially, ecological footprint (EF) forecasting faced criticism for its static analytical approach, primarily due to 
the high sensitivity in estimation  methods20. However, prediction models are now increasingly recognised as vital 
instruments for policy purposes, particularly in developing mitigation scenarios. These models extend beyond 
the original EF methodology’s static approach by incorporating dynamic elements. Notably, country-level predic-
tive models, based on multiregional input–output analysis, suggest that it is improbable for the world to avoid 
exhausting its bio productive capacity for human purposes by the century’s  end21. In line with advancements 
across various research domains, the adoption of more sophisticated prediction techniques, such as machine 
learning from Artificial Intelligence (AI), is gaining momentum in EF forecasting. The advanced methods offer 
new insights into pattern recognition and environmental change  prediction22.

The relevance of applying these innovative approaches within the G20 has been recognised, albeit with only 
a few examples to date. Given the pressing need to address the anticipated increase in consumption behaviours 
and the escalating negative footprint in these countries, there is a call for more research in this  area18,22,23. In 
response, we have designed this resource footprint balance analysis within a forecasting framework, aiming 
to support planning for natural resource management. This approach is based on historical national footprint 
accounts provided by the Global Footprint Network (Figure SI 1)13,17.

The primary objective of this research is to predict the ecological footprint over the next 30 years, thereby 
facilitating improved protection of the ecosystems in the G20 countries. This involves leveraging new predic-
tion techniques in time series modelling, including modular regression (Prophet) and autoregressive integrated 
moving average (ARIMA) methods.

The value of using time series forecasting for the ecological footprints of G20 nations lies in its ability to pro-
vide predictive insights based on historical data, guiding informed and timely decision-making for environmental 
sustainability. The significance of this approach is its role in enhancing data-driven policy making, allowing 
governments and organizations to anticipate future trends, allocate resources more efficiently, and implement 
targeted interventions to mitigate ecological impacts. The innovation in this methodology is in its application 
of advanced statistical and analytical techniques to environmental data, offering a new perspective on managing 
ecological footprints through predictive modelling and forecasting.

Results
Ecological footprint per capita
Projecting the ecological footprint in terms of global hectares per capita within the G20 countries is relevant 
for sustainability assessments, comparative analysis, policy formulation, climate change mitigation efforts, and 
fostering global cooperation. It offers essential insights into the environmental impact of these nations, aiding 
and guiding towards a more sustainable future by addressing potential resources scarcity issues.

This analysis investigates key variables such as balance per capita, consumption per capita, biocapacity per 
capita, area per capita, GDP per capita, electricity use per capita, emissions per capita, and fossil fuel consumption 
per capita. These variables help understand the patterns and trends of each country’s ecological footprint (Fig. 1). 
The G20 countries are categorised into developed and developing groups for this analysis. The developed category 
includes Australia (AUS), Canada (CAN), Germany (DEU), Spain (ESP), France (FRA), the United Kingdom 
(GBR), Italy (ITA), Japan (JPN), South Korea (KOR), and the United States (USA). The developing category 
comprises Argentina (ARG), Brazil (BRA), China (CHN), Indonesia (IDN), India (IND), Mexico (MEX), Russia 
(RUS), Saudi Arabia (SAU), Turkey (TUR), and South Africa (ZAF).

The Ecological Footprint (EF) Balance per capita assesses the ecological footprint on a per-person basis, 
revealing whether a country’s consumption of resources exceeds or aligns with its biocapacity. Developing coun-
tries, notably Argentina and Brazil, demonstrate positive balances per capita, suggesting their ecosystems could 
sustainably provide for their future demand for resources. This may be attributed to a variety of factors, includ-
ing lower levels of population growth, industrial development, or less intensive use of resources compared to 
developed countries.

On the other hand, except for Canada, developed countries like Australia, the USA, Germany, and others 
exhibit negative balances per capita, indicating that their resource consumption exceeds their biocapacity.

EF Consumption per capita quantifies the average resource consumption by an individual in a country. Typi-
cally, developed countries display higher consumption levels per capita due to higher living standards and greater 
resource accessibility. For instance Australia, Canada, and Germany are among the countries with relatively 
higher consumption per capita, mirroring their resource-intensive economies and affluent lifestyles. Conversely, 
developing countries like China, India, and Mexico show lower consumption per capita, likely due to lower 
income levels, restricted resource access, and different consumption habits.

Biocapacity per capita measures the availability of biologically productive land and water resources per person. 
Developed countries, especially those with vast land areas and low population densities, such as Australia and 
Canada, exhibit higher biocapacity per capita. These countries possess abundant natural resources, including 
forests, agricultural land, and water bodies, which contribute to their higher biocapacity. In contrast, countries 
with high population densities or smaller land areas and limited access to resources, such as China, India, and 
South Korea, demonstrate relatively lower biocapacity per capita.

