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Deformed Fredkin model for the ν = 5/2 Moore-Read state on thin cylinders
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1School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
2Theoretical Division, T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Physics Department, City College of the City University of New York, New York 10031, USA
4Physics Program, Graduate Center of City University of New York, New York 10031, USA

5Department of Physics and Astronomy and Advanced Materials Science and Engineering Center,
Western Washington University, Bellingham, Washington 98225, USA

(Received 20 September 2023; accepted 18 December 2023; published 26 January 2024)

We propose a frustration-free model for the Moore-Read quantum Hall state on sufficiently thin cylinders
with circumferences �7 magnetic lengths. While the Moore-Read Hamiltonian involves complicated long-range
interactions between triplets of electrons in a Landau level, our effective model is a simpler one-dimensional
chain of qubits with deformed Fredkin gates. We show that the ground state of the Fredkin model has high overlap
with the Moore-Read wave function and accurately reproduces the latter’s entanglement properties. Moreover,
we demonstrate that the model captures the dynamical response of the Moore-Read state to a geometric quench,
induced by suddenly changing the anisotropy of the system. We elucidate the underlying mechanism of the
quench dynamics and show that it coincides with the linearized bimetric field theory. The minimal model
introduced here can be directly implemented as a first step towards quantum simulation of the Moore-Read
state, as we demonstrate by deriving an efficient circuit approximation to the ground state and implementing it
on an IBM quantum processor.
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I. INTRODUCTION

The enigmatic fractional quantum Hall (FQH) state ob-
served at filling fraction ν = 5/2 [1] stands out as a rare
example of an even-denominator state among the majority
of odd-denominator states described by the Laughlin wave
functions [2] and composite fermion theory [3]. One of the
leading theoretical explanations of the ν = 5/2 state is based
on the Moore-Read (MR) variational wave function [4]. Two
unique properties of the MR state are worth highlighting: (i)
It represents a p-wave superconductor of composite fermions
[5] and (ii) its elementary charge excitations behave like Ising
anyons, i.e., they carry charge e/4 and exhibit non-Abelian
braiding statistics [4,6]. The latter has motivated the use of
MR state as a potential resource for topological quantum
computation [7], whereby quantum information is encoded
in the collective states of MR anyons and quantum gates are
executed by braiding the anyons. Such operations would be
protected by the topological FQH gap, avoiding the costly
quantum error correction.

On the fundamental side, the understanding of particle-
hole symmetry and collective excitations in the ν = 5/2 state
has recently generated a flurry of interest. While the numer-
ics [8,9] provided initial support of the MR wave function
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capturing the physical ground state at ν = 5/2, it has been
realized that preserving (or breaking) particle-hole (PH) sym-
metry can lead to distinct phases of matter. For example, by
PH conjugating the MR wave function one obtains a dis-
tinct state known as the “anti-Pfaffian” state [10,11], while
enforcing the PH symmetry leads to another, PH-symmetric
Pfaffian state (“PH-Pf”) [12]. Understanding the relation of
these states with the MR state in light of physical PH sym-
metry breaking effects, such as Landau level mixing [13–15]
remains an important task for reconciling numerics [16–19]
with experiment [20,21].

On the other hand, collective excitations of the ν = 5/2
state have also attracted much attention. The pairing in the
MR state mentioned above gives rise to an additional collec-
tive mode—the unpaired “neutral fermion” mode—which has
been “seen” in the numerical simulations [22–24] but so far
not detected in experiment. The gap of the neutral fermion
mode is of direct importance for topological quantum compu-
tation, as the former can be excited in the process of fusion
of two elementary anyons. Recently, Ref. [25] proposed a
description of the neutral fermion mode based on an emer-
gent “supersymmetry” with the more conventional, bosonic
density-wave excitation [26,27]. The numerics in Ref. [28]
suggests that supersymmetry can indeed emerge in a realistic
microscopic model of ν = 5/2.

In this paper we develop a framework for studying the MR
state in a quasi-one-dimensional limit, obtained by placing
the FQH fluid on a streched cylinder or torus whose lengths
in the two directions obey L2 � L1. This “thin-torus” limit
has been fruitful in gaining understanding of the structure

2643-1564/2024/6(1)/013105(18) 013105-1 Published by the American Physical Society

https://orcid.org/0000-0002-8086-3791
https://orcid.org/0000-0003-0144-1548
https://orcid.org/0000-0002-2406-2113
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013105&domain=pdf&date_stamp=2024-01-26
https://doi.org/10.1103/PhysRevResearch.6.013105
https://creativecommons.org/licenses/by/4.0/


CRISTIAN VOINEA et al. PHYSICAL REVIEW RESEARCH 6, 013105 (2024)

FIG. 1. [(a) and (b)] Two types of three-electron scattering
processes present in the Moore-Read Hamiltonian. The cylinder
circumference, L2, controls the spacing 2π�2

B/L2 between Landau
level orbitals (dashed lines). [(c) and (d)] Sending L2/�B → 0 sup-
presses the longer-range hopping (d) compared to the one in (c). It
will be shown that (c), where one electron is fixed while the other
two electrons hop between the nearest-neighbor orbitals, maps to a
controlled-SWAP (Fredkin) gate.

of many FQH ground states and their excitations [29–36].
The thin-torus limit provides a natural classical “cartoon” of
the complicated physics in the two-dimensional limit: The
off-diagonal matrix elements of the Hamiltonian describing a
FQH state become strongly suppressed ∼ exp[−(2π�B/L2)2]
in the limit L2/�B → 0, allowing for considerable simplica-
tions of the problem—see Fig. 1 for an illustration.

However, there have been comparatively few studies of
the MR state near the thin-torus limit. Most previous works
[37–40] focused on the “extreme” thin-torus limit, also known
as the Tao-Thouless limit [29], where the Hamiltonian is
reduced to purely classical electrostatic repulsion. It is there-
fore important to develop an analytically tractable model for
the MR state beyond the strict Tao-Thouless limit, where some
correlated hopping terms are present in the model. For the
Laughlin and Jain states, such models were previously formu-
lated in Refs. [41–44] and one of the goals of this paper is to
work out an analogous model for the MR state. The intrinsic
one-dimensional (1D) structure of such models makes them
suitable for implementation on digital quantum computers,
as recently shown for the ν = 1/3 Laughlin state [45,46].
The versatility of such devices allows to probe questions,
such as the real-time dynamics following a quench, that are
challenging for traditional solid-state experiments [47–50].
In particular, the implementation on IBM quantum processor
allowed to simulate the “graviton” dynamics induced by de-
forming the geometry of the Laughlin state [51–55].

The remainder of this paper is organized as follows. We
start by reviewing the parent Hamiltonian of the MR state in
Sec. II. We make use of the second-quantization formalism
to derive a simplified frustration-free model near the thin-
cylinder limit and we show that its ground state has high
overlap with the MR state, with similar entanglement proper-
ties. In Sec. III we show that the frustration-free model can be
expressed as a deformed Fredkin model for spin-1/2 degrees
of freedom. Working in the spin representation, we present an
intuitive picture of the ground state of this deformed Fredkin
model and derive its matrix-product state (MPS) represen-
tation. We also demonstrate that the ground state can be
efficiently approximated by a quantum circuit, which we im-
plement on the IBM quantum processor. In Sec. IV we show
that the Fredkin model also captures the dynamics of the MR

state induced by quenching the anisotropy of the system, and
we elucidate the mechanism of this dynamics. Our conclu-
sions are presented in Sec. V, while the Appendices contain
technical details of the derivations, further characterizations
of the ground state, and a generalization of the Laughlin case
in Ref. [41] to a closely related Motzkin spin chain.

II. MOORE-READ HAMILTONIAN ON A THIN CYLINDER

In this section we formulate a frustration-free model that
provides a good approximation of the MR ground state near
the thin-cylinder limit. In the infinite 2D plane, the parent
Hamiltonian of the MR state is a peculiar interaction potential
that penalizes configurations of any three electrons forming a
state with relative angular momentum equal to 3—the smallest
possible momentum allowed by the Pauli exclusion principle
[56,57]. At the same time, pairs of electrons do not experience
any interaction. The combination of these two effects gives
rise to an exotic many-electron state with p-wave pairing
correlations [5].

Concretely, the MR interaction potential can be written in
real space using derivatives of delta functions [9]:

HMR = −
∑

i< j<k

Si, j,k
[∇4

i ∇2
j δ

2(ri − r j )δ
2(r j − rk )

]
, (1)

where Si, j,k is a symmetrizer over the electron indices i, j, k.
At filling ν = 1/2, the ground state of this Hamiltonian has
energy E = 0 and it is unique (on a disk, sphere, or cylinder
geometry) or sixfold degenerate on a torus, corresponding
exactly to the wave function written down by Moore and
Read [4]. The same state was shown to have high overlap
with the exact ground state of Coulomb interaction in the
first-excited Landau level [9,58]. Moreover, the Hamiltonian
above also captures the collective excitations of the MR state
[22–24,59,60]. Below we first convert the Hamiltonian (1)
into a second-quantized form on the cylinder and torus ge-
ometries. This form allows us to derive a simplified model for
the MR state on a thin cylinder.

