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Abstract

Population-adjusted indirect comparisons, developed in the 2010s, enable com-

parisons between two treatments in different studies by balancing patient char-

acteristics in the case where individual patient-level data (IPD) are available for

only one study. Health technology assessment (HTA) bodies increasingly rely on

these methods to inform funding decisions, typically using unanchored indirect

comparisons (i.e., without a common comparator), due to the need to evaluate

comparative efficacy and safety for single-arm trials. Unanchored matching-

adjusted indirect comparison (MAIC) and unanchored simulated treatment

comparison (STC) are currently the only two approaches available for

population-adjusted indirect comparisons based on single-arm trials. However,

there is a notable underutilisation of unanchored STC in HTA, largely due to a

lack of understanding of its implementation. We therefore develop a novel way

to implement unanchored STC by incorporating standardisation/marginalisation

and the NORmal To Anything (NORTA) algorithm for sampling covariates. This

methodology aims to derive a suitable marginal treatment effect without aggre-

gation bias for HTA evaluations. We use a non-parametric bootstrap and pro-

pose separately calculating the standard error for the IPD study and the

comparator study to ensure the appropriate quantification of the uncertainty

associated with the estimated treatment effect. The performance of our proposed

unanchored STC approach is evaluated through a comprehensive simulation

study focused on binary outcomes. Our findings demonstrate that the proposed

approach is asymptotically unbiased. We argue that unanchored STC should be

considered when conducting unanchored indirect comparisons with single-arm

studies, presenting a robust approach for HTA decision-making.

KEYWORD S

indirect treatment comparison, marginal treatment effect, population adjustment,

unanchored simulated treatment comparison

Received: 30 October 2023 Revised: 22 March 2024 Accepted: 22 March 2024

DOI: 10.1002/jrsm.1718

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

Res Syn Meth. 2024;1–14. wileyonlinelibrary.com/journal/jrsm 1



Highlights

What is already known

• Population-adjusted indirect comparisons are increasingly used to account

for differences in patient characteristics between two treatments evaluated

in different trials.

• Unanchored population-adjusted indirect comparisons such as matching-

adjusted indirect comparison (MAIC) and simulated treatment comparison

(STC), are more commonly used compared to anchored indirect compari-

sons due to evidence involving single-arm trials.

• There is a notable underutilisation of unanchored STC in HTA, largely

because of challenges in understanding and implementing of such method.

What is new

• We developed a novel way to implement unanchored STC using standardi-

sation/marginalisation and the NORTA algorithm for sampling covariates.

This methodology ensures the derivation of a suitable marginal treatment

effect without aggregation bias for health technology assessment

evaluations.

• We conducted the first simulation study evaluating the performance of

unanchored STC.

• Our comprehensive simulation study establishes proof-of-principle, demon-

strating that our proposed unanchored STC approach is asymptotically unbi-

ased and provides good coverage.

Potential impact for Research Synthesis Methods readers

• The unanchored STC approach should be considered for population-

adjusted indirect comparisons. Care needs to be taken in the implementa-

tion of such method to ensure the derivation of unbiased estimate for the

marginal treatment effect and appropriately quantified uncertainty associ-

ated with it.

1 | INTRODUCTION

Randomised controlled trials (RCTs) are considered to be

the gold standard for evaluating a treatment or interven-

tion because the randomisation eliminates confounding

bias. However, an RCT may not be possible due to practi-

cal or ethical concerns which leads to the existence of

‘single-arm trials’ in which all patients receive the same

treatment. A comparison is then made with (possibly

aggregate) outcome data from a separate study that tested

the comparator treatment. A review showed that

76 unique indications were granted approval by the

European Medicines Agency (EMA) and the

United States Food and Drug administration (FDA) with-

out RCT evidence during 1999–2014, and the majority

were for haematological malignancies, oncology and met-

abolic conditions.1

Given randomised evidence with a common compara-

tor, anchored indirect treatment comparison could be

performed. However, in the case that evidence is from

single-arm trials, there is no common comparator. The

simplest method to incorporate single-arm trial data to

obtain a relative treatment effect is to perform a naïve

unanchored indirect comparison (the indirect compari-

son without a common comparator), where individual

arms of different studies are naively compared with each

other. This method is prone to bias due to a lack of ran-

domisation, which could lead to different patient popula-

tions in different studies and no control for confounding.

