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Abstract: It is demonstrated for 11 different combinations of organic solutes and solvents that the
supersaturation dependence of homogeneous organic crystal nucleation rates from solution can be
predicted from the solubility, bar a single empirical rate constant, when it is assumed that nucleation takes
place in reversible aggregates of solvated solutes formed in supersaturated solutions. Reversible solute
aggregation represents natural solute density fluctuations that take place in any solute/solvent system.
For thermodynamically ideal solutions, the steady state size distribution, and thus the population of
reversible aggregates in supersaturated solution, can be predicted quantitatively from the overall solute
concentration by a simple mathematical expression. Supersaturation creates an excess of reversible
aggregates with sizes exceeding that of the largest aggregate in saturated solution. It is shown that
the number of these excess aggregates is proportional to experimental homogeneous nucleation rates,
suggesting a rate equation for homogeneous nucleation that has only one empirical parameter, namely,
a rate constant specific to the solute/solvent combination. This rate constant can be determined from
standard nucleation rate data. The system-specificity of homogeneous nucleation rates thus appears to
be encoded solely in a rate constant for the transformation of the large excess aggregates into crystal
nuclei. The driving force for triggering nucleation events in these aggregates is likely the extremely high
local supersaturation, which provides the conditions for spatiotemporally aligned bond-breaking (e.g.,
de-solvation) and bond-forming (e.g., solute–solute bonding) events that create stable crystal nuclei. The
possible influence of heterogeneous nucleation by solid impurities is considered.

Keywords: crystallization; homogeneous nucleation; solvation; absolute rate theory; transition state
theory; desolvation; phase separations; solute speciation; solute–solvent interactions

1. Introduction

Across the chemical sciences, rate processes involving interactions between solutes
in solutions are modelled in the framework of reaction kinetics and absolute rate theory
(often also referred to as transition state theory) that was developed in the early 20th
century [1–5]. In contrast, the mainstream of research on crystal nucleation and growth
has adopted classical nucleation theory (CNT) for modelling of homogeneous crystal
nucleation rates from solutions [6–13]. CNT was originally developed for predicting the
rates of phase transitions in single component systems, such as the formation of liquid
water droplets from supersaturated water vapor or crystallization from melts [8,14–17]. It
has played a crucial role in developing a quantitative understanding of nucleation rates in
these systems [17,18]. CNT focuses on the thermodynamic stability of the final state of the
nucleation process, specifically, the stability of nuclei formed by collisions of molecules in a
supersaturated, thermodynamically metastable phase. It treats nucleation as an activated
process in which the formation of stable nuclei of a new phase is principally hindered
by an interfacial free energy penalty. Nuclei become thermodynamically stable only after
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growing beyond a critical size, at which their cohesive energy exceeds the interfacial energy
term. Supersaturation facilitates nucleation because it increases the chemical potential of
the molecules in the metastable phase and thereby reduces the activation barrier to the
formation of thermodynamically stable nuclei.

Since the early days of applying CNT to analyzing homogeneous nucleation rates
in condensed systems [19], these model principles have been retained to describe the
nucleation of crystals from solutions, i.e., the separation of solute molecules from a su-
persaturated solution [6,10,20]. The crystal nucleation process in solution is thereby, in
effect, treated as a condensation of a crystalline phase through diffusively driven collisions
between solute monomers in solution. As in CNT for single component systems, the
balance between the interfacial and cohesive energy of the nuclei determines the activation
barrier to the formation of supercritical stable crystal nuclei, while solute supersaturation
reduces the activation barrier by increasing the chemical potential [6,7,10,13,21].

CNT does not explicitly include a molecular-level view of how elementary activation
barriers associated with transitioning solvated solute molecules into ordered nuclei of
fully or partially de-solvated solutes are overcome [7], which creates a substantial, indeed
principal, barrier to relating modern theoretical analyses, e.g., by molecular dynamics,
to measured nucleation rates [22]. In this paper, the rates of homogeneous nucleation
from solution will therefore be explored through the lens of chemical kinetics and absolute
rate theory [1–5], which intrinsically create a quantitative mechanistic link between the
macroscopically observable rates of product formation and both the frequency and nature
of elementary molecular interactions. The key assumption of absolute rate theory is that
the overall rate is determined by an equilibrium between reactants (here: organic solute
molecules) and the transition state, which is the assembly of molecules associated with the
lowest energy barrier for crossing from the initial (here: solvated solutes in a supersaturated
solution) to the final state (here: supercritical nuclei surrounded by a saturated solution)
of the rate process [1–5]. More formally put, the transition state represents the molecular
configuration at a saddle point on the potential energy surface for all possible molecular
configurations of the system. The local ultrafast molecular dynamics in the transition
state, i.e., bond-breaking and bond-forming events, then determine the overall rate [23,24].
The nature of the relevant bond-breaking and forming events may be influenced by any
inter- and intramolecular interactions such as London interactions, rotations, vibrations,
electrostatics, and electronic transitions.