A. Moore-Read Hamiltonian in second quantization

The singularities in Eq. (1) are naturally regularized by pro-
jection to the lowest Landau level (LLL). Assuming Landau
gauge A = (0, Bx, 0), the single-electron wave functions are
given by [61]

φ j (r) = 1√
L2

√
π�B

ei2π jy�2
B/L2 e−(x−2π j�2

B/L2 )2/2�2
B , (2)

where L2 is the cylinder circumference in the y direction and
�B = √

h̄c/eB is the magnetic length. The jth magnetic orbital
is therefore exponentially localized (in x direction) around
2π j�2

B/L2. For simplicity, unless specified otherwise, below
we will work in units �B = 1.

The second-quantized representation of the MR Hamilto-
nian is

HMR =
Nφ−1∑

j1,..., j6=0

Vj1 j2 j3 j4 j5 j6 c†
j1

c†
j2

c†
j3

c j4 c j5 c j6 , (3)

013105-2



DEFORMED FREDKIN MODEL FOR THE ν = 5/2 … PHYSICAL REVIEW RESEARCH 6, 013105 (2024)

where the operators c†
j , c j create or destroy an electron in the

orbital φ j (r). The matrix elements are derived by integrating
Eq. (1) between the single-electron eigenfunctions (2), which
yields

Vj1 j2 j3 j4 j5 j6 = 4
√

3κ8

πg4
11

δ j1+ j2+ j3, j4+ j5+ j6

× ( j1 − j2)( j1 − j3)( j2 − j3)

× ( j6 − j5)( j6 − j4)( j5 − j4)

× exp

{
− κ2

2g11

[∑
j2
i − 1

6

(∑
ji

)2

+ ig12
(

j2
1 + j2

2 + j2
3 − j2

4 − j2
5 − j2

6

)]}
. (4)

The magnitude of the matrix element is controlled by the
cylinder circumference L2 in units of magnetic length �B,
which defines the parameter κ = 2π�B/L2. We have derived
the matrix elements by assuming a general anisotropic band-
mass tensor gab, which will be relevant for the discussion of
geometric quench in Sec. IV. Note that the matrix element
Vj1··· j6 is properly antisymmetric, resulting in a minus sign
when any two electrons are exchanged, hence the limits in
the sum in Eq. (3) can be restricted to j1> j2> j3, j6> j5> j4
without loss of generality. The delta function in Eq. (4) en-
codes momentum conservation during a scattering process,
hence one of the indices, e.g., j6 can be eliminated in terms
of j1, . . . , j5.

A few comments are in order. We have denoted by integer
Nφ the number of magnetic orbitals. For a cylinder, to focus
on bulk properties we choose Nφ = 2Ne−2, where Ne is the
number of electrons. The offset −2 is a geometric feature
of the MR state called the Wen-Zee shift [62]. The total
area of the fluid of dimensions L1 × L2 must be quantized
in any FQH state [63], thus we take the thin-cylinder limit
according to

L2/�B → 0, such that L1L2 = 2π�2
BNφ, (5)

which ensures that the number of orbitals, and hence the filling
factor, remains constant.

Although we will focus on cylinder geometry in this paper,
we note that the same Hamiltonian, Eqs. (3) and (4), can also
be used on a torus, with a few modifications. On a torus, the
shift vanishes and Nφ = 2Ne. However, because of the period-
icity in both x and y directions, the momentum is only defined
modulo Nφ . This means that the momentum conservation
takes the form j1 + j2 + j3 = j4 + j5 + j6 (mod Nφ). More-
over, the matrix element (4) must be explicitly periodized
to make it compatible with the torus boundary condition,
which can be done by replacing ji→ ji+kiNφ and summing
over ki.

The derivation of the effective Hamiltonian in the thin-
cylinder limit proceeds by noting that, in the limit of κ � 1
(equivalently, L2 � �B), there is a natural hierarchy of ma-
trix elements (4), which are separated by different powers
of exp(−κ2) [31,33,64]. Below we list the first few relevant

terms in decreasing order:

22e−2κ2
np+1npnp−1; 111, (6)

2232e−14κ2/3np+2np+1np−1; 1011, (7)

25e−5κ2
c†

p−1c†
pc†

p+1cp+2cpcp−2; 10101 → 01110, (8)

2332e−20κ2/3c†
pc†

p+1c†
p+4cp+3cp+2cp; 11001 → 10110,

(9)

28e−8κ2
np+2npnp−2; 10101, (10)

235e−8κ2
c†

p−2c†
p+2c†

p+3cp+2cp+1cp; 001110 → 100011,

(11)

2432e−26κ2/3np+4np+3np; 11001, (12)

22325e−26κ2/3c†
p−1c†

pc†
p+2cp+3cpcp−2; 101001 → 011010.

(13)

We have included a binary mnemonic to represent the type of
process generated by each Hamiltonian term. A single pattern,
e.g., 1011, represents a diagonal term in the Hamiltonian
which assigns energy penalty for the given local pattern of
occupation numbers anywhere in the system. The terms con-
taining an arrow, such as 10011→01101, can be visualized as
correlated hopping processes, Fig. 1. In such cases, the Her-
mitian conjugates of the processes, corresponding to reflected
hoppings with the same amplitude, are implied.

B. Tao-Thouless limit

The “extreme” thin-torus limit, also known as the Tao-
Thouless limit, of the MR Hamiltonian was discussed in
Refs. [37,38]. In this limit, the only terms that survive are
Eqs. (6) and (7), giving energy penalty to configurations
. . . 111 . . . and . . . 1011 . . . . Hence, the ground states at filling
ν = 1/2 (with zero energy) are

. . . 110011001100 . . . and . . . 10101010 . . . , (14)

while any other Fock state will be higher in energy by at
least an amount ∼ exp(−14κ2/3), see Eq. (7). This gives the
expected sixfold ground-state degeneracy of the MR state on
the torus [5], since the first state in Eq. (14) is fourfold and
the second is twofold degenerate under translations. These
ground states have different momenta on the torus, so they
live in different sectors of the Hilbert space [65]. Similarly,
the ground states in Eq. (14) are the densest zero-energy
states one can construct, as increasing the filling factor would
necessarily violate the terms in Eqs. (6) and (7). On the other
hand, decreasing the filling factor is allowed, leading to many
more E = 0 states. These correspond to quasihole excitations
and can be interpreted as domain walls between two different
types of ground-state patterns in Eq. (14), see Refs. [37,38].

On a finite cylinder, the densest zero-energy ground
state is found instead at Nφ = 2N−2, as expected from the
Wen-Zee shift. This coincides with the root partition of
the Jack polynomial corresponding to the MR state [66],
11001100 . . . 0011, with 11 at each boundary. The other torus
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root state can be similarly adapted to a finite cylinder accord-
ing to 1010 . . . 101. However, this requires an extra orbital,
since the flux is now Nφ = 2N−1. Thus, the second type of
torus ground state becomes an excited state on a cylinder. In
both cylinder and torus geometries, the Tao-Thouless ground
states are trivial product states without any entanglement. We
next discuss how to go beyond the extreme thin-cylinder limit
and generate an entangled ground state.

C. Frustration-free model beyond the Tao-Thouless limit

Beyond the extreme limit discussed above, we would like
to retain a few more terms, with smaller powers of exp(−κ2),
and thereby generate a more accurate approximation of the
MR state over a slightly larger range of L2. A natural way
to do to this would be to choose a magnitude cutoff and
keep only the Hamiltonian matrix elements that are larger
than this cutoff. However, we would also like to be able to
analytically solve for the ground state of the resulting trun-
cated Hamiltonian. In this sense, it is natural to look for a
Hamiltonian which is frustration free, i.e., has a ground state
that is simultaneously annihilated by all individual terms in
the Hamiltonian. In such cases it is often possible to find
analytically exact ground states even though the Hamiltonian
overall may not be solvable, e.g., as in the case of the Affleck-
Kennedy-Lieb-Tasaki (AKLT) model [67].

Unfortunately, the program outlined above fails for our
three-body Hamiltonian: Keeping the terms in the order they
are listed in Eqs. (6)–(13) does not result in a positive semidef-
inite operator. This can be seen by considering the first two
correlated hoppings, Eqs. (8) and (9). One would want to
include these hoppings as they naturally act on the two types
of ground states in the extreme thin-torus limit, Eq. (14),
and would create some entanglement. However, the “dressed”
ground states would no longer be zero modes and their degen-
eracy would be lifted. Inspired by the Laughlin construction
[41], one could try to remedy this by including the terms
Eqs. (10) and (12) to create a sum of two positive semidef-
inite operators. One quickly realizes that the hopping term
Eq. (13) now becomes a problem, spoiling the frustration-
free property. In Ref. [64], an attempt was made to define a
frustration-free model for a bosonic MR state by dropping
the equivalent of hopping Eq. (13) [as well as the hopping
Eq. (11)]. Unfortunately, on further inspection, we have found
the claim in Ref. [64] to be inaccurate because the model
proposed there does not yield strictly zero-energy ground
states.