Area per capita reflects the land area available to each individual within a country. Countries with larger land 
masses, such as Canada, Australia, and Russia, exhibit higher area per capita, suggesting greater availability of 
natural resources and potential for ecosystem services. Conversely, countries with high density population or 
small land areas, such as China, India, and South Korea, have lower area per capita. This may pose challenges in 
managing resource demands and environmental conservation within limited spaces.

GDP per capita represents the economic output per person and serves as a proxy for the overall economic 
development of a country. Countries characterized by higher GDP per capita, such as the United States, Australia, 
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the United Kingdom, and Canada, exhibit stronger economies, technological advancements and higher standards 
of living. In contrast some developing countries, despite having high potential in terms of natural resources, 
skilled labour, or other assets, may still have a low GDP per capita. For example, emergent economies in Asia 
such as India, Indonesia, or in the Americas like Brazil and Mexico will continue to face challenges related to 
income inequality, political stability, lack of infrastructure, and investment, among other factors. The correla-
tion between higher GDP per capita and ecological footprint is complex. While some developed countries have 
successfully decoupled economic growth from environmental degradation through sustainable practices, others 
continue to face challenges in achieving sustainable development (Fig. 2).

Electricity per capita measures the average electricity consumption in kWh per person, reflecting the energy 
demands and infrastructure development within a country. Overall Developed countries, with higher industri-
alization and urbanization rates, typically exhibit higher electricity consumption per capita. The United States, 
South Korea, Canada, and Australia are among the countries with relatively higher electricity consumption 
per capita, attributable to factors such as larger populations, energy-intensive industries, and higher standards 
of living that require more electricity for residential, commercial, and industrial purposes. While the highest 
electricity consumption among the G20s is found in Saudia Arabia, developing countries generally have lower 
consumption projections.

Emissions per capita indicates the amount of carbon dioxide  (CO2) emissions per person, serving as a meas-
ure of a country’s contribution to global greenhouse gas emissions. Developed countries, due to higher levels of 
industrial activity and energy consumption, generally exhibit higher emissions per capita. Countries like South 
Korea, Canada, Australia, and the United States have higher emissions per capita. Among developing countries, 
Saudi Arabia has higher emissions per capita, while the United Kingdom is projected to be the only nation with 
negative emissions by 2050.

Fossil fuels per capita represents the amount of fossil fuels consumed per person within a country. Developed 
countries, which often rely heavily on fossil fuel-based energy sources, typically exhibit higher fossil fuel con-
sumption per capita. South Korea, Canada, and the United States have relatively higher consumption. Among 
developing countries, Saudi Arabia, shows the highest consumption in kg oil equivalent per capita. This under-
scores the need for a transition to cleaner and more sustainable energy sources to reduce dependency on fossil 
fuels and mitigate climate change impacts. Countries with lower consumption of fossil fuels, like India and 
Indonesia, have large populations, which might result in per capita consumption appearing lower even if overall 
consumption increases.

Figure 1.  Plot shows a group of polar charts arranged from top left to bottom right displaying: The ecological 
footprint balance in global hectares per capita (gha/cap) by the 2050 circa year where developed countries are 
illustrated in orange colour and developing countries in blue, the ecological footprint consumption (gha/cap), 
biocapacity per capita (gha/cap), total area per capita (gha/cap), GDP per capita in US dollars, Emissions per 
capita in  MtCO2, Fuel consumption per capita in kg Oil-eq, and electricity consumption per capita in kWh.
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The G20 in 2050
Figure 2 illustrates the importance of comparing the total ecological footprint of countries with their per capita 
footprint per capita, offering a comprehensive perspective on sustainability within the G20 group. Assessing 
countries’ total ecological footprints alone, as shown in Fig. 2A, it can sometimes mask disparities. For instance, 
a country might appear unsustainable based on its large total footprint; however, a high population by per capita 
footprint is relatively smaller. Conversely, a country with a small total footprint might appear sustainable, but if 
wealth and consumption are concentrated among a small population, its per capita footprint could be significantly 
higher. Comparing per capita footprints (Fig. 2B) allows for a more equitable evaluation of environmental respon-
sibility. The United Nations Sustainable Development Goals (SDGs) stress the necessity of balancing economic 
growth with environmental protection for sustainable development. Thus, analyzing ecological footprints per 
capita is essential for highlighting the importance of harmonizing advancement in living standards with efforts 
to reduce environmental impact.

Figure 3 presents the forecasted percentage change between 2018 and2050 for the main drivers affecting the 
total ecological balance of each nation (refer to Figure SI 24 for forecasted values). Developing countries, particu-
larly in Asia and Africa, are anticipated to see significant population growth by 2050. Turkey, Saudi Arabia, and 
Indonesia are expected to experience high population growth rates of 45.47%, 65.59%, and 37.89% respectively. 
In contrast, developed countries such as Germany, Italy, and Japan are projected to have slower, or even negative 
population growth rates (Figure SI 2–4). Economically, developed countries are generally expected to exhibit 
higher GDP growth rates compared to their developing counterparts. Australia, Canada, and the United States 
have significant projected GDP growth rates of 70.25%, 52.40%, and 65.27%, respectively. Among developing 
countries, China stands out with an extraordinary projected GDP growth rate of 216.22%. Other developing 
nations like India (151.29%), Indonesia (109.625), Turkey (108.58%), and Brazil (53.51%) are also forecasted to 
show considerable GDP growth rates, as shown in Figure SI 5–7.