In this paper, a mathematically simple yet quantitative homogeneous nucleation rate
equation with only one a priori unknown parameter, namely, a system-specific nucleation
rate constant, will be derived. The rate constant can then be interpreted in terms of
the classical chemical rate theory framework, including its Arrhenius dependence on
temperature with an activation energy and a pre-exponential factor. Knowledge of the rate
constant at a given temperature permits the prediction of homogeneous nucleation rates
from the solubility at that temperature. Central to deriving the alternative homogeneous
nucleation rate equation are diffusively driven microscopic solute density fluctuations
in solutions, which are akin to other manifestations of microscopic fluctuations, most
famously, Brownian motion [25,26]. Solutions contain a diffusively driven steady-state
population of short-lived microscopic regions with a high local density of solvated solute
molecules. The potential importance of these regions, which are often referred to as
reversible aggregates, for nucleation phenomena has been recognized for some time [27–34],
but their connection to chemical rate theory has not been realized. These regions form and
dissolve reversibly on time scales comparable to that of diffusive solute–solute collisions,
i.e., on the order of nanoseconds. In these aggregates, the integrity of the solvation shells
around the solute molecules is largely unperturbed, so solute–solute collisions create merely
spatial proximity of the solvated solute molecules without significant attractive interactions.
The aggregates are therefore truly reversible and should therefore not be confused with
the formation of metastable phases, such as pre-nucleation clusters and observable pre-
nucleation phases that are widely discussed in the contemporary research on non-classical
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nucleation pathways [7,12,35–46]. Diffusively driven reversible aggregates of solvated
solutes are also distinct from weakly coagulated phases formed by colloidal interactions
that are, confusingly, often called reversible aggregates as well [28,29,47].

In the following sections of this paper, it will be shown how, for an ideal solution,
the steady-state size distribution of reversible aggregates can be predicted quantitatively
from the overall solute concentration. Supersaturation is associated with the formation of
aggregate sizes beyond that of the largest aggregate in a saturated solution. The supersat-
uration dependence of homogeneous crystal nucleation rates in solution will be shown
to be proportional to the number of these excess large aggregates. This observation then
informs the central mechanistic hypothesis of this paper, namely, that the high local solute
density in these large reversible aggregates allows the specific spatiotemporal alignment of
solute molecules in the transition state for homogeneous nucleation from solution, which
is characterized by the system-specific nucleation rate constant. The high local density of
solvated solute molecules is thus assumed to allow spatiotemporally coordinated ordering,
solute–solute bond formation, and solute–solvent bond breaking that creates the stable
nucleus. This represents a hypothetical alternative view of homogeneous nucleation from
solution that sets the scene for testing by modern experimental studies, e.g., probing the
ultrafast molecular dynamics that determine the structure of a stable nucleus, as well as
modelling, e.g., molecular dynamics simulations with statistical mechanics elucidating the
nature of the transition state.

2. Model
2.1. Reversible Aggregation of Solvated Solutes in Solution

The steady-state size distribution of reversible aggregates in a solution can be cal-
culated for any given solute concentration using elementary kinetic rate theory [1,2], as
follows. Generally, a solute dimerization equilibrium in solution,

2M ⇌ M2, (1)

is associated with an equilibrium constant, K2, that determines the equilibrium activities a2
and a1 of dimers and monomers, respectively, according to

K2 =
a2

a2
1

. (2)

The activity a3 of trimers formed by monomer attachment to a dimer,

M2 + M ⇌ M3, (3)

is given by an equilibrium constant, K3, which, with Equation (2), can also be expressed in
terms of K2 and the monomer activity a1,

K3 =
a3

a2a1
=

a3

K2a3
1

. (4)

Attachment of further monomers to form higher aggregates with n monomers leads to
a general equilibrium expression, for n > 2, of

Kn =
an

an−1a1
=

an

(K2 × K3 × . . . × Kn−1)an
1

. (5)

When monomer attachment is reversible, the rate constant k1 for attachment and
the dissociation rate constant k−1 for the release of a monomer are equal, resulting in
equilibrium constants Kn ≈ K = k1/k−1 = 1 . Equation (5) thus simplifies for reversible
aggregation to

Kn−1 =
an

an
1

. (6)
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With K = 1, one obtains the equality

an = an
1 . (7)

In an ideal solution of solvated solutes, the size distribution of reversible aggregates is
determined by the overall activity, a0, of the solution through the mass balance relating a0
and the activities, an, of the reversible aggregates:

a0 =
∞

∑
n=1

nan. (8)

With Equation (7), it follows that

a0 =
∞

∑
n=1

nan
1 (9)

As shown in the Supplementary Information SI1, evaluating the power series on the
right of this equation leads to a simple expression for the equilibrium concentrations [Mn]
(in units of mol dm−3) of reversible aggregates of size n in an ideal solution with an overall
concentration [M]0 (again, in mol dm−3):

[Mn] =

(√
4[M]0 + 1 − 1√
4[M]0 + 1 + 1

)n

. (10)

The size distribution of the reversible aggregates is determined only by the overall
concentration [M]0; hence, Equation (10) is universally applicable to any solution containing
a single solute species. Solutions of phases with more than one component, e.g., co-crystals
or ionic crystals forming cations and anions in solution, will require a modified approach.