We now describe the simplest frustration-free truncation of
the Hamiltonian in Eqs. (6)–(13) that we have found. We will
focus on the cylinder root state |R0〉 = |11001100 . . . 0011〉,
which is nondegenerate. In order to obtain a unique “dressed”
ground state on the cylinder, we consider the Hamiltonian
terms that act nontrivially on this root state. The resulting
states will be the first relevant corrections to the ground state.
The effective Hamiltonian contains terms in Eqs. (6), (7), (9),
and (12):

H ′
MR =

Nφ−3∑
i=0

A†
i Ai +

Nφ−4∑
i=0

(B†
i Bi + C†

i Ci ), (15)

FIG. 2. Overlaps between the ground state |ψMR〉 of the full
model in Eq. (3) (i.e., the Moore-Read state) and the ground state
|ψ0〉 of the truncated model in Eq. (15), for different system sizes. For
cylinder circumferences up to L2 ≈ 7�B (shaded), the overlap is 95%
or higher, indicating this truncation returns a good approximation for
the ground state in the thin-cylinder regime.

where the operators A, B, and C are given by

Ai = αcici+1ci+2, (16)

Bi = βcici+2ci+3 + γ cici+1ci+4, (17)

Ci = βci+1ci+2ci+4 + γ cici+3ci+4. (18)

For brevity, we have introduced the parameters

α = √
V012210, β = √

V023320, γ = eiθ
√

V014410, (19)

given in terms of matrix elements (4) and θ = 2κ2g12/g11.
Among the terms omitted, Eqs. (8), (10), and (13) do not
act directly on the root state, bringing only subleading con-
tributions. While the term in Eq. (11) can directly act on the
extreme root state, its contribution is suppressed in the vicinity
of the thin-cylinder limit because of the prefactor being much
smaller than the hopping term retained, Eq. (9).

Therefore, to a first-order approximation, H ′
MR is the cor-

rect effective Hamiltonian that captures the departure of the
Pfaffian state from the root |R0〉 in this geometry (in Sec. IV
we will also investigate its dynamical properties to show that
the model captures the properties of excited eigenstates). On
the torus, our model preserves the sixfold ground-state degen-
eracy of the MR Hamiltonian. Four of those, corresponding to
root unit cell 1001 and its translations, will become “dressed”,
in analogy to the ground state of the cylinder Hamiltonian.
The other two will remain inert, i.e., equal to |101010 . . . 〉 and
|010101 . . . 〉 for any value of L2 [since the hopping in Eq. (9)
cannot produce new configurations].

To confirm the validity of the model in Eq. (15) we per-
formed several tests. First, we evaluated the overlap of the
model’s ground state with the full MR state, i.e., the ground
state of the untruncated Hamiltonian. Figure 2 shows that
this overlap is very high close to the thin-cylinder regime,
with overlap on the order ∼95% at L2 ≈ 7�B. As we are
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FIG. 3. Bipartite entanglement entropy SA of the full MR state
[i.e., the ground state of Eq. (3)] and the ground state of the trun-
cated model, Eq. (15), as a function of cylinder circumference,
L2. Data are for Ne = 14 electrons and Nφ = 26 magnetic orbitals.
All types of bipartitions are considered: choosing subsystem A to
contain NA

φ = 11 orbitals, the boundary looks like 0|0; it can be
seen that entanglement entropy here starts growing early on. The
case NA

φ = 12, corresponding to 1|0, behaves similarly. By contrast,
choosing NA

φ = 13 corresponds to the bipartition type 1|1, where
entropy grows much more slowly. The truncated model accurately
captures the behavior of the model in the range of circumferences
L2 � 7�B (shaded). The inset shows the topological entanglement
entropy γtop, extracted numerically from SA using a linear fit over
the interval [5.5�B, Lmax]. Only the bipartitions 0|0 and 1|0 were
used, as those scale correctly near the Tao-Thouless limit. Restricting
ourselves to the range of validity for the truncated model, our γtop

estimate is within 20% of the theoretical value of ln
√

8.

not exactly capturing the full state at a finite value of L2,
the overlaps naturally decay with system size (and vanish
in the thermodynamic limit). Nevertheless, the fact that they
remain very high and weakly dependent on system size in
the range L2 � 7�B gives us confidence that the model cap-
tures the right physics, as will be further demonstrated below.
An example of a physical quantity that can be meaningfully
scaled with system size and is sensitive to both local and
nonlocal correlations is the bipartite entanglement entropy, SA.
We compute SA by choosing a bipartition in orbital space, i.e.,
the subsystem A contains NA

φ orbitals and the complementary
subsystem B contains the remaining Nφ−NA

φ orbitals [68].
Due to the Gaussian localization of the magnetic orbitals (2),
this roughly corresponds to the more conventional partitioning
of the system in real space [69,70]. The entanglement entropy
is the von Neumann entropy, SA = −trρA ln ρA, of the reduced
density matrix ρA = trB|ψ〉〈ψ | for the (truncated) MR ground
state |ψ〉. In Fig. 3 we plot SA as a function of cylinder
circumference, contrasting the full MR state with the ground
state of the truncated model (15). The entanglement entropy
of the MR state has been shown to scale linearly with the
circumference of the cylinder [71,72], which is the “area law”
scaling expected in ground states of gapped systems [73]. We
observe that this linear scaling is obeyed also by the truncated

model for L2 � 7�B. Furthermore, the subleading correction
γtop to the area law, SA = cL2 − γtop + O(e−ξ/�B ), where c is
a constant and ξ is the correlation length, is known to be
a sensitive indicator of topological order as it arises due to
fractionalized anyon excitations [74,75]. As shown in the inset
of Fig. 3, in the range of validity of the truncated model we
obtain γtop within 20% of the theoretically expected value
ln

√
8 for the MR case [71].

Beyond the area-law regime, the entanglement entropy of
the truncated model saturates, illustrating that the model is
no longer able to capture the relevant correlations in the full
MR state. Conversely, near the Tao-Thouless limit L2 � 4�B,
there is practically no growth of entropy with L2, as the ground
state remains a product state. In the latter regime, γtop = 0,
illustrating that topological order is completely lost since the
system is too narrow in the y direction.

Finally, Fig. 3 illustrates the sensitivity of entanglement
scaling with respect to the location of the bipartition. This
is due to the cylinder ground state being dominated by the
pattern . . . 11001100 . . . . Given this form of the root state
unit cell, there are three distinct types of locations where we
could place the partition. If we partition between two occupied
orbitals (i.e., 1|1), then at first order there will be no correlated
hoppings across this boundary, leading to a very slow growth
in entanglement, as indeed seen in Fig. 3. Instead, if we par-
tition the system next to an empty orbital (i.e., at 0|0 or 1|0),
then there will be correlated hopping across the boundary and
the two subsystems can get entangled more easily. Note that
this sensitivity to the location of the partition is not present
in the Laughlin case [41]. Moreover, it is an artefact of being
near the thin-cylinder limit where the ground state still pos-
sesses a crystalline-like density modulation, which becomes
strongly suppressed in the isotropic 2D limit where the fluid
is spatially uniform. Nevertheless, Fig. 3 shows that our trun-
cated model (15) successfully captures all the entanglement
features of the full MR state in the regime L2 � 7�B. In the
next section, we show that the model (15) can be expressed as
a well-known spin-1/2 chain model.

III. MAPPING TO A DEFORMED FREDKIN CHAIN

Our effective Hamiltonian (15) is frustration free and it
has an exact zero-energy ground state, which is unique on a
cylinder. To write down the ground-state wave function and
provide its intuitive representation, we map the model (15)
to a deformed Fredkin chain [76–78]. The Fredkin model is
a spin-1/2 analog of the Motzkin chain model [79–82]. As
shown in Appendix C, the Motzkin chain allows to generalize
the construction from Ref. [41] and describe the ν = 1/3
Laughlin state over a larger range of cylinder circumferences.

A. Spin mapping

The mapping to spin-1/2 degrees of freedom is possible
because we are only interested in the connected component of
the ground state, i.e., the Krylov subspace spanned by states
(H ′

MR)n|11001100 . . . 110011〉, for an arbitrary integer n [83].
For our truncated model, the dimension of such a subspace
does not exhaust the full Hilbert space dimension, allowing
the mapping onto a spin-1/2 chain. This is an example of
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FIG. 4. Adjacency graph of the truncated model H ′
MR,

Eq. (15), in the connected sector containing the root state
(0)11001100110011(0) or, equivalently, ↑↓↑↓↑↓↑↓ in the spin
representation (marked in red). The graph vertices are product states
that can be reached by repeated application of the Hamiltonian.
The edges denote the nonzero matrix elements of the Hamiltonian
between respective vertices. This example is for Ne = 8 electrons,
where the connected component of the root state contains only 14 of
a total of 151 states with the same momentum quantum number. Any
basis configurations not present here are dynamically disconnected
and cannot be reached from the ground state under the dynamics
generated by H ′

MR. The Fredkin moves (swaps with ↑ on the first
or ↓ on the last site acting as a control qubit), as implemented by
the Hamiltonian, are also shown in the bottom panels. Each move
changes the area of the path by a constant value.