Between 2018 and 2050, emissions in developing countries, particularly China and India, are projected to 
witness significant increases, with forecasts showing rises of 84.34% and 111.36% respectively. This trend under-
scores the rapid economic development and large populations bases in both countries, which fuel increased 
energy demand, industrial activities, and consequently, emissions. Without interventions like enhanced energy 
efficiency or a shift towards cleaner energy sources, emissions are expected to grow substantially. Conversely, 
developed countries such as Germany, France, and the United Kingdom are projected to see reduction in emis-
sions during the same period (Figure SI 8–10). These nations often implement more stringent environmental 
regulations, face greater public and international pressure for emission reductions, and possess the resources 
necessary for enforcing these regulations. As leaders in the transition to a low-carbon energy system, these 
countries demonstrate the potential for sustainable growth alongside emissions mitigation.

Figure 2.  (A) Depicts the relationship between forecasted GDP in US dollars and Ecological Footprint in total 
global hectare for each country by the year 2050. The size of the bubbles corresponds to the projected population 
size in billions, with blue dots representing developing countries and orange dots representing developed 
countries. (B) Illustrates the relationship between forecasted GDP per capita and Ecological Footprint per capita 
for each country by the year 2050. Similar to the previous plot, the size of the bubbles corresponds to projected 
population size in billions, with blue dots indicating developing countries and orange dots indicating developed 
countries.
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Developing countries such as China, India, and Indonesia are forecasted to experience significant increases 
in consumption growth rates, projected at 97.96%, 76.24%, and 61.06% respectively. These increases are largely 
driven by rapid economic development, which elevates income levels and consumer capacity for goods and 
services. Such economic growth typically involves resource-intensive industrial activity and construction, con-
tributing to higher consumption levels.

In contrast, developed countries like Germany, France, and Japan are projected to see reductions in consump-
tion (Figure SI 11–13). Factors such as lower population growth rates or aging populations in these nations may 
contribute to decrease consumption levels, as a smaller, older population typically demands fewer resources. 
Overall, the differences in projected consumption growth rates between developing and developed countries 
can be attributed to a variety of factors related to economic growth, demographic changes, and policy measures 
among others.

Figure 3.  Plot shows the forecast change in percent at country level between 2018 and 2050, for the following 
variables: Population in blue color, GDP in brown, Emissions in gray, Consumption in purple, Biocapacity in 
olive, Forest area in green, Cropland area in yellow and the ecological footprint balance in red. ARG = Argentina, 
AUS = Australia, BRA = Brazil, CAN = CAN, CHN = China, DEU = Germany, ESP = Spain, FRA = France, 
GBR = United Kingdom, IDN = Indonesia, IND = India, ITA = Italy, JPN = Japan, KOR = South Korea, 
MEX = Mexico, RUS = Russia, SAU = Saudi Arabia, TUR = Turkey, USA = The United States, and ZAF = South 
Africa.
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Developed countries, including Germany, France, Italy, and Japan are expected to face ecological deficits, with 
projections indicating negative biocapacity growth rates. These suggest these nations may struggle to sustain their 
ecological resources relative to consumption (Figure SI 14–16). Conversely, developing countries such as Brazil, 
China and Indonesia show mixed projections for biocapacity, with both increases and decreases anticipated, 
indicating varied impacts of development and conservation policies on their ecological capacities.

The projections for forest area also differ significantly between developed and developing countries. Countries 
like Australia, Germany, and Italy have negative forestry area projections, implying initiatives towards reforesta-
tion and possibly a reduction in deforestation rates. On the other hand, developing countries including Brazil, 
Indonesia, and Turkey are projected to see positive changes in forest areas, suggesting potential expansion of 
reforestation activities (Figure SI 17–19).

In terms of agriculture, developing countries, including Brazil, Indonesia, and Turkey anticipate increases in 
crop production, reflecting expected growth in agricultural output. This growth is likely driven by improvements 
in agricultural practices and expansion in agricultural lands. Developed countries such as Germany, France, and 
Italy present mixed projections for crop production. These variations may reflect the impact of technological 
advancement policy measures, and environmental considerations in agriculture (Figure SI 20–22).

The Ecological Footprint Balance offers insights into the sustainability and resource management of coun-
tries. Typically, developed countries display negative balances, showing that their resource consumption and 
waste production exceed their ecological capacity. Specifically, Italy, Japan, and Australia are projected to have 
significantly large negative ecological footprint balances by 2050 compared to their levels in2018. In contrast, 
some developing countries like Indonesia, India, and Turkey are expected to exhibit positive ecological footprint 
balances, indicating a more sustainable resource use.