For a given temperature and pressure, the solubility concentration defines a system-
specific equilibrium size distribution of reversible aggregates, [Mn]

∗, according to Equation
(10), which extends to a maximum aggregate size containing n* solvated solute molecules.
Solubility thus provides, at a given temperature and pressure, a reference state for quanti-
fying the effect of supersaturation on the reversible aggregate concentrations, [Mn]. The
largest aggregate size present in a saturated solution, n*, can be predicted from Equation
(10) by using the condition that Nn∗ , the number of aggregates with size n*, in a solution
with the volume V must be at least 1,

Nn∗ = [Mn∗ ]NAV = 1, (11)

where NA is Avogadro’s number. Replacing [Mn∗ ] according to Equation (10) gives the
maximum aggregate size in saturated solution as (Supplementary Information, SI2)

n∗ = − ln(NAV)

ln
(√

4[M]0+1−1√
4[M]0+1+1

) . (12)

2.2. Nucleation from Reversible Aggregates with First Order Kinetics

The number, N, of reversible aggregates contributing to the homogeneous nucleation
rate from a supersaturated solution volume, V, is given by

N = NAV
∞

∑
n=1

φ(n)
(
[Mn]− [Mn]

∗) (13)

where φ(n) is an n-dependent weighting function that accounts for the fact that larger
reversible aggregates are probably more likely to form stable crystal nuclei. The variations
of φ with n are likely to depend on the aggregate lifetime and availability of a sufficient
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number of solute molecules for building the transition state for a stable nucleus. φ(n)
is expected to increase with n, but the exact relationship between aggregate size, n, and
nucleation rates, and hence φ(n), is currently not known. As a pragmatic choice, which
will be justified in Section 3.1 by analysis with Equation (10), φ(n) will be modeled as a step
function with φ(n < n∗) = 0 and φ(n ≥ n∗) = 1. Thereby, in effect, only aggregates with
a size equal or larger than n*, i.e., the largest aggregate present in the saturated solution,
are assumed to contribute to the nucleation rate. Of course, aggregates slightly smaller
than n* may also contribute to the rate, while aggregates larger than n* will probably
contribute more as their size increases. Through the choice of a cutoff at n*, these effects
likely compensate each other, at least in part.

Applying this step function for φ(n) allows the calculation of the excess N* of re-
versible aggregates contributing to the homogenous nucleation rate in a solution of volume
V, through

N∗ = NAV
∞

∑
n=n∗

(
[Mn]− [Mn]

∗) (14)

If the reversible aggregates included in N* transform to a stable crystal by first order
kinetics with a rate constant k* (in units of s−1), then the nucleation rate, J∗ (in units of
m−3 s−1), is simply k* multiplied by the number density N∗/V (in units of m−3), according to

J∗ = k∗
N∗

V
= k∗ NA

∞

∑
n=n∗

(
[Mn]− [Mn]

∗). (15)

This expression represents a new homogeneous nucleation rate equation, for nucle-
ation from the excess of large reversible aggregates formed in supersaturated solutions.
The concentrations [Mn] and [Mn]

∗ of large excess aggregates are readily calculated from
the solubility via Equation (10). Only the first order rate constant k∗ is a priori unknown
and must be determined empirically by finding best agreement of J∗ with experimental
nucleation rates, J. The latter are commonly reported in the same units as J∗, namely, the
average number N of nuclei formed per solution volume V and time t [21].

2.3. Heterogeneous Nucleation

It is well established that liquid solutions almost inevitably contain microscopic solid
impurities whose surfaces promote heterogeneous nucleation [48–50] and that solid additives
can influence the outcome of crystallization processes [13,51,52]. Nucleation centers at the
solid surface, such as defects or other sites with high local energy, can create nucleation
pathways with lower activation barriers than in homogeneous nucleation. Heterogeneous
nucleation rates can be higher because the incipient nucleus at a surface is stabilized by the
surrounding interfacial and sub-surface atoms of the solid particle. Their effect is included
in CNT through a modified interfacial energy term [7,13,49,53]. Indeed, an analysis of the
influence of particulate impurities using CNT suggests that real-world crystal nucleation
processes in solution are always likely to be heterogeneous due to the presence of microscopic
solid impurities [49]. Occasionally, this hypothesis has been checked in nucleation rate studies.
An example relevant for the present paper is the case of isonicotinamide nucleation from
ethanol, where removal of particles larger than 0.45 µm by solution filtering reduced the
nucleation rate somewhat, by approximately a factor of 3 [53]. Observations like these do
suggest a significant influence of particulate impurities on observable nucleation rates and
thus need to be considered when interpreting homogeneous nucleation rate data.

For the alternative mechanism of homogeneous nucleation from dense reversible
solute aggregates, a solid/liquid interface can influence the nucleation process only under
two conditions: (i) when the surface intersects with the volume of a reversibly formed
dense region that has the propensity to form a stable nucleus and (ii) when it also presents
a nucleation site that allows a significantly faster assembly of a stable nucleus than in the
dense solution region. To assess condition (i), we need to determine the rate by which
large aggregates are formed within a solution volume, Vhet, adjacent to a particle surface. If
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this rate exceeds the homogeneous nucleation rate, then heterogeneous nucleation may be
possible, if condition (ii) is also fulfilled.