Hilbert space fragmentation [84] and it has previously been
used to perform mappings of two-body FQH Hamiltonians
onto spin models [85]. Thus, without any loss of generality,
we can investigate both the ground state and dynamics by
restricting to the Krylov subspace built from the Tao-Thouless
root pattern.

To perform the mapping, start from the root state
110011 . . . 0011 and pad it with one fictitious 0 on each side.
This allows us to group sites in pairs of two, noticing that the
only present pairs are 01 and 10. These are mapped to spins:

|01〉 → |↑〉 and |10〉 → |↓〉. (20)

Thus, the root state maps to the antiferromagnetic (Néel) state
|(0)110011 . . . 0011(0)〉 → |↑↓↑↓ . . . ↑↓〉. Since H ′

MR acts
on a maximum of five consecutive sites at once, its equivalent
acts on three consecutive spins. As discussed below, acting
with H ′

MR on any product state that can be mapped to spins,
i.e., consists of a sequence of 01 and 10 pairs, generates
another product state that can be similarly mapped to spins.
An example is presented in Fig. 4 which shows the connected
sector of the adjacency graph of H ′

MR that contains the Néel
state. This shows that in this connected component of the
Hilbert space, our model (15) is equivalent to a spin-1/2
model. For simplicity, we will denote the number of spins

by N , although it should be kept in mind this is equal to the
number of electrons Ne.

The moves implemented by the B and C terms in Eq. (15)
are |↑↑↓〉 ↔ |↑↓↑〉 and |↑↓↓〉 ↔ |↓↑↓〉, i.e., they are con-
trolled swaps of spins or Fredkin gates [86], as illustrated in
Fig. 4. Note that the A term in our subspace is redundant, as
this subspace does not contain any . . . 111 . . . patterns. The
resulting spin Hamiltonian is a sum of local projectors and
can be written as

HF =
N−3∑
i=0

P↑
i Pϕ(τ )

i+1,i+2 + Pϕ(τ )
i,i+1P

↓
i+2, (21)

where the single-spin projector Pσ
i = |σi〉〈σi| projects onto a

local spin pointing in the direction σ =↑,↓. The two-spin
projector Pϕ(τ )

i,i+1 = |ϕ(τ )i,i+1〉〈ϕ(τ )i,i+1| projects onto the de-
formed superposition state

|ϕ(τ )i,i+1〉 = |↑i↓i+1〉 − τ |↓i↑i+1〉, (22)

τ = −γ /β = −2 exp

(
−2κ2 1 − ig12

g11

)
. (23)

The model (21) is our central result of this section. It can
be recognized that this model corresponds to a (colorless)
deformed Fredkin chain from Ref. [77]. Note that the bound-
ary Hamiltonian terms from Ref. [77], i.e., H∂ = P↑

0 + P↓
N−1,

have been omitted because our subspace has the first ↑ spin
and the last ↓ spin frozen.

For convenience, we note that HF can be equivalently ex-
pressed in terms of usual Pauli spin operators:

HF =
Ne−3∑
j=0

[(
1

2
1 + Sz

j

)
h j+1, j+2(τ )

+ h j, j+1(τ )

(
1

2
1 − Sz

j+2

)]
, (24)

where

h j, j+1(τ ) = 1 + |τ |2
4

(
1 − 4Sz

jS
z
j+1

) + 1 − |τ |2
2

(
Sz

j − Sz
j+1

)
− 2Re(τ )

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
− 2Im(τ )

(
Sx

j S
y
j+1 − Sy

j S
x
j+1

)
. (25)

Note that outside the connected component of the ground
state, the mapping can be extended by defining the additional
composite degrees of freedom: |11〉 → |+〉, |00〉 → |−〉. In
this mapping, the constrained dynamics of the model resem-
bles that of fractonic models in Refs. [87–90], which can
lead to different thermalization properties in different Krylov
fragments [83].

B. The ground state

The ground state of the Fredkin chain is a weighted su-
perposition of “Dyck paths” of length N (the set of which
we denote DN ). These are product state configurations with
Sz

total = 0 and
∑k

i=0 Sz
i � 0 for all k. The last condition is

equivalent to the number of spin ↑ sites always being greater
than or equal to the number of spin ↓ sites, as we go through
the chain from left to right. The paths in DN can be interpreted
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graphically, as a “mountain range” where each ↑ corresponds
to an upward slope, while ↓ corresponds to a downward slope.
The Dyck constraint is equivalent to the height of these graphs
starting and ending at zero, and always staying positive. The
weight of each path (configuration) p in the ground state |ψ0〉
will be determined by the area A(p) under the mountain range:

|ψ0〉 = N−1
∑

p∈DN

τA(p)/2 |p〉. (26)

According to the phase diagram of the Fredkin spin model,
for |τ | < 1 the entanglement entropy of the ground state
is bounded (obeys area law), whereas |τ | = 1 is a critical
point where the scaling becomes logarithmic in system size
∼ log N .

Reference [76] also discusses the subtleties of the spin
model with periodic boundary conditions. For |τ | = 1, the
ground-state degeneracy scales linearly with N , with zero
modes in every Sz

total sector. However, on decreasing the defor-
mation away from the critical point we find that the extensive
degeneracy disappears—only four zero modes survive. Two
of them are in the sectors Sz

total = ±N/2, corresponding to the
inert states |↑〉⊗N and |↓〉⊗N (or the Fock states |101010 . . . 〉
and |010101 . . . 〉). The other two are in the sector Sz

total = 0
and will correspond to the root unit cells 1001 and 0110;
the two remaining translations break our spin mapping but
can be obtained by shifting every orbital by one position and
then applying the mapping. All other zero modes disappear
because deformed Fredkin ground states are constructed using
the Dyck path area as in Eq. (26), which is only well defined
when Sz

total = 0. These results are in agreement with the six-
fold degeneracy found in the fermionic model.

With this understanding, we can map back to the fermionic
ground state. All Dyck paths can be obtained from the root
configuration |↑↓↑ . . . ↓↑↓〉 by exchanging a number of ↓
with an equal number of ↑ further along the chain. In the
fermionic picture, this is equivalent to performing a number
of “squeezes,” i.e., applications of the operator

Ŝk,d = c†
2kc†

2(k+d )−1c2(k+d )c2k−1, (27)

with d, k > 0. Similar structure exists in the Laughlin state
[45,46]. The resulting states are in one-to-one correspondence
with those in DN , and we will denote their set by D′

N . Every
configuration s in D′

N can be obtained from a number of n(s)
squeezes applied to the root:

s ∈ D′
N ⇐⇒ |s〉 =

n(s)∏
i=1

Ŝki,di |110011 . . . 0011〉. (28)

The weight of such a basis state in the ground state is now
determined by the total distance squeezed D(s) = ∑n(s)

i=1 di,
which is equivalent to the previous definition (26) expressed
in terms of the area under the Dyck path,

|ψ0〉 = N−1
∑

s∈D′
N

τD(s)/2 |s〉. (29)

C. Matrix-product state representation

Along with the undeformed chain (τ = 1), Ref. [76] in-
troduced a matrix-product state (MPS) representation for its

ground state. The associated MPS matrices have bond dimen-
sion χ = N/2 + 1, where N is the number of spins:

M↑
jk = δ j+1,k and M↓ = (M↑)T . (30)

As we are working with open boundary conditions, we use the
boundary vectors vL = vT

R with (vL ) j = δ j,0. This MPS can
be directly extended to the deformed chain, where we need to
introduce the deformation parameter in the following way:

(M↑
τ ) jk = τ j/2 δ j+1,k and M↓

τ = (M↑
τ )T . (31)

This holds for any τ ∈ C so it can be used for anisotropic
states as well. Therefore the Fredkin ground state can be
written as

|ψ0〉 = N−1/2 vT Mτ,0Mτ,1 . . . Mτ,N−1 v, (32)

where the MPS tensor is given by

Mτ, j =

⎛
⎜⎜⎜⎜⎝

0 |↑ j〉 0 0 . . .

|↓ j〉 0 τ 1/2|↑ j〉 0
0 τ 1/2|↓ j〉 0 τ |↑ j〉
0 0 τ |↓ j〉 0
...

. . .

⎞
⎟⎟⎟⎟⎠. (33)

For, e.g., N = 6 this expression gives∣∣ψN=6
0

〉 = |↑↓↑↓↑↓〉 + τ
(|↑↓↑↑↓↓〉 + |↑↑↓↓↑↓〉)

+ τ 2|↑↑↓↑↓↓〉 + τ 3|↑↑↑↓↓↓〉, (34)

which indeed agrees with Eq. (29). We note that alternative
tensor network representations of the Fredkin ground states
have been discussed in the literature [91].