Regionally, Asia, particularly China and India, stands out in terms of population, GDP growth, emissions, and 
consumption, due to their large populations and fast-growing economies. These factors substantially influence 
global trends. Africa, with South Africa as an example, experiences high population growth rates. In Europe, 
developed countries like Germany, Italy, France, and the United Kingdom show varied projections across dif-
ferent indicators, reflecting diverse economic and sustainable strategies.

This analysis underscores the critical need for tailored sustainability and resource management practices 
across different countries and regions to address the challenges posed by varying economic developments and 
ecological capacities.

Historical analysis
Historical analysis of relationships between various indicators in developed and developing countries uncovers 
significant patterns (Fig. 4), emphasising that while these correlations reveal insightful trends over time, they 
do not imply causation.

In developed countries like the United States, Germany, and Japan, key historical patterns emerge. A consist-
ent positive correlation between population and GDP indicates that economic growth has often accompanied 
population increases, likely due to an expanding labour force and market size. Similarly, a positive correlation 
between GDP and emissions suggests that economic expansion has typically been linked with increased indus-
trial activity, energy consumption and higher emissions. Conversely, emissions and forest area have a negative 
historical correlation, indicating that rising emissions are associated with decreasing forest areas, reflecting the 
impact of industrialization and deforestation. Additionally, the Human Development Index (HDI) and forest 
area show a strong negative correlation, suggesting that advancements in human development have historically 
led to deforestation and land development (Figure SI 23).

For developing countries, including Argentina, Brazil, China, India, Indonesia, Mexico, and Turkey, distinct 
trends are observed. A strong historical positive correlation between population and GDP in these countries 
point to economic growth driven by an increasing population and consumer demand. The positive correlation 
between GDP and emissions indicates that economic growth has historically resulted in higher emissions due to 
escalated industrial activities and energy consumption. The relationship between emissions and forest area varies, 
with some nations showing positive correlations, possibly due to efforts in afforestation or natural reforestation 
over the years, while other cases show negative correlations, reflecting deforestation trends.

Additionally, historical correlations between HDI and emissions in several developing countries have shown a 
positive trend. This suggests that as the HDI has improved historically, emissions have tended to increase as well. 
This historical pattern indicates that higher levels of historical human development have been associated with 
increased energy consumption and industrial activities in these countries. Furthermore, in several developing 
countries, there has been a historical negative correlation between population and forest area. As the population 
has increased over time, the area covered by forests has tended to decrease, indicating the historical impact of 
human activities on deforestation and land-use change in these countries.

Comparing developed and developing countries: When comparing the historical correlations between devel-
oped and developing countries, some similarities and differences emerge. Both groups exhibit historical positive 
correlations between population and GDP, indicating the role of population growth in driving economic devel-
opment. However, the historical correlations between emissions and forest area vary, highlighting the complex 
relationship between human development and forest conservation efforts in different contexts.

In summary, the historical relationships observed in developed and developing countries provide insights 
into the complex interplay between population, GDP, emissions, and forest area. Understanding these historical 
correlations can inform policymakers and stakeholders in developing strategies for sustainable development 
and environmental conservation. It is important to consider the unique circumstances and dynamics of each 
country while formulating effective policies and interventions to balance economic growth and environmental 
sustainability.
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Discussion
In this analysis, we forecast the ecological balance of the G20 countries over the next 30 years. The objective of the 
study was to glimpse the future environmental impact of these countries, which could be crucial for promoting 

Figure 4.  Plot shows a country-by-country historical correlation charts where: A = ’population’, B = ’gdp’, 
C = ’emissions_kt’, D = ’forest_km2’, E = ’crops_km2’, F = ’HDI’, G = ’AreaTotHA’, H = ’BiocapTotGHA’, 
I = ’EFConsTotGHA’, J = ’deficitTotGHA’ . Correlation values range from -1 to 1 and indicate the strength and 
direction of a linear relationship between the variables. A correlation between 0 and 1 indicates a positive 
linear relationship where the strength of the relationship increases with the value. A correlation between 0 and 
− 1 indicates a negative linear relationship where the strength of the relationship increases with the value (in 
absolute terms). ARG = Argentina, AUS = Australia, BRA = Brazil, CAN = CAN, CHN = China, DEU = Germany, 
ESP = Spain, FRA = France, GBR = United Kingdom, IDN = Indonesia, IND = India, ITA = Italy, JPN = Japan, 
KOR = South Korea, MEX = Mexico, RUS = Russia, SAU = Saudi Arabia, TUR = Turkey, USA = The United States, 
and ZAF = South Africa.
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sustainable development through responsible resource consumption, ensuring a healthier and more resilient 
planet for future generations. The research employed a combination of time-series forecasting models and data 
analysis techniques, incorporating data on population growth, economic development, and energy consump-
tion patterns. We recognise that the membership of the G20 might change by  205024, but for the purpose of this 
analysis, we retained the current members.