For assessing condition (i), we must consider the solution volume with a thickness
equal to the radius of a reversibly aggregated region around the particle. Outside this zone,
reversible aggregates will not be intersected by the particle surface. Assuming the particle
has a spherical shape with a diameter d, the situation sketched in Figure 1 applies. The
volume of the potential heterogeneous nucleation zone is given by the thickness δ of the
relevant interfacial solution region as

Vhet =
4
3

π

(
d + δ

2

)3
− 4

3
π

(
d
2

)3
=

1
6

π
[
(d + δ)3 − d3

]
. (16)
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The rate by which the steady state population N∗ of excess reversible aggregates
contributing to the homogenous nucleation rate in a solution of volume V is formed is
determined by the average aggregate lifetime, τ

dN∗

dt
≈ N∗

τ
. (17)

If all excess aggregates formed within Vhet nucleate heterogeneously, the heterogeneous
nucleation rate, in terms of the number of particles in the solution Npart, would be

J∗het ≈
N∗

Vτ

Vhet
V

Npart, (18)

which we can combine with Equation (16) and the definition of the homogeneous nucleation
rate in Equation (15) to obtain

J∗het
J∗

≈ 1
6

π
[
(d + δ)3 − d3

]Npart

Vτk∗
. (19)

This equation predicts that heterogeneous nucleation becomes more likely when the
number of particles, Npart, in the solution increases as the size, d, of the particles increases
and the thickness, δ, of the relevant interfacial volume, Vhet, becomes larger. Heterogeneous
nucleation becomes less likely as the solution volume, V, increases (decreasing particle
concentration), the longer the lifetime of the aggregates (lower rate of excess aggregate
formation, hence less likelihood of intersecting with a surface), and the higher the rate
constant, k∗, for homogeneous nucleation.
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The aggregate lifetime, τ, can be estimated from the solute–solute collision frequency,
ZAA, which depends, for spherical objects, on the concentration, [M]0, and the dynamic
viscosity, η, of the solution via the Stoke–Einstein–Sutherland equation for the diffusion
coefficient, D [54],

ZAA ≈ 8πrD[M]0NA = 8πr
kBT

6πηr
[M]0NA =

4kBT
3η

[M]0NA, (20)

where r is the radius of a solute molecule and T the temperature. The lifetime, τ, of
reversible aggregates of size n∗ shall be estimated as

τ ≈ n∗

ZAA
, (21)

which assumes diffusive dissociation of an aggregate of size n∗ will require n∗ individual
and sequential events redispersing solvated solute molecules into the bulk of the solution.

The thickness, δ, of the relevant interfacial solution volume can be estimated from
the molar volumes Vm,sol and Vm,solv of the solute and solvent molecules, respectively (via
the mass densities and molar masses of the pure solutes and solvents). Assuming that
every solute molecule is solvated by two solvent molecules, the total volume, Vagg, of an
aggregate of n∗ solvated solute molecules is approximately

Vagg ≈ n∗

NA
(Vm,sol + 2Vm,solv) (22)

Assuming that these aggregates are spherical, the thickness, δ, is equal to their radius
and can be calculated by

δ ≈
(

Vagg

4π

) 1
3
. (23)

It should be stressed that these estimates for δ and τ, and indeed the whole framework
for examining the likelihood of heterogeneous nucleation, are not meant to establish a
quantitative theory of heterogeneous nucleation. They are merely meant to enable the
task of examining, qualitatively, the possible relevance of heterogeneous pathways in
homogeneous crystal nucleation. A truly predictive, quantitative theory of heterogeneous
crystal nucleation at solid/liquid interfaces is yet to be developed.

3. Results
3.1. Effect of Supersaturation on the Size Distribution of Reversible Aggregates

The predicted impact of the supersaturation ratio, S, on the reversible aggregate
size distribution in a solution is illustrated in Figure 2 for the specific case of 1 cm3 of
a meta-aminobenzoic acid (m-ABA) solution in an ethanol/water mixture at 25 ◦C. The
solubility [M]0 for this system was reported to be 0.128 mol dm−3 [21]. The calculated
supersaturation-dependent reversible aggregate size concentrations in this plot have been
normalized to their value at S = 2.25 because absolute concentrations vary by approximately
20 orders of magnitude as a function of aggregate size. The concentrations of monomers
and small aggregates scale near-linearly with the supersaturation ratio. In contrast, the
concentrations of the largest aggregates, with sizes of approximately n ≥ n∗, exhibit a
near-exponential rise with supersaturation that has striking similarity with the functional
form of supersaturation-dependent nucleation rates. This is consistent with the central
hypothesis of the model, namely, that homogeneous crystal nucleation from solution takes
place predominantly from the largest reversible aggregates in a supersaturated solution.
Indeed, this idea aligns with the well-established notion that in a saturated solution with
the solubility concentration [M]0, the rates of crystal nucleation and dissolution are equal
and associated predominantly with the largest aggregates [10,33].
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Figure 2. Predicted supersaturation-dependent size distribution of reversible aggregates in solutions
of meta-aminobenzoic acid (m-ABA) in 1 cm3 of an ethanol/water mixture at 25 ◦C. All aggregate
concentrations are normalized to their value at S = 2.25. The size of the largest reversible aggregate in
saturated solution is n* = 21.