Furthermore, the MPS representation above is able to cap-
ture the critical point at |τ | = 1, which is precisely the reason
behind χ increasing linearly with system size. This limits our
ability to extract thermodynamic limit behavior in this phase
using the MPS tensors from Eqs. (30) and (31). However, the
regime of interest for this paper is |τ | � 0.4 (i.e., L2 � 7 �B),
which is far from the critical point. Hence, it is possible to
describe the ground state with high accuracy by truncating to
a finite bond dimension. Consider the following tensors:

M (χ=3)
τ, j =

⎛
⎝ 0 |↑ j〉 0

|↓ j〉 0 τ 1/2|↑ j〉
0 τ 1/2|↓ j〉 0

⎞
⎠. (35)

For a chain with even number of spins, this MPS yields the
following simple ground state:∣∣ψ (χ=3)

0

〉 = |↑〉(|↓↑〉 + τ |↑↓〉)⊗ N−2
2 |↓〉. (36)

With a fixed χ , it is straightforward to analytically calculate
the behavior of relevant quantities in the thermodynamic limit
by using the MPS transfer matrix. The average orbital density
takes the form:

〈n̂4 j/4 j+1〉 = 1

1 + |τ |2 , 〈n̂4 j+2/4 j+3〉 = |τ |2
1 + |τ |2 . (37)

As expected, this resembles a CDW pattern, which in this
approximation (and also in the full Fredkin ground-state state)
is predicted to disappear at |τ | = 1, corresponding to L2 ≈
10.7�B (outside the range of validity of the truncated model).
Figure 5 shows a comparison of orbital density between the
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FIG. 5. Comparison between the average orbital density of the
MR state and different truncated states: the Fredkin state and the state
obtained by truncating the Fredkin MPS at χ = 3. The system has
Ne = 14 electrons and the cylinder circumference is L2 = 7�B. The
truncated states deviate slightly from the charge density wave pattern
of the MR state.

MR state, the Fredkin state and the χ = 3 approximation
above. At L2 = 7�B the two truncated states still capture the
CDW pattern, with the Fredkin state showing more accurate
results. Since this approximate state can be written in the
tensor product form above, the density-density correlations
decay to zero with a finite correlation length.

D. Quantum algorithm for preparing the ground state
and its implementation on IBM quantum processor

The simple structure of the MPS wave function in the
above approximation (for χ = 3) is amenable to implemen-
tation on noisy intermediate-scale quantum devices. Indeed,
all states in the superposition can be obtained from a direct-
product root pattern by only one layer of one- and two-qubit
gates. Furthermore, the parameters of the circuit can be de-
termined analytically without the need for any classical or
hybrid optimization, which allows for direct implementation
on a large number of qubits.

The structure of the quantum circuit is shown in Fig. 6. If
we choose the angle θ to be equal to

θ = 2 arctan(τ ), (38)

then the y rotation creates a superposition |↑〉 + τ |↓〉 and the
CNOT then changes the state of the two qubits to |↓↑〉 +
τ |↑↓〉. As a quick check, we executed the circuit on the
ibmq_mumbai device, a 27-qubit processor with quantum
volume 128. This implementation was carried out using the
Qiskit package. In this simulation, we used N = 26, with the
initial and final qubits held in trivial up and down states.
Notably, we refrained from employing any error mitigation
techniques, and we deliberately incorporated qubits and cou-
plings from the device with lower quality. Our simulation
utilized a mere couple of thousand shots to ascertain bit-
string probabilities in the computational basis. We found very
good agreement of the measured orbital densities with the

FIG. 6. The structure of the quantum circuit for six qubits. The
X gates create the root patterns, and the rotations and CNOTs imple-
ment the action of MPS matrices in Eq. (35).

analytical results of Eq. (37), save for a few instances where
gate calibrations during the simulation were imperfect.

The results for the orbital density are shown in Fig. 7.
We used 2048 shots in both the quantum execution and the

FIG. 7. The orbital density from the quantum circuit. There is
good agreement between the results of Eq. (37), classical simulation
of the circuit using IBM Aer simulator and quantum implementation
on the ibmq_mumbai device. The IBM data were obtained on August
31, 2023 at 2:02 PM.
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simulation of the circuit with IBM’s Aer simulator. The Aer
simulation is in excellent agreement with Eq. (37), with slight
differences due to the finite number of shots. There is also
good agreement with the quantum device, except for a few
qubits. Despite its simplicity, the approximate ground state
prepared above can serve as a valuable starting point for ex-
ploring the dynamics of the MR phase on quantum computers.

IV. QUENCH DYNAMICS

Given that our Fredkin model (21) was constructed by
focusing on the root state and it does not represent a trun-
cation of the MR Hamiltonian according to a decreasing order
of magnitude, it is not obvious that the excited spectrum
necessarily matches that of the full MR Hamiltonian. To
demonstrate the correspondence of key physical properties
between the two spectra, in this section we focus on the dy-
namical response of the Fredkin model. In particular, we study
geometric quench [52] to probe the compatibility between the
two models, which was previously used to a similar effect in
the ν = 1/3 Laughlin case [46].

Geometric quench is designed to elicit the dynamical
response of the Girvin-MacDonald-Platzman (GMP) collec-
tive mode [26,27], which is present in all known gapped
FQH states, including the MR state [22–24,92,93]. In the
long-wavelength limit k�B → 0, the GMP mode forms a
quadrupole degree of freedom that carries angular momentum
L = 2 and can be represented by a quantum metric [51]. In
this respect, the k�B → 0 limit of the GMP mode has formal
similarity with the fluctuating space-time metric in a theory
of quantum gravity [94,95] and it is sometimes referred to
as “FQH graviton” [92,96]. It was shown that the quantum
metric fluctuations can be exposed by introducing anisotropy
which breaks rotational symmetry of the system [52,53]. Such
geometric quenches induce coherent dynamics of the FQH
graviton, even though the latter resides in the continuum of the
energy spectrum, making it a useful probe of physics beyond
the ground state considered thus far.

A. Spectral function

The GMP mode, to a high accuracy, can be generated
by a simple ansatz called the “single-mode approximation”
[26,27]: The state belonging to the mode with momentum k
is obtained by acting with the projected density operator, ρ̄k,
on the ground state, i.e., |ψGMP

k 〉 = ρ̄k|ψ0〉. Thus, the GMP
states are automatically orthogonal to the ground state as they
live in different momentum sectors. However, in practice, it is
more convenient to study dynamics within the k = 0 sector of
the ground state. This is the case with the geometric quench
setup, described in Sec. IV B below. Thus, in order to identify
the relevant GMP state in the k = 0 sector, possibly hidden
in the continuum of the energy spectrum, we need a different
tool. We identify the long-wavelength limit of the GMP mode
using the following spectral function [52,54]:

I (ω) =
∑

n

|〈ψn|Ô|ψ0〉|2δ(ω − ωn), (39)

where Ô is a three-body operator with quadrupolar x2 −
y2 symmetry, given in Ref. [54], and the sum runs over

(in principle, all) energy eigenstates |ψn〉 with energies ωn,
measured relative to the ground-state energy ω0. In second
quantization, the matrix element of Ô is

Oj1 j2 j3 j4 j5 j6 = δ j1+ j2+ j3, j4+ j5+ j6

[ ∑
j2
i − 1

6

( ∑
ji

)2
]

× ( j1 − j2)( j2 − j3)( j1 − j3)

× ( j4 − j5)( j5 − j6)( j4 − j6)

× exp

{
−κ2

2

[ ∑
j2
i − 1

6

( ∑
ji

)2]}
,

(40)

which allows to readily evaluate Eq. (39). Note that in this
section we consider the spectral function for an isotropic
system, hence there is no metric dependence in Eq. (40). As
before, the matrix element given here is derived for cylinder
geometry and appropriate modifications are needed to make
it compatible with torus boundary conditions, as explained in
Sec. II A.

In Fig. 8 we plot the evolution of the spectral function I (ω)
as the cylinder circumference is varied from the Tao-Thouless
limit towards the isotropic 2D limit, in both the untruncated
and Fredkin models. We see there is good agreement between
the two models for L2 � 7�B, i.e., across the same range
where we previously established high overlap between the
ground states of the two models. For larger circumferences,
it becomes impossible to adiabatically track the evolution of
the graviton peak in I (ω) due to multiple avoided crossings in
Fig. 8. The graviton resides in the continuum of the spectrum
and it is not protected by a symmetry of the Hamiltonian,
hence its support over energy eigenstates may undergo com-
plicated “redistribution” as the geometry of the system is
varied. In particular, away from the Tao-Thouless limit, there
is also a clear splitting of spectral weight between several
energy eigenstates, suggesting that the graviton degree of free-
dom may not correspond to a single eigenstate in this regime.

B. Geometric quench

Given the complex evolution of the spectral function in
Fig. 8 when interpolating between the isotropic 2D limit and
the thin-cylinder limit we are interested in, it is natural to
inquire if the graviton oscillations observed in the Laugh-
lin case in Refs. [46,52] persist in the MR case and what
their origin may be. In this section we analyze the geometric
quench dynamics in the thin-cylinder limit and establish that
it corresponds to a linearized bimetric theory of Gromov and
Son [97]. This shows that, despite the simplicity of our model
(21), it is successful at capturing a nontrivial many-body effect
of a 2D FQH system away from equilibrium.