Our results indicated that developed countries exhibit negative ecological balances per capita, meaning their 
resource consumption has already exceeded biocapacity, while most developing countries show positive balances 
per capita, indicating a higher resource demand than what their ecosystems can sustainably provide. In this 
context, developed countries generally have higher consumption due to greater access to resources and higher 
living standards, whereas developing countries experience lower consumption due to lower income levels and 
limited resource access. Biocapacity per capita is proportional to the country’s extension, reflecting the land area 
available per individual, with larger countries like Canada, Australia, and Russia having more area per capita 
and potentially greater ecosystem resilience. Based on current trends, it is foreseeable that by 2050, only a few 
developed countries will have successfully decoupled economic growth from environmental degradation through 
the adoption of sustainable practices.

However, average electricity and fossil fuel consumption per person will likely remain higher in developed 
countries due to their higher levels of industrialisation and urbanisation, resulting in higher emissions per capita. 
Among developing nations, only three countries are projected to maintain a positive balance by 2050, while the 
deficit will continue to increase in the rest of the nations. Overall, these findings highlight the disparities between 
developed and developing countries in terms of ecological footprint, resource consumption, and environmen-
tal impact. They underscore the importance of adopting sustainable practices, transitioning to cleaner energy 
sources, and collectively addressing environmental challenges to ensure a more balanced and resilient planet.

Compared with other forecasting approaches, Lenzen and Wiedman’s  study21 on a multi-regional macroeco-
nomic model concluded that the ecological footprint of countries will, on average, increase by approximately 
30% by 2050, resulting in a reduction of biocapacity to only 0.8–0.9 gha/cap. This aligns with our projections for 
developed countries within the G20, indicating a clear trend of increasing ecological footprint. Another  study15 
suggests that while non-renewable energy consumption has negatively impacted environmental quality in G20 
countries, globalization, renewable energy, and urbanization have contributed to environmental quality improve-
ment. Here, we highlight that pathways to mitigate the ecological footprint through green energy sources will 
differ between developed and developing nations. It’s essential to remember that each study has its methodology, 
data sources, and specific scope, so direct comparisons in forecasting studies may not always be straightforward 
but can help to identify common problems.

Regarding the forecasting methods employed in this study, we opted for a simple univariate  analysis25, consid-
ering that a group of variables is already incorporated in the original calculation method from the global network 
footprint. Thus, we assume that the evolution of these variables is already reflected in the total footprint balance 
in each country. However, further investigation using a multivariate approach by considering the interrelations 
of variables for time series  forecasting26,27 is recommended.

With the advancements in time series analysis and the utilization of big data, various methods, including 
Machine Learning, have been employed for forecasting. For our analysis, we combined traditional Autoregres-
sive Integrated Moving Average (ARIMA) methods with AUTO-ARIMA and the modular regression method 
Prophet, developed by  Facebook28. While ARIMA and AUTO-ARIMA specialise in utilizing historical data to 
generate future values, Prophet aims to identify changing points in trends. This combination of models has been 
used in previous studies across different research  fields29,30.

In evaluating the individual methods performance, the root mean squared error (RMSE) showed some vari-
ations in the forecast results. Three methods performed moderately well and yielded similar outcomes, with 
ARIMA and AUTO-ARIMA demonstrating slightly better average performance than Prophet, although with 
minor differences. However, the mean absolute percent error (MAPE) in some datasets was lower in Prophet. 
The combined average methods for the evaluation forecast for each variable is shown in Tables SI 1–13.

Based on our analysis, the findings presented and integration with the forecasting of established environ-
mental indicators from the OECD, we propose the following general recommendations. These suggestions are 
intended to inform future research directions, policy-making, or practical applications in the field. It is important 
to note that while these recommendations are derived from our current study, their applicability and effectiveness 
should be considered in the context of specific circumstances and validated through further empirical research.

The Environmental Policy Stringency Index (EPS)31, indicates that countries like France and Germany, with 
their high stringency scores and upward trends, should keep advancing their regulatory frameworks. In contrast, 
nations such as Russia and South Africa, which exhibit lower or inconsistent EPS scores, would benefit from 
enacting more robust policies and leveraging international partnerships to bolster their environmental policy 
infrastructures. It’s crucial for these developing countries to establish regulations that support sustainable devel-
opment and a shift toward eco-friendly economies (Figure SI-24).

Further analysis of international environmental policies reveals the diverse phases of policy maturity among 
 countries32,33. The UK and France, characterized by strong and progressively stringent policies, should persist in 
refining these strategies and nurturing investments in green technology. On the other hand, nations like India 
and Indonesia, which show less stringent policy landscapes, should concentrate on reinforcing their policy 
frameworks and magnifying the scale of current strategies. This includes formulating incentives for renewable 
energy adoption, enhancing energy efficiency, and setting tougher emissions regulations. International support 
could play a pivotal role in upgrading their policy tools and infrastructures for effective climate change mitiga-
tion (Figure SI-26).

For developed nations, the path forward involves intensifying the integration of climate policies across vari-
ous sectors to ensure a comprehensive reduction in  emissions32,33. Such policies would motivate technological 
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advancements and enforce strict regulations throughout all industries. Developing countries, however, should 
craft adaptive policy frameworks to keep pace with their rapid growth. This includes multi-sectoral strategies 
tailored to their unique economic and environmental circumstances, with a priority on acquiring green infra-
structure and technology from more advanced nations to accelerate their journey towards sustainable solutions 
(Figure SI-25).