3.2. Excess of Large Reversible Aggregates

To illustrate the concept of nucleation from the largest excess reversible aggregates further,
the supersaturation-dependent size distribution of the largest aggregates of m-ABA is shown
in Figure 3. The near-exponential increase in the reversible m-ABA aggregate count with sizes
n ≥ n* in 1 cm3 solution is evident (note the logarithmic scale of the y-axis). At the solubility
concentration (S = 1), the solution contains a single aggregate with n = 21, in line with the
predicted n* = 21 from Equation (12), and no aggregates with n > 21. The effect of increasing
supersaturation is a near-exponential rise in the population of aggregates with larger sizes.
For example, at S = 2.4, the aggregate size distribution extends to n = 29.
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3.3. Rate Constant Determination for m-ABA Crystallization from 50wt% Ethanol/Water

The fitting analysis of the rate predicted by Equation (15) against experimental J data
for the m-ABA/ethanol/water system [21] is illustrated in Figure 4. Least-squares fitting
of Equation (15) to the experimental data by variation of the rate constant k* results in a
best fit value for k* of 8.2 × 10−9 s−1. The curve reproduces the experimental data well.
On first sight, the deviation to the nucleation rate at the highest supersaturation may
seem substantial relative to the much better fit at lower supersaturations. However, the
fit deviates by a maximum of ~5% from all experimental supersaturation values, well
within the systematic and statistical errors that are expected to arise the experimental
determination of nucleation rates [55]. In the next section, the same analysis will be applied
to 10 other systems, with similar agreement between experiment and theory. The results
will show that increased deviations at high supersaturation are not an intrinsic shortcoming
of the model. Moreover, even with the expected substantial error margins on experimental
data [55], meaningful results for k* can be obtained because a fit of a single parameter
function against a set of noisy datapoints produces a parameter value with a lower error
margin, provided that the noise is predominantly random in nature.
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Figure 4. Predicted nucleation rate, J*, (line) calculated from the reported solubility [21] with
Equation (15) vs. experimental J data for m-ABA crystallization from 1 cm3 ethanol/water
(50wt%) [21]. Error bars for the nucleation rate [21] have been included. Error bars for S were
not reported in [21], but experimental errors are likely on the order of ±5% or more for S. See ref. [55]
for a deeper discussion of statistical errors associated with the small volume nucleation rate deter-
minations employed for the measurements. The values for n* and k* indicated in the figure are the
size of the largest reversible aggregates in the saturated solution (S = 1) and of the nucleation rate
constant k* obtained through the best fit procedure.

3.4. Nucleation Rates of 10 Benzoic Acid and para-Substituted Benzoic Acid Systems

To demonstrate the universal nature of the alternative approach, and to examine
its relevance for relating solute–solute interactions to nucleation rates and the associated
kinetic selection of polymorphic forms [56–58], previously published data for 10 binary
solute–solvent systems, all containing benzoic acid or para-substituted benzoic acids as
solutes [56,58,59], have been analyzed. The systems span combinations of four different
solutes (benzoic acid, BA; para-aminobenzoic acid, pABA; para-nitrobenzoic acid, pNBA;
para-toluic acid, pTA) with five solvents (water; ethyl acetate, EA; acetonitrile, MeCN; iso-
propanol, IPA; toluene, Tol), with solubilities varying by more than an order of magnitude
from approximately ~0.03 to ~0.57 mol dm−3.
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As for aqueous m-ABA in ethanol/water, the fitting analyses achieve very good
agreement with experimental nucleation rates for all systems (Figure 5, Table 1), indicating
a general applicability of the proposed model. The pTA and BA solutions in toluene
are likely to contain carboxylic acid dimers [60,61], so the analysis for these systems was
performed assuming the presence of dimers.
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Figure 5. Predicted nucleation rates (full lines), J*, calculated from reported solubilities [56,58,59]
with Equation (15) vs. experimental data for para-toluic acid (pTA) in isopropanol and toluene [58],
for para-nitrobenzoic acid (pNBA) in ethyl acetate and isopropanol [58], for para-aminobenzoic acid
(pABA) in ethyl acetate, acetonitrile, and isopropanol [58], for pABA in water [56,59], and for benzoic
acid (BA) in acetonitrile and toluene [58]. The solubilities, rate constants, k*, and minimum rate-
contributing aggregate sizes, n*, are given in Table 1. The fits are reported as a function of the absolute
solute concentration (rather than the supersaturation ratio, S), because this permits presentation of
all data as a single figure; a set of corresponding plots as a function of the supersaturation ratio is
provided in the Supporting Information, SI4. Reference [55] provides a discussion of statistical errors
associated with the small volume nucleation rate determinations by which the nucleation rate data
were measured.