The geometric quench setup assumes that electrons are de-
scribed by an arbitrary mass tensor gab, with a, b = 1, 2. The
mass tensor must be symmetric and unimodular (det g = 1)
[51], hence we can generally write it as g = exp(Q̂) where
Q̂ = Q(2d̂ad̂b − δa,b) is a Landau-de Gennes order parameter
and d̂ = (cos(φ/2), sin(φ/2)) is a unit vector [98]. Parame-
ters Q and φ intuitively represent the stretch and rotation of
the metric, respectively, with Q = φ = 0 corresponding to the
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FIG. 8. Evolution of the spectral function I (ω) in Eq. (39) in the
Fredkin model (top) and the full MR model (bottom), as a function
of cylinder circumference L2. The peak(s) in the spectral function
are identified with the long-wavelength limit of the GMP mode, i.e.,
the FQH graviton. System size is Ne = 10 electrons, Nφ = 18 flux
quanta.

isotropic case. Under Landau-level projection, the interaction
matrix elements acquire explicit dependence on g, as can be
seen in Eq. (4). For g close to the identity (i.e., at weak
anisotropy), the topological gap is robust and the MR state
remains a zero-energy ground state. We assume the initial
state before the quench to be the isotropic MR state with
g = 1. At time t = 0, the anisotropy in the Hamiltonian is
instantaneously changed and, for simplicity, we assume the
new metric to be diagonal, g = diag[g11, g22], with g11 �= g22.
The deformed g11 (and, therefore, g22) should be sufficiently
close to unity such that the equilibrium system is still in the
MR phase.

From Eq. (29) we can directly extract the first-order correc-
tions to the root state, |R0〉 ≡ |11001100 . . . 0011〉. These are
given by states where only one squeezing, Eq. (27), is applied
at a minimal distance:

|ψ0〉 ≈
(

1 − τ
∑

i

Ŝi,1

)
|R0〉. (41)

Substituting the deformation parameter in Eq. (22) and assum-
ing exp(−2κ2) and the metric anisotropy Q, φ to be small, we
get

|ψ0〉 ≈ |R0〉 − 2 exp[−2κ2(1 − Qeiφ )]
∑

i

Ŝi,1|R0〉, (42)

where we used g11 = cosh Q, g12 = sinh Qeiφ and therefore
(1 − ig12)/g11 ≈ 1 − iQeiφ . On the other hand, the graviton
state is approximated by

|ψg〉 = Ô|ψ0〉 ∝ e−14κ2/3

[ ∑
i

Ŝi,1|R0〉 + O(e−2κ2
)

]
. (43)

Note that |ψg〉 is orthogonal to |ψ0〉. From here, we deduce
the graviton root state,

|Rg〉 =
∑

i

Ŝi,1|R0〉

= |1011010011 . . . 〉 + |1100101101 . . . 〉 + . . . , (44)

which is proportional to the first-order squeezes. This is iden-
tical to the MR ground-state first-order correction to the root
state and, in some sense, it is the simplest translationally
invariant quadrupole structure that we can impose on top of
it, creating quadrupoles of the form − + +− in each unit cell.

From the graviton root state, we can deduce the geometric
quench dynamics up to first order in exp(−2κ2). Assuming,
for simplicity, that the postquench Hamiltonian has the metric
g11 = exp(A) ≈ 1 + A and g12 = 0, the initial state is given
by

|ψ (t = 0)〉 = ∣∣ψ iso
0

〉 ≈ |R0〉 − 2e−2κ2 |Rg〉. (45)

Denoting by |ψaniso
0 〉 the ground state of the postquench

Hamiltonian and using Eq. (42), we get

|ψ (t = 0)〉 = ∣∣ψaniso
0

〉 − 2e−2κ2 (
1 − e2κ2A

)|Rg〉. (46)

Very close to the thin-cylinder limit, the graviton root state
will be the correct O(1) approximation to an eigenstate of
the Hamiltonian, as confirmed by the numerics. Thus, to first
order, we can treat both |ψaniso

0 〉 and |Rg〉 as eigenstates and
write the time-evolved state as

|ψ (t )〉 = ∣∣ψaniso
0

〉 − 2e−2κ2 (
1 − e2κ2A

)
e−iEγ t |Rg〉, (47)

with Eγ being the energy of the graviton state. Assuming that
the combined anisotropy, coming from the metric deformation
and the stretching of the cylinder, is still small, κ2A � 1, we
can rewrite the above expression

|ψ (t )〉 ≈ |R0〉 − 2e−2κ2
[1 + 2κ2A(1 − e−iEγ t )]|Rg〉. (48)

The expression in the bracket can be rewritten

1 + 2κ2A(1 − e−iEγ t ) ≈ e2κ2A(1−e−iEγ t ). (49)

Substituting into the previous equation,

|ψ (t )〉 ≈ |R0〉 − 2 exp{−2κ2[1 − A(1 − e−iEγ t )]}|Rg〉. (50)

We recognize that this is of the same form as Eq. (42),
as the expression in the square bracket can be written as
1 − Q̃ exp(iφ̃), with

Q̃(t ) = 2A sin(Eγ t/2), φ̃(t ) = π/2 − Eγ t/2. (51)
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FIG. 9. Geometric quench dynamics in the Fredkin model (21).
The system size is Ne = 8, Nφ = 14, and the circumference is L2 =
3.6�B. The system is initialized in the isotropic ground state and
then time evolved by the anisotropic Hamiltonian with Q = 0.01.
The resulting dynamics is in excellent agreement with the linearized
bimetric theory, shown by dashed lines. The slight disagreement
between the two at late times slow decay comes from the spectral
weight in Fig. 8 spread over more than a single energy eigenstate.

These are nothing but the equations of motion of the lin-
earized bimetric theory [52]. Thus, we have reproduced the
graviton dynamics, which in the thin-cylinder limit reduces
to the above two-level system dynamics. Figure 9 confirms
the existence of regular metric oscillations at L2 = 3.6�B and
their agreement with the analytical expression in Eq. (51).
From Eq. (44) we deduce that the energy of the graviton in
the thin-cylinder limit is Eγ = 2V023320 = 72 e−14κ2/3 , which
agrees with the frequency of the oscillations seen in Fig. 9.

Notably, our Fredkin model still accurately captures the dy-
namics beyond the regime where it can be analytically treated
as a two-level system. For example, around circumference
L2 ∼ 5�B, the graviton peak splits into a few smaller peaks
close in energy. The resulting metric oscillations can be seen
in Fig. 10. There is now a slowly varying envelope that cannot
be accounted for within the simple linearized bimetric theory
in Eqs. (51). At even larger circumferences, the structure of
the graviton state becomes increasingly complicated, as there
are many types of quadrupolar configurations of the root state.
The spectrum undergoes dramatic transformations at interme-
diate values of L2, as the hierarchy of energy scales in the
Hamiltonian changes. It is expected that close to the 2D limit
and in the thermodynamic limit, the energy of the graviton
stabilizes, as the energy hierarchy stabilizes, too, when κ is
small.

V. CONCLUSIONS AND DISCUSSION

We have formulated a one-dimensional qubit model that
captures the MR state and its out-of-equilibrium properties
on sufficiently thin cylinders with circumferences L2 � 7�B.
This was demonstrated by computing the overlap with the
MR wave function and scaling of entanglement entropy with
the size of the subsystem, as well as the dynamics following

FIG. 10. Comparison of the geometric quench dynamics be-
tween the Fredkin and full model at the cylinder circumference L2 =
5�B. The system size is Ne = 8, Nφ = 14. The system is initialized
in the isotropic ground state and then time evolved by an anisotropic
Hamiltonian with Q = 0.02. In this case, the dynamics is beyond the
simple two-level system dynamics described by linearized bimetric
theory, as the graviton does not correspond to a single eigenstate. The
contribution of additional eigenstates to the spectral function gives
rise to the beating pattern seen here. Nevertheless, there is still good
agreement between the Fredkin and full model.

a geometric quench. One advantage of the proposed model
is that its ground state can be written down exactly and it
is amenable to efficient preparation on the existing quantum
hardware, as we have demonstrated using the IBM quantum
processor. At the expense of noise-aware error mitigation
schemes [46], these results can naturally be extended to probe
the dynamics of the MR phase on quantum computers. This
would also require an efficient optimally decomposed circuit
to emulate trotterized evolution with our Hamiltonian (24),
which is left to future work.

There are some notable differences between the model
presented here and previous studies of the ν = 1/3 Laughlin
case [46]. While in the latter case, the truncated model can be
easily adapted to either open or periodic boundary condition,
in our case the torus boundary condition leads to consider-
able complications. For example, the hopping term in Eq. (8)
should no longer be neglected as it can act on the root state
1010 · · · 1010, which is one of the Tao-Thouless torus ground
states. Keeping this hopping term, in combination with Eq. (9)
we considered above, leads to more complicated models, none
of which appears to be frustration free (i.e., until we exhaust
all the terms in the Hamiltonian for a given finite system
size). For this reason, our truncated model in Eq. (15) applies
primarily to the cylinder geometry.