The technological landscape for environmental solutions among G20 countries also varies  greatly34. Innova-
tors like Japan and Germany should continue to support research and development, enhancing cooperation 
across government, academia, and industry to drive progress. Countries trailing in technological advancements 
need to promote technology growth through specific policies, such as tax incentives for green technology and 
assistance for startups in sustainability fields. Strategic collaborations with technologically advanced countries 
are essential to align policy incentives with technology goals, enabling them to contribute meaningfully to the 
global environmental landscape (Figure SI-27).

Lastly, the trade-to-GDP ratio forecasts for G20 countries demonstrate diverse levels of global market 
 integration35. Economies with a significant and growing trade ratio should focus on diversification and establish-
ing robust trade frameworks to lessen the impact of market volatility. Countries with lesser or fluctuating trade 
ratios should work towards market liberalisation and enhancing trade mechanisms, which includes streamlining 
trade processes, upgrading logistic networks, and fostering competitive domestic industries for greater partici-
pation in global trade. Adaptable policies are paramount to ensure that economies can effectively navigate both 
domestic and global economic shifts (Figure SI-28).

Time series forecasting for accounting the ecological footprints of G20 nations offers predictive insights into 
future environmental trends based on historical data, facilitating data-driven decision-making. It serves as an 
early warning system, aids in efficient resource allocation, and helps track the performance of environmental 
policies over time. However, its effectiveness is limited by the quality and availability of data, the complexity 
of ecological systems, and the potential for sudden changes in environmental patterns that traditional models 
may not capture. Additionally, the process is resource-intensive and may face delays in policy formulation and 
implementation, reducing its immediacy and relevance. Despite these challenges, this AI-based time series 
forecasting remains a valuable tool for predicting and managing ecological impacts, provided these limitations 
are carefully managed.

Conclusions
This study advances our understanding of forecasting ecological footprint deficits and reserves by focusing on the 
G20 countries as a representative global sample. It leverages data and methodologies from the Global Footprint 
Network, employing a univariate approach that relies on existing variables within this framework.

While refining parameters and optimisation could improve the accuracy of this analysis, predicting the 
future ecological footprint balance (reserve or deficit) of G20 countries remains a complex challenge. Vari-
ous anticipated factors, such as population growth, economic development, and technological progress will 
undoubtedly influence ecological footprints. However, unpredictable events, such as the COVID-19 pandemic 
or the Russia-Ukraine conflict, could intensify resource demands and carbon emissions, further exacerbating 
ecological footprint deficit.

The forecasting methodologies employed in this work provide a glimpse into the next 30 years, suggesting that 
countries are likely to continue consuming resources beyond their production capabilities, thereby endangering 
future generations’ well-being if mitigation actions are not undertaken. This trend appears consistent across both 
developed and developing G20 nations.

Effectively addressing the ecological footprint in G20 countries requires a comprehensive approach that 
includes both individual behaviour changes and public policy reforms. Proactive measures by G20 nations, such 
as investing in renewable energy, improving energy efficiency, and adopting sustainable agricultural practices, 
could gradually reduce the ecological footprint decline over time.

In summary, the future ecological footprint of G20 countries is expected to be determined by a complex mix 
of socio-economic, and technological factors, rendering precise predictions difficult. Nevertheless, it is impera-
tive for G20 countries to work collaboratively to tackle these challenges, aiming to minimize resource scarcity 
and enhance resource resilience. The ecological footprint has global ramifications, and the actions of one nation 
can significantly affect the environment and natural resources worldwide.

Methods
Modelling process
We performed time series forecasting in Python using three different methods: ARIMA, Auto ARIMA, and 
Prophet. The following steps outline the process we followed:

• Data Collection and Preprocessing: We collected the time series data and loaded it into a pandas DataFrame. 
We then handled any missing values, outliers, or irregularities in the data using appropriate data preprocess-
ing techniques.

• Data Visualization and Exploratory Data Analysis (EDA): We plotted the time series data to visualize its 
pattern, seasonality, and trends. Additionally, we conducted exploratory data analysis (EDA) to gain insights 
into the data and determine if any transformation was needed to achieve stationarity.

• Data Splitting: To evaluate the forecasting models, we split the data into training and test sets. The training 
set was used to fit the forecasting models, while the test set was used for evaluation.

• For the ARIMA method, we estimated the model order (p, d, q) by analysing ACF and PACF plots. Next, we 
fitted the ARIMA model to the training data with the selected parameters. We then forecasted future values 
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using the fitted ARIMA model and evaluated the forecast performance on the test set using appropriate 
evaluation metrics.

• For Auto ARIMA, to automatically select the best (p, d, q) parameters for the ARIMA model, we utilized the 
pmdarima.auto, arima function based on AIC or BIC criteria. Subsequently, we fitted the Auto ARIMA model 
to the training data, forecasted future values using the fitted model, and evaluated the forecast performance 
on the test set.