The reproduction of the varying functional forms of the experimental nucleation rate
curves with the single parameter model is remarkable: the steep increase in the nucleation
rates for systems with low solubility is as well reproduced as the more gently increasing
rates in the high solubility systems. The supersaturation dependence of nucleation rates
is clearly well captured, as can also be seen in the same fits plotted as a function of the
supersaturation ratio (Supporting Information, SI4). No system exhibits strong devia-
tions between experimental data and model fits. Apart from the rate constant, k*, the
functional form of the calculated rate curves is predicted well by the concentration- (and
hence supersaturation-) dependent reversible aggregate size distribution. The determined
nucleation rate constants, k*, span a range from ~10−8 s−1 for benzoic acid in toluene and
p-nitrobenzoic acid in isopropanol to over 10−5 s−1 for p-toluic acid in toluene.
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Table 1. Summary of solubilities, [M]0, the supersaturation ratio S200 required to obtain a nucleation
rate of 200 m−3 s−1, the determined first order rate constants, k*, the largest reversible aggregate
sizes in saturated solution, n*, for the stated temperatures for para-toluic acid (pTA) in isopropanol
and toluene [58], for para-nitrobenzoic acid (pNBA) in ethyl acetate and isopropanol [58], for para-
aminobenzoic acid (pABA) in ethyl acetate, acetonitrile, and isopropanol [58], for pABA in water
[56,59], and for benzoic acid (BA) in acetonitrile and toluene [58]. The solubilities were determined as
described in the cited papers alongside the nucleation rates.

Solute Solvent [M]0/mol dm−3 T/◦C S200 k*/s−1 n*

p-toluic acid isopropanol 0.509 20 1.23 1.1 × 10−6 36
toluene # 0.038 # 20 1.08 4.1 × 10−5 # 14 #

p-nitrobenzoic acid isopropanol 0.078 25 1.60 2.8 × 10−8 17
ethyl acetate 0.109 25 1.28 4.1 × 10−6 20

p-aminobenzoic acid

isopropanol 0.374 20 1.22 3.1 × 10−6 32
acetonitrile 0.163 20 1.26 3.4 × 10−6 23

ethyl acetate 0.497 20 1.13 9.2 × 10−6 36
water 0.032 20 1.35 6.4 × 10−7 13

benzoic acid
toluene # 0.286 # 20 1.59 1.2 × 10−8 # 28 #

acetonitrile 0.310 20 1.37 1.8 × 10−7 29
# the solute species is assumed to be a carboxylic acid dimer

It has previously been pointed out that experimental nucleation rates of pABA in water
appear to be high relative to those in organic solvents [56,59,62]. Within the framework
of nucleation from reversible aggregates, the aqueous system does not stand out: the rate
constant, k*, of 6.4 × 10−7 s−1 is, in fact, somewhat lower than the rate constants determined
for pABA in the other three solvents (Table 1). In line with this, nucleation from water
requires a somewhat higher supersaturation ratio, S200, of 1.35 (vs. 1.13, 1.22 and 1.26) to
achieve a nucleation rate of 200 m−3 s−1 (Table 1), but the values of both k* and S200 remain
comparable to those for pABA nucleation from the organic solvents. The high nucleation
rates for water are merely associated with the range of supersaturation ratios, S, chosen for
the experimental rate measurements [56,59,62], which exceed S200 by far.

3.5. Homogeneous vs. Heterogeneous Nucleation

The strong variations in k* suggest that the nucleation pathways, and thus the nature
of the transition states for nucleation, vary significantly from system to system. Prima facie
this would suggest that heterogeneous nucleation events are not as dominant as an analysis
in the framework of CNT [49] may predict. The experimental determinations of nucleation
rate data used in this paper appear to have been performed using unfiltered solvents and
solutions, while the crystalline solute materials were not purified with a view to removing
solid impurities. To assess whether heterogeneous nucleation ‘seeded’ by solid impurities
was likely, Equation (19) was used to estimate its influence. The analysis by Equation (19)
was performed assuming the presence of 320 spherical particles with a diameter of 0.1 µm
in a volume of 1 mL, which are recently reported values for deionized tap water [48].
The results for J∗het/J∗ (Table 2) do suggest that heterogeneous nucleation would not be
overwhelmingly dominant for this level of solid impurity contamination. The systems most
likely to be affected are pNBA/isopropanol, BA/toluene, and mABA/50wt%ethanol/water,
which are the three systems with the lowest nucleation rate constants, k* (Table 1). It must
be kept in mind as well that the calculated values represent a worst-case scenario. This
point that will be taken up again in the discussion section below.
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Table 2. Assessment of the likely relevance of heterogeneous nucleation through Equation (19). The
analysis assumed V = 1 mL solution with Npart = 320 spherical particles with a diameter d of 0.1 µm.

Solute Solvent Vm,sol
cm3

Vm,solv
cm3

Vagg

10−27 m3
δ

nm
η

mPa s
τ
ns

J∗het
J∗

p-toluic acid isopropanol 128.4 76.5 16.8 1.1 0.237 5 1.0
toluene 128.4 106.9 10.9 1.0 0.560 62 0.0

p-nitro-benzoic
acid

isopropanol 105.8 76.5 7.3 0.8 0.237 16 9.7
ethyl acetate 105.8 97.7 10.0 0.9 0.455 25 0.0

p-amino-
benzoic acid

isopropanol 99.8 76.5 13.4 1.0 0.237 6 0.3
acetonitrile 99.8 52.2 7.8 0.9 0.334 14 0.1

ethyl acetate 99.8 97.7 17.6 1.1 0.455 10 0.1
water 99.8 18.0 2.9 0.6 0.890 109 0.0