The previously mentioned caveats of boundary conditions
highlight the fact that defining a truncated model is a non-
trivial task. Unlike the Laughlin case, where the Hamiltonian
can be naturally truncated according to the magnitude of the
matrix elements, leading to a frustration-free model, such a
truncation scheme was not possible for the MR case. The re-
quirement of a frustration-free truncated Hamiltonian involves
judiciously neglecting certain terms, which necessitates an
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independent demonstration of the model’s validity. In fact,
similar difficulties are encountered even in the Laughlin case
in going beyond the first-order truncation in Ref. [41] (see
Appendix C), and they become progressively more severe in
higher members of the Read-Rezayi sequence [64]. It would
be useful if a systematic approach could be developed for gen-
erating frustration-free models in all these examples, which
would allow to controllably approach the isotropic 2D limit.
The frustration-free property of the truncated model at ν =
1/3 has recently allowed to rigorously prove the existence of
a spectral gap in that case [99–101]. It would be interesting to
see if such an approach could be generalized to the MR state
and, potentially, to longer-range truncations.

As mentioned in the Introduction, a unique feature of the
MR state is the neutral fermion collective mode and the emer-
gent supersymmetry relating that mode with the GMP mode
we discussed above. It would be worth investigating signa-
tures of the neutral fermion mode in the proposed Fredkin
model or other appropriate truncations of the MR Hamil-
tonian near the thin-cylinder limit. Unlike the GMP mode,
which can be directly probed using the geometric quench, it
is not known how to excite the neutral fermion mode. This
is because the latter carries angular momentum L = 3/2 in
the long-wavelength limit. Therefore, it does not couple to
the anisotropic deformations of the FQH fluid studied above.
We leave the investigation of such dynamical probes and their
implementation on quantum hardware to future work.

Note added. During the completion of this work, we be-
came aware of a few works that found evidence of anomalous
thermalization dynamics and quantum many-body scars in
models related to the deformed Fredkin chain studied above.
The model of Causer et al. [102,103] assumes a differ-
ent parameter range |τ | > 1, while that of Langlett and Xu
[104] introduces destructive interference between the allowed
Fredkin moves. Both of these modifications, however, are un-
physical from the point of view of FQH realization considered
here.
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APPENDIX A: ANISOTROPIC INTERACTION MATRIX
ELEMENTS FOR THE MOORE-READ STATE

We sketch the derivation of the interaction matrix elements
when an anisotropic band mass is introduced. The interaction

Hamiltonian can be written as:

Ĥ = 1

Nφ

∑
p,q

V̄ (p, q,−p − q) : ρ̄(p) ρ̄(q) ρ̄(−p − q) :,

(A1)

where ρ̄(q) = e−iqxqy/2 ∑
j eiqxκ j c†

j+qy/κ
c j is the projected

density operator, and V̄ (p, q,−p − q) is the interaction po-
tential multiplied by the corresponding form factor:

V̄ (p, q,−p − q) = F (p, q,−p − q) v(p, q,−p − q),
(A2)

where the form factor is

F (p, q,−p − q) = e−p2/4−q2/4−(p+q)2/4, (A3)

and the interaction potential

v(p, q, − p − q) = p4q2 + q4p2 + q4(q + p)2 + (q + p)4q2

+ p4(q + p)2 + (q + p)4p2 (A4)

is the Fourier transform of Eq. (1).
The anisotropic band mass tensor affects the single-

electron wave functions; see, e.g., Ref. [105]. Thus, it also
modifies the matrix elements:

Vj1 j2 j3 j4 j5 j6 ∝ Pg({ ji}) exp

{
− κ2

2g11

[ ∑
j2
i − 1

6

( ∑
ji

)2]

+ iκ2g12

2g11

(
j2
6 + j2

5 + j2
4 − j2

3 − j2
2 − j2

1

)}
. (A5)

Just as in the isotropic case, the polynomial Pg is tightly
constrained: It has to be antisymmetric in the pairs ( j1, j2),
( j1, j3), ( j2, j3), ( j4, j5), ( j5, j6), and ( j5, j6), and its maxi-
mum total degree is 6. The only such polynomial is the one
that appears in the isotropic case. Therefore the only contribu-
tion of the metric in the prefactor is a constant. The final form
will be

Vj1... j6 = 4
√

3κ8

πg4
11

( j1 − j2)( j1 − j3)( j2 − j3)( j6 − j4)

× ( j6 − j5)( j5 − j4) exp

{
− κ2

2g11

[ ∑
j2
i

− 1

6

( ∑
ji

)2]
+ iκ2g12

2g11

(
j2
6 + j2

5 + j2
4 − j2

3

− j2
2 − j2

1

)}
. (A6)

Besides the geometry and anisotropy dependent factors, the
numerical prefactor in the normalization of the matrix element
ensures that the Hamiltonian is a three-body projector, i.e., the
eigenvalues of a three-particle system in Nφ → ∞ magnetic
orbitals are 0 and 1, for sufficiently small anisotropies and far
from the thin-torus limit.

APPENDIX B: NONLOCAL STRING ORDER
IN THE FREDKIN CHAIN

The nonlocal constraint that defines Dyck paths hints that
the Fredkin ground state might have interesting behavior in
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FIG. 11. The behavior of Oeven/odd as a function of the deforma-
tion parameter τ . String order is not present at τ = 0, i.e., when the
ground state is a product state. For |τ | < 1 the string order parameter
increases but drops quickly at |τ | = 1 where the gap closes. The
difference in magnitude between Oeven and Oodd is a result of stronger
bonds that form between sites 2i and 2i + 1, such that all spins are
paired up. The inset shows the behavior of Oeven as a function of
|i − j|, demonstrating that the nonlocal correlations quickly stabilize
to a τ -dependent value. All numerical results are obtained from a
chain with N = 100 spins, where the values are already converged.

certain nonlocal order parameters. This is reinforced by the
fact that such nonlocal correlations were found in the spin-
1 analog of our model, the deformed Motzkin chain [106].
The natural correlations to probe in the Fredkin chain are the
string orders discussed in Ref. [107] in connection to spin-1/2
ladders and the Majumdar-Ghosh chain:

Oeven/odd = lim
|i− j|→∞

〈(
Sz

i + Sz
i+1

)
eiπ

∑ j−1
l=i+2 Sz

l
(
Sz

j + Sz
j+1

)〉
,

(B1)

where for Oeven/odd the sites i, j are both even/odd, respec-
tively.

Using the MPS representation (31), we test the Fredkin
ground state for nonlocal order, shown in Fig. 11. First, note
that nondecaying expectation values are only found inside the
|τ | < 1 phase (as the inset shows), whereas in the |τ | > 1
“domain-wall” phase these nonlocal correlations decay. This
suggests that in the |τ | < 1 “antiferromagnetic” phase, short
range valence bonds form between consecutive spins. We also
notice that generally Oeven is higher in magnitude compared
to Oodd. Given that the spin chain always has even length,
the favored arrangement is where all spins are paired [i.e.,
(0, 1), (2, 3), . . . , (N − 2, N − 1)], as opposed to the case
where the first and the last spins remain unpaired. This implies
the bonds starting on an even index will be stronger.

APPENDIX C: MOTZKIN CHAIN AS AN EFFECTIVE
TRUNCATED MODEL OF THE ν = 1/3 LAUGHLIN STATE

In this Appendix, for the sake of completeness, we show
that the Motzkin chain [79–82]—a closely related spin-1
cousin of the Fredkin chain—captures the properties of the

ν = 1/3 Laughlin state. This model contains more terms com-
pared to the model derived in Ref. [41] and hence captures the
physics of the Laughlin state over a slightly larger range of
cylinder circumferences.

The model in Ref. [41] can be derived via a similar method
to the one presented above, but for a two-body interaction
given in terms of V1 Haldane pseudopotential [63]. The cor-
responding matrix elements are now given by

Vj1 j2 j3 j4 = ( j1 − j2)( j4 − j3)e− κ2

4 [( j1− j2 )2+( j3− j4 )2]. (C1)

The minimal model beyond the extreme thin-cylinder limit
from Ref. [41] can be written in the positive-semidefinite form

H ′
L =

∑
i

(Q†
i Qi + P†

i Pi ), (C2)

where

Qi = αici+1ci+2 + γicici+3, Pi = βicici+2, (C3)

and

α = √
V0110, β = √

V0220, γ = e2iκ2 g12
g11

√
V0330. (C4)

The only configurations which are dynamically connected
to the root state are those that can be obtained from apply-
ing squeezing operators Ŝi = c†

i+1c†
i+2ci+3ci to 100100 . . . 001.

This connected component of the Hilbert space can be mapped
to a spin-1 model by considering unit cells of three mag-
netic orbitals, whose occupations can only take the following
patterns:

|010〉 → |o〉, |001〉 → |+〉, |100〉 → |−〉. (C5)

Thus, we can write the model of Ref. [41] as

H ′
L =

N−2∑
i=0

PϕL (v)
i,i+1 , (C6)

where |ϕL(v)〉 = |+−〉 − v|oo〉 and v = −√
V0330/V0110 =

−3 exp(−2κ2). It is important to notice there are no boundary
conditions–they are not necessary if the mapped Hilbert space
is used (which entails constraints, e.g., configurations with the
first spin |−〉 and the last spin |+〉 being disallowed).