• For the Prophet method, we created a Prophet model object and prepared the data in the specific format 
required by Prophet (a DataFrame with "ds" column for dates and "y" column for the target variable). We then 
fitted the Prophet model to the training data, forecasted future values using the fitted model, and evaluated 
the forecast performance on the test set.

• Forecast Combination: To combine the forecasts obtained from the three methods (ARIMA, Auto ARIMA, 
and Prophet), we calculated their average. Additionally, we had the option to weigh the forecasts based on 
the historical performance of each method.

• Evaluation and Comparison: We compared the performance of each individual method (ARIMA, Auto 
ARIMA, and Prophet) with the combined forecast using appropriate evaluation metrics such as Mean Squared 
Error (MSE), Mean Absolute Error (MAE), or Root Mean Squared Error (RMSE).

• Visualization of Results: We visualized the results by plotting the original time series data, the individual 
forecasts from each method, and the combined forecast, allowing for a visual comparison of their predictions.

The above-described process provided us with a comprehensive and systematic approach to time series fore-
casting, allowing for evaluation and comparison of the individual methods and the combined forecast.

Ecological footprint summary
In this analysis we used the original ecological footprint approach, where Biocapacity: is considered as the 
productive biological area in both land and sea, which is a basic unit in the calculation of sustainability and 
the ecological footprint of any given area, country or  region36, this unit area also has the potential capacity to 
soak up carbon dioxide waste if appropriate management practices are in action. On the other hand, the EF 
consumption considers the area required by human consumption, which includes the use of natural resources 
for local production and of course, the difference of those natural resources embedded in import and export 
trading activities. Hence, if the ecological footprint or consumption of a country is bigger than its biocapacity a 
negative balance or deficit occur, on the other hand if the consumption is smaller than the biocapacity a reserve 
or positive balance is accounted. Ecological footprint is measured in standard units called global hectares and 
the methodology procedure is expressed with the following  formula17;

where EFP the ecological footprint of consumption, EFP the ecological footprint of production, EFI the ecological 
footprint of imports, EFE the ecological footprint of exports.

Data
Historical data from calculations by the global ecological networks among the G20 countries have been used 
for this analysis (Fig SI 1). In the original dataset there are results from the National Footprint Accounts 2019, 
which includes 196 countries and total "World" for data years 1961 through 2018, the most recent year with 
complete data (*). From the G20, 18 countries have all records since 1961 to 2018, while records from Russia 
are also complete, data from 1961 to 1991 corresponds to the USSR period, Saudi Arabia provided records from 
1980 ahead. For each nation and year, it is plotted the difference between its Biocapacity (blue) and Ecological 
Footprint of Consumption (red) as deficit/balance (purple). in these three elements for comparison across dif-
ferent world regions, units of measure are total global hectares per capita (gha/cap), which is a standardised unit 
by biological productivity across land type.

To update and complete data from the original database, we also incorporated additional indicators from the 
world bank database. Socio-Economic related: Population (SP.POP.TOTL), Global domestic product (NY.GDP.
MKTP.CD), Global domestic product per capita (NY.GDP.PCAP.KD). Energy: kwh per capita (EG.USE.ELEC.
KH.PC), kg of oil equivalent per capita (EG.USE.PCAP.KG.OE). Climate change: CO2 emissions in kilotons 
(EN.ATM.CO2E.KT), CO2 emissions in Megatons per capita (EN.ATM.CO2E.PC). Land area: forest area in 
 km2 (AG.LND.FRST.K2), crops area in  km2()37.

Additionally, to create the recommendations as explained in the discussion section, we integrated various 
indices and data sources to assess the impact of environmental policies and climate change mitigation efforts 
globally. We utilized the Environmental Policy Stringency Index (EPS) from the OECD, which measures the rigor 
of environmental regulations across countries by assessing the costs imposed on pollution or environmentally 
harmful behaviours. This index is invaluable for understanding the differences in policy effectiveness internation-
ally. Furthermore, we examined cross-sectorial policies for climate change mitigation among the G20 countries, 
as developed by the International Programme for Action on Climate. This analysis, scoring from 1 to 10, reviews 
over 130 policy variables across 56 major climate actions, offering a comprehensive view of how these nations 
strive to lower emissions and promote environmental  responsibility31–33.

Furthermore, we considered patent statistics and indicators to gauge advancements in green technologies 
and their contribution to environmental policy and innovation. Lastly, the relationship between international 
trade and GDP for each country was analysed to understand economic impacts tied to environmental actions. 
These combined efforts aim to provide a holistic understanding of global environmental policy effectiveness and 

EFC = EFP + EFI − EFE
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technological innovation in addressing climate change, serving as a critical resource for policymakers, research-
ers, and advocates in the  field34,35.

Time series models
The Autoregressive integrated moving average (ARIMA) was used in choosing a reliable model for this work. 
ARIMA models are capable of predict future values based on past values. ARIMA makes use of lagged moving 
averages to smooth time series data. They are widely used in technical analysis to forecast future security  prices30.