benzoic acid
toluene 96.5 106.9 18.9 1.1 0.560 16 29.5

acetonitrile 96.5 52.2 9.7 0.9 0.334 9 2.7

m-ABA 50wt%
ethanol/water 90.8 18.0 4.4 0.7 0.890 44 9.9

4. Discussion
4.1. Homogeneous vs. Heterogeneous Nucleation

Because the experimental values for the nucleation rate constant, k*, vary by several
orders of magnitude, they influence the predictions made by Equation (19) more than the
other relevant parameters given in Table 2. In interpreting the results of these estimates for
the significance of heterogeneous nucleation, it needs to be kept in mind that Equation (19)
was derived assuming that any intersection of a surface with a reversible aggregate large
enough to facilitate homogeneous nucleation will lead to a heterogeneous nucleation event.
From a transition state theory point of view, it appears unlikely that any contact with a solid
surface will inevitably trigger a nucleation event because the formation of the transition
state for a stable crystal nucleus will still require some specific spatiotemporal organization
of solute and solvent molecules. This, as the nucleation rate constants, k*, attest, occurs very
rarely even in the largest reversible aggregates in a solution. Heterogeneous nucleation
by the route proposed in Section 2.3 would therefore likely be governed by rate constants
of similar magnitudes, reflecting similar transition states, unless, of course, a completely
different nucleation route is taken, e.g., templating of a different nucleus structure.

For unfiltered solutions with a higher level of solid impurities than the 320 particles
assumed in the model calculation, heterogeneous nucleation may indeed take place with
an appreciable or even dominant rate, but the determined k* values would likely reflect the
formation of transition states similar or even identical to those through the homogeneous
route. The reported small reduction in the nucleation rate for isonicotinamide crystallization
from ethanol after removing particles with sizes > 0.45 µm [53] appears to be consistent with
this proposition. It has also been reported that nano-sized (diameters ~1 nm) impurities are
likely present in solutions with extremely high number densities [63], but these impurities
would likewise not remove the need for assembling the complex transition state. They may
perhaps appear as inclusions in nuclei formed in their neighborhood (note also that 1 nm is
of a similar size as the reversible aggregate sizes).

This is not to say that heterogeneous nucleation via reversible aggregates is impossible.
By adding sufficiently high levels of solid particulate material, a technique commonly
used in seeded crystallization and templating of different crystal habits and polymor-
phic forms [52], one can increase the likelihood of heterogeneous nucleation so that it
becomes inevitable. According to Equation (19), just adding 100 particles with a diameter
of 100 µm per ml of solution would increase the likelihood of heterogeneous nucleation by
approximately five orders of magnitude.

The analysis of nucleation rates in the framework of homogeneous nucleation via
reversible aggregates thus appears to be less sensitive than CNT to the presence of heteroge-
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neous nucleation centers, because the structure of the nucleus is determined synergistically
by a collection of molecules in a transition state that should not differ radically between
homogeneous and heterogeneous routes. Rates of homogeneous nucleation and heteroge-
neous nucleation on microscopic impurities may therefore be more similar than an analysis
in the framework of CNT would suggest. The observed strong variations in k* between
different systems, the reproducibility of nucleation rate measurements in different laborato-
ries, with different solvent batches and different suppliers of solute materials, by and large
appear to be consistent with this conclusion as well.

4.2. Interpretation of the Constants n* and k*

Across all systems examined, the reversible aggregate size, n*, in saturated solution
varies from 13 for aqueous pABA to 36 for pTA/isopropanol and pABA/ethyl acetate
(Table 1). The universal non-linear correlation between solubility and the value of n* is
evident from the plot of these values in Figure 6a. The line superimposed over the data
represents Equation (12). Some datapoints slightly deviate from this curve because of
the rounding of aggregate sizes to the nearest integer. This solubility dependence of the
minimum size of nucleating aggregates may just be a consequence of the relationship
between the thermodynamic stabilities of a solute in the solid and the solution phases:
solubility is lower when the solid phase of the pure solute is more stable. Higher cohesive
energies can be expected to stabilize critical crystal nuclei as well, which may therefore
nucleate from smaller reversible aggregates.
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200 m−3 s−1 (S200) as a function of ln(k*). (c) Correlation between calculated energies of aromatic
dimer stacking interactions [58] and ln(k*).

In contrast to n*, the values for the nucleation rate constant, k*, are system-specific,
and no significant correlation with the solubility is evident from the values reported in
Table 1. However, k* is the dominant factor determining absolute nucleation rates. This is
demonstrated easily by examining its relationship with the supersaturation ratio required
to achieve a fixed nucleation rate. The supersaturation required for an arbitrarily chosen
nucleation rate of 200 m−3 s−1, S200, has previously [58] been used to compare the systems
included in Figure 6. The original motivating idea for choosing a benchmark rate is that
its value should increase with the height of the nucleation barrier. Using the influence
of the supersaturation ratio on N*, Equation (15), we can now evaluate the relationship
between S200 and k*. S200 decreases almost exponentially as a function of k*, resulting in
a near-linear dependence of S200 on ln(k∗) that is only weakly dependent on the overall
solution concentration, [M]0 (Supplementary Information, SI3). Not surprisingly, therefore,
across all benzoic acid systems examined, there is also a significant correlation between
S200 and ln(k∗), as shown in Figure 6b. This correlation can be readily understood by
invoking the expected Arrhenius behavior of the rate constant, k*, which is associated with
an activation energy, EA, and a pre-exponential factor, A, according to
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ln(k∗) = ln(A)− EA

RT
. (24)