1. Extension to the Motzkin chain

A natural attempt to improve the model in Eq. (C6) would
be to extend the truncation, Pi → βicici+2 + δicici+4. The
newly obtained Hamiltonian H ′ would have the following
off-diagonal actions:

H ′′
L | . . . 100 010 . . . 〉 = βδ| . . . 010 100 . . . 〉

H ′′
L | . . . 010 001 . . . 〉 = βδ| . . . 001 010 . . . 〉 (C7)

and the Hermitian conjugates. In the spin-1 mapping, these
mean

H ′′
L | . . . − o . . . 〉 = βδ| . . . o − . . . 〉

H ′′
L | . . . o + . . . 〉 = βδ| . . . + o . . . 〉. (C8)

However, the fermionic Hamiltonian also produces hoppings
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FIG. 12. Squared overlaps of the ground states of models in
Eq. (C6) (the minimal model H ′

L) and Eq. (C10) (the extended spin
model HM ) with the ground state of the untruncated V1 Hamiltonian.
The extended spin model captures the properties of the Laughlin state
up to cylinder circumferences of L2 ≈ 8 lB, where the overlaps are
�95%.

of the following kind:

H ′′
L | . . . 100 100 . . . 〉 = βδ| . . . 011 000 . . . 〉

H ′′
L | . . . 001 001 . . . 〉 = βδ| . . . 000 110 . . . 〉. (C9)

These break our spin mapping and connect the entire Hilbert
space. Even though we only keep two types of off-diagonal
terms, we no longer obtain a significant reduction in com-
plexity, and in fact we find numerically that the zero-mode
property is also lost. Thus, we focus only on the spin model
instead. The extension of the Hamiltonian in Eq. (C6) there-
fore takes the form:

HM =
N−2∑
i=0

[
α2PϕL (v)

i,i+1 + β2PU (w)
i,i+1 + β2PD(w)

i,i+1

]
, (C10)

where we introduced the projectors on the states |U (w)〉 =
|+o〉 − w|o+〉 and |U (w)〉 = |o−〉 − w|−o〉, where w =
−√

V0440/V0220 = −2 exp(−3κ2). These implement the addi-
tional the additional terms in our truncation, while keeping the
spin Hamiltonian 2-local.

The Hamiltonian in Eq. (C10) represents a particular de-
formation of the Motzkin spin chain introduced in Ref. [82].
It has a unique, zero-energy ground state which is equal to an
area-weighted sum of Motzkin paths, p ∈ MN :∣∣ψM

0

〉 = N−1
∑

p∈MN

vA�(p)wA�(p)|p〉. (C11)

Figure 12 shows that this ground state has good overlap
with the Laughlin over a larger range of circumferences. No-
tice that in the Motzkin ground state with v = w, the weights
of a path p are vA(p), i.e., only dependent on the total area and
not its shape. Figure 13 illustrates how this is different from
Eq. (C11).

Similarly to the Fredkin chain discussed in Sec. III C, the
ground state of the Motzkin chain also has an exact MPS

FIG. 13. (a): Two types of allowed moves in the Motzkin chain.
The upper move corresponds to |oo〉 → |+−〉, while the bottom one
shows |o+〉 → |+o〉 (|−o〉 → |o−〉 is omitted for brevity). Although
each step increases the area of the path by the same amount, the
corresponding weight in Eq. (C11) scales differently depending on
the move. (b): One type of allowed configuration in the ground state,
that was not present in the model Eq. (C6). The sketch shows how
the total area is divided into A� and A�, determining its weight
in the ground state.

representation in terms of matrices:

Ao
jk = w j−1δ j,k A+

jk = v1/2w j−1δ j+1,k A− = (A+)T .

(C12)

The Motzkin chain with equal deformation parameters v = w

has been studied in depth in the literature. Its gap for v < 1
has been proven [108], and based on our analogy with the
Laughlin state we conjecture that the gap survives for w � v.

2. Laughlin graviton root state and geometric quench dynamics

Here we analyze the graviton root state and dynamics fol-
lowing the geometric quench for the ν = 1/3 Laughlin state,
following a similar approach the MR state in Sec. IV. As
explained in the main text, we can use the SMA ansatz [26,27]
to identify the GMP state with nonzero momentum k:

|φk〉 = ρk|ψ0〉 = e
ikx ky

2

∑
j

eikxκ jc†
j+ky/κ

c j |ψ0〉. (C13)

In the thin-torus limit, the ground state is the root state |R0〉 =
|1001001 . . . 〉. Thus, the graviton root state with momentum
k = 2κ ŷ is given by∣∣R(2)

g

〉 ∝ |1100001001 . . . 〉 + |1001100001 . . . 〉 + . . .

(C14)

In the extreme thin-cylinder limit, these states are degenerate
in energy, and the first product state is the Jack root state [92],
from which all states that follow can be obtained by applying
a sequence of squeezes.

However, as the geometric quench preserves momentum,
to identify the long-wavelength limit of the graviton state we
rely on spectral function I (w) from Eq. (39). In the present
case, Ô is a two-body operator [54] with matrix elements

Oj1 j2 j3 j4 = δ j1+ j2, j3+ j4 ( j1 − j2)( j3 − j4)

×
[∑

j2
i − 1

4

( ∑
ji

)2
]

× exp

{
−κ2

2

[∑
j2
i − 1

4

( ∑
ji

)2
]}

. (C15)

To enable comparison with the Motzkin model, we introduce
the following coupling operator for the spin-1 chain, defined
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in analogy with Eq. (C10):

OM =
N−2∑
i=0

[
α2QϕL (v)

i,i+1 + β2QU (w)
i,i+1 + β2QD(w)

i,i+1

]
, (C16)

where the two-spin operators Qi,i+1 are

QϕL (v) = |+−〉〈+−| − 5v|+−〉〈oo| − 5v|oo〉〈+−|
+ 9v2|oo〉〈oo|,

QU (w) = 4|+o〉〈+o| − 10w|+o〉〈o+| − 10w|o+〉〈+o|
+ 16w2|o+〉〈o+|,

QD(w) = 4|o−〉〈o−| − 10w|o−〉〈−o| − 10w|−o〉〈o−|
+ 16w2|−o〉〈−o|. (C17)

Because the terms inside the projectors of the Hamiltonian
acquire different additional prefactors [stemming from the

FIG. 14. The spectral functions I (ω) for the Motzkin spin chain
(top) and for the untruncated Laughlin Hamiltonian (bottom) at
ν = 1/3 as the cylinder circumference L2 is varied between the
isotropic 2D limit and the thin-cylinder limit. The system size is
N = 9 electrons, Nφ = 25, equivalent to nine spins for the effective
model. The graviton evolution is reproduced with high fidelity up to
L2 ≈ 8 lB.

FIG. 15. Geometric quench dynamics in the ν = 1/3 Laughlin
state. The system size is Ne = 6, Nφ = 16, and the circumference
is L2 = 2.8�B. The system is initialized in the isotropic ground state
and then time evolved by the anisotropic Hamiltonian with Q = 0.02.
The resulting dynamics is in excellent agreement with the linearized
bimetric theory, shown by dashed lines.

first [
∑

j2
i − 1

4 (
∑

ji )2] term in Eq. (C15)], the Q are not
projectors anymore.

The spectral functions I (ω) for the Motzkin spin chain and
the ν = 1/3 Laughlin state are plotted in Fig. 14. Similarly
to the MR case in Fig. 8, we see that the graviton under-
goes a nontrivial evolution as the cylinder circumference is
varied, with clear avoided crossings in the evolution. In the
thin-cylinder limit, the gap of the graviton can be accurately
estimated from the dominant matrix element in the Hamil-
tonian. Beyond this limit and up to L2 ≈ 8 lB, the Motzkin
model is able to accurately capture the physics of the spin-2
excitation, while simultaneously offering a drastic reduction
in Hilbert space dimension.

The graviton state is given by acting on the ground state
with the quadrupole operator (C15). From the model in
Eq. (C6), we also know that the ground state is approximated
by

|ψ0〉 =
∏

i

(
1 −

√
V0330/V0110 e2iκ2g12/g11 Ŝi

)|R0〉

≈ |R0〉 − 3e−2κ2 1−ig12
g11

∑
i

Ŝi|R0〉

≈ |R0〉 − 3 exp[−2κ2(1 − Qeiφ )]
∑

i

Ŝi|R0〉, (C18)

where we assumed e−2κ2
and the metric anisotropy Q, φ to be

small. The graviton is then approximated by:

|ψg〉 = Ô|ψ0〉 ∝ e− 5κ2

2

[ ∑
i

Ŝi|ψ0〉 + O
(
e−2κ2 )]

. (C19)

From here we deduce the graviton root state,

|ψg〉 =
∑

i

Ŝi|ψ0〉 = |01100010 . . . 〉 + |10001100 . . . 〉 + . . .

(C20)
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Similarly to the MR case, the graviton root state here is also
proportional to the first-order squeezes and it encodes the
simplest quadrupole structure of the form − + +− in each
unit cell.

Repeating the same steps as in Eqs. (45)–(51) of the
main text, from the graviton root state we can determine the

time-evolved state, showing that it takes the form (at first
order)

|ψ (t )〉 ≈ |R0〉 − 3e−2κ2
[1 + 2κ2A(1 − e−iEγ t )]|Rg〉, (C21)

which has the identical form to the linearized bimetric theory
in Eq. (51). This agreement is confirmed in Fig. 15.
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