An ARIMA model involves estimation of the parameters which account for the trends and autoregressive 
(AR) and moving averages (MA) processes. The typical ARIMA (p,d,q) comprises three types of parameters: the 
AR parameters (p), the number of differencing induced (d), and the MA parameters (q)38. When dealing with 
seasonal time series, seasonal parameters must be incorporated into the model. In general, the order of a SARIMA 
model is given by (p,d,q)(P,D,Q)s where P, D, and Q represent the seasonal AR order, seasonal integration order, 
and seasonal MA order, respectively, and where s denotes the period of the season (in the monthly case, s = 12).

Auto ARIMA (Auto-regressive Integrated Moving Average) is a popular forecasting model used in time 
series analysis. It is an extension of the ARIMA model that automatically selects the best parameters (p, d, q) for 
the ARIMA model by performing a grid search and finding the combination that minimizes a specified metric 
(such as AIC or BIC) for the given time series  data39. The selection of appropriate values for (p, d, q) is crucial 
for the ARIMA model’s performance. This is where Auto ARIMA comes into play. Auto ARIMA performs a grid 
search over different combinations of (p, d, q) and selects the combination that minimizes the chosen informa-
tion criterion (e.g., AIC or BIC)40. The information criterion takes into account both the model’s goodness of 
fit and its complexity to find the best trade-off between accuracy and parsimony. Auto ARIMA is a useful tool 
for automating the process of ARIMA model selection, especially when dealing with large datasets or when you 
are not familiar with the underlying time series patterns. It is widely used in various fields, including finance, 
economics, sales forecasting, and other areas where time series analysis is crucial for decision-making and 
predictive modelling.

Along with traditional ARIMA and given the potential scalability of the current  information41, we also 
included the Prophet algorithm, which is a modular and simplify procedure based on regression models that 
allows us to identify and modify parameters for the analysis of large-scale  databases29. Basically, this forecast 
evaluation system makes use of simulated predictions to estimate out-off sample performance, which better 
reflects the available information to the  analyst28. This time series forecasting method is developed by Facebook’s 
Core Data Science team. It is designed to handle time series data with strong seasonal patterns and multiple 
sources of uncertainty. Prophet is particularly well-suited for datasets with irregularities, missing values, and 
outliers, as it employs robust methods to address these issues. Prophet is implemented in Python and has gained 
popularity in various industries and research fields due to its ease of use, automatic handling of seasonality, and 
ability to provide uncertainty estimates. It is an excellent choice for medium to long-term forecasting tasks, 
especially when dealing with time series data with complex seasonal patterns and multiple sources of uncertainty.

For the presentation of our results, we combined (average) the outputs of ARIMA, Auto ARIMA, and Prophet 
methods because: Each forecasting method has its strengths and weaknesses, and averaging their results can help 
mitigate any individual method’s biases. By combining the forecasts, you reduce the impact of any systematic 
errors that might be present in one method. On one hand, different forecasting methods can yield different 
forecasts due to variations in model assumptions and parameter choices. Averaging can help smooth out these 
variations, resulting in a more stable and robust  forecast42. On the other hand, ARIMA, Auto ARIMA, and 
Prophet have different underlying models and approaches to handle various time series patterns. By combining 
their forecasts, we can capture complementary information from each method, potentially improving overall 
forecasting accuracy. Forecasting inherently involves uncertainty, and different models can capture different 
aspects of this uncertainty. By averaging the results, we get a more comprehensive view of the forecast uncertainty 
and a more reliable prediction interval.

Combining multiple forecasting methods is a form of ensemble  forecasting43,44. Ensemble methods often 
perform better than individual methods because they leverage the wisdom of the crowd, making the forecasts 
more robust and accurate. Sometimes, a single forecasting method may overfit or underfit the data, leading to 
suboptimal forecasts. By averaging multiple models, you reduce the risk of overfitting and get a more balanced 
forecast. Averaging results from different methods can provide a sense of validation and confidence in the 
 forecast45. If multiple methods agree on a particular trend or pattern, it increases the reliability of the forecast. 
However, it’s essential to note that while averaging can provide benefits, it’s not always a guarantee of improved 
accuracy. The effectiveness of combining forecasts depends on the quality and diversity of the individual models 
being averaged. If all methods suffer from similar biases or inaccuracies, averaging may not produce significant 
improvements.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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time series forecasting techniques implemented in Python, including modular regression (Prophet) and Autore-
gressive Integrated Moving Average (ARIMA & Auto-ARIMA) methods. This involved collecting, processing, 
and interpreting the necessary data to generate meaningful forecasts. S.C.L.K. played a critical role in reviewing 
and validating the analysis performed by R.M.E. She provided valuable insights, constructive feedback, and 
quality assurance to ensure the accuracy and reliability of the results. Finally, S.C.L.K. and R.M.E. collaborated 
closely in the writing process of the paper. Together, they synthesized the findings, discussed the implications, 
and structured the paper to effectively communicate the research outcomes.
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