For a given temperature, S200 is therefore expected to correlate with ln(A) and/or the
activation energy, EA. Without temperature-dependent rate measurements, which are not
available for these systems, it is not possible to separate the effects of A and EA. However,
it is interesting to note that a strong correlation between S200 and the energy associated
with aromatic dimer stacking interactions in solution (Edim,stack) was also reported [58].
These aromatic dimer interaction energies should predominantly manifest as variations
in the attractive forces between reversibly aggregated solvated solute molecules, i.e., they
probably influence EA more than A. Within the framework of nucleation from reversible
aggregates, the correlation between Edim,stack and S200 thus becomes a correlation with
ln(k*), as shown in Figure 6c. It was suggested [58] that the correlation with Edim,stack
reflects varying degrees of pre-ordering through aromatic stacking interactions in the
pre-nucleation state, which influences the rate of crystal nucleation, thereby achieving,
inter alia, kinetic control of the crystal structure. The analysis in terms of nucleation
driven by reversible aggregation provides a different angle to this hypothesis: the dimer
stacking interactions may influence EA and hence k*, which would be a classical Arrhenius
interpretation of the proposed kinetic control. Temperature-dependent studies should be
able to shed more light on this.

4.3. Some General Points

Like CNT, the reversible aggregation model includes the notion of a critical minimum
size of aggregates, as crystal nuclei appear to be formed predominantly from the largest
reversible aggregates. A size dependence is expected to arise for two reasons: first, nuclei
that can continue to grow to crystals must be sufficiently long-lived and resilient to re-
dissolution. They may therefore have to exceed a critical size, and the required number
of solute molecules may only be available in the largest reversible aggregates. Second,
assembling the transition state to nucleation would require a complex spatiotemporal
alignment of multiple solvated solute and solvent molecules. The likelihood that such an
assembly occurs spontaneously increases with the volume of the dense regions. These and
other mechanistic hypotheses, e.g., whether desolvation dynamics influence the nucleation
rate, need to be explored further in the future by analyzing k* variations for more systems,
performing research into the ultrafast dynamics of nucleation processes, and by modelling
of transition states with molecular dynamics and statistical mechanical analysis.

Finally, the most striking consequence of considering reversible aggregates as the loci
of homogeneous nucleation events is that supersaturation merely drives a pre-equilibrium
to nucleation, which determines the number density of nucleation centers. The rate constant,
k*, for nucleation, and hence the exponential barrier term that follows from the classic Arrhe-
nius expression for the rate constant, are much less dependent on supersaturation. As has
been pointed out before [32–34,64], the chemical kinetics approach provides a framework
that integrates the influence of mass action (overall solute concentration), thermodynamics
(properties of the overall solution, the dense regions formed by reversible aggregation,
activation enthalpy and activation entropy of the transition state) with a molecular level
view (structure and dynamics of solvated solute molecules, the transition state and the
nucleus). The use of chemical kinetics thus has the advantage of considering nucleation
more generally as a dynamic assembly process resulting from molecular interactions in
the initial state of the system. It removes any prescription of final state thermodynamics,
as for example the surface tension and bulk cohesion arguments used in CNT [65], which
assumes that the rate determining step is associated with desolvated crystal nuclei, which
would be an example for Hammond’s notion of a late transition state [66]. The theoretical
framework resulting from the chemical kinetics approach thus goes a long way towards a
vision [7,22] of integrating the thermodynamics and macroscopic kinetics of homogeneous
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nucleation with an atomistic view amenable to molecular modelling, statistical mechanical
analysis, and advanced experimental studies of molecular and electronic structure.

5. Conclusions

The hypothesis of homogeneous nucleation from dense solution regions formed by
reversible aggregation has been found to lead to a mathematical expression that predicts the
supersaturation dependence of homogeneous organic crystal nucleation rates quantitatively
from solubility with only one empirical parameter, a system-specific overall rate constant,
k*. This expression has tremendous practical value because a single accurate nucleation
rate measurement at one supersaturation is in principle sufficient to determine k*, allowing
the prediction of the supersaturation dependence of the homogeneous nucleation rate
at the temperature of the measurement. A central feature of this alternative mechanistic
framework for modelling homogeneous nucleation from solution is that the rate constant
can be linked to an activated complex with a specific molecular structure in the transition
state, providing the missing framework [22] for integrating molecular dynamics with
nucleation rate measurement and advanced experimental characterization of the structure
of nuclei and nucleating solutions. This integrates homogeneous nucleation theory with
the extensive body of absolute rate theory analysis methods developed in the chemical
sciences over the last century [1–4]. At the molecular level, the concept of homogeneous
nucleation in regions of high solute density seems to be akin to macromolecular folding,
e.g., of proteins [67], which is also associated with spatiotemporally demanding breaking
and forming of multiple bonds, including solvent release. The challenge for future research
is to develop an understanding of the value of k* through establishing the sequence(s)
of elementary steps that lead to the formation of the transition state. The dynamics and
structure of the transition state are not only expected to determine the nucleation rate, but
likely also influence the selection of the crystal structure in the final product.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst14040349/s1, Full derivations of Equations (10) and (12) and
the relationship between S200 and ln(k*), alternative plots of the data in Figure 5 as a function of
supersaturation.
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