When individual patient-level data (IPD) are available for

both individual arms of different studies, methods such

as regression adjustment, propensity score and doubly

robust methods have been proposed to reduce the bias

caused by selection on observables (i.e., incorrectly omit-

ting observed variables that determine both the treatment

and the outcome).2 Instrumental variable methods and

panel data models could be used to reduce bias caused by

selection on unobservables.2

2 REN ET AL.
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Health technology assessment (HTA) is a multidisci-

plinary process to evaluate the clinical, economic and

broader impact of the use of a health technology. In a

technology appraisal, it is common that the evidence for

the efficacy of the comparator treatment is available only

as a set of published summary statistics (i.e., as aggregate

data), and that IPD for the treatment of interest are avail-

able only to the pharmaceutical company that developed

the treatment. The lack of individual-level data for the

comparator treatment restricts the types of statistical

analysis which could be used to estimate the relative

treatment effect.

Two main approaches that have been used in HTA to

attempt to adjust for confounders in the case of only

aggregate data from the comparator studies are the

matching-adjusted indirect comparison (MAIC)3,4 and

the simulated treatment comparison (STC).4,5 MAIC is

based on propensity score weighting and STC is based on

outcome regression adjustment. Both approaches adjust

imbalance in observed covariates and provide an estimate

of relative treatment effect which reflects the effect in the

trial population with aggregate data (i.e., the comparator

study). In the case where the evidence was from single-

arm trials without a common comparator, an unan-

chored comparison would be made. An unanchored

MAIC and STC assume that all prognostic factors (vari-

ables that affect outcome) and effect modifiers (variables

that alters the effect of treatment on outcomes) are

accounted for, which is largely considered impossible to

meet.6 Neither method is able to adjust for bias due

to residual confounding, which is the distortion that

remains after controlling for imbalance in observed

covariates.

Another limitation of MAIC and STC is that both

methods are limited to pairwise indirect treatment com-

parisons (i.e., two treatments [or three treatments in

anchored comparisons] from two studies) and limited to

predict the treatment effect for the comparator study pop-

ulation. Phillippo et al. (2020) proposed a new method

(multilevel network meta-regression [ML-NMR]) to over-

come these limitations.7 ML-NMR can be applied to

treatment networks of any size and can provide the treat-

ment effect in any target population given covariates.

However, ML-NMR is currently only applicable for

anchored indirect treatment comparisons.

As MAIC and STC are based on different statistical

approaches to adjust for population differences between

the two studies, they could lead to different treatment

estimations due to different estimands (marginal

vs. conditional) used in the analysis. The marginal esti-

mands can be estimated from an unadjusted analysis by

not including any covariates in the regression model. The

conditional estimands can be estimated from an adjusted

analysis by including covariates in the regression model.

However, ‘marginal’/‘conditional’ and ‘unadjusted’/‘ad-

justed’ should not be used interchangeably because mar-

ginal treatment effects could also be derived from the

covariate-adjusted analyses.8

MAIC is a propensity score weighting approach,

hence always estimates a marginal or population-average

treatment effect. That is the average effect at the popula-

tion level. Note that this is the case for both anchored

and unanchored MAIC. STC is an outcome regression-

based modelling approach, which relies on regression

models with covariates included. For the anchored STC,

the conventional use estimates a conditional treatment

effect. That is the average effect conditional on the effects

of the covariates included in the regression model. A

marginalisation method was proposed to ensure estimat-

ing marginal effect.9 For unanchored STC, it always esti-

mates a marginal effect because the regression model

used would not have treatment as a covariate since the

study is single-arm by design. The average treatment

effect estimated is for the entire population in the com-

parator study.

Since the publication of the NICE Decision Support

Unit (DSU) Technical Support Document (TSD) on

population-adjusted indirect comparisons methods,6 sev-

eral simulation studies have been conducted to evaluate

the different population-adjusted indirect comparison

methods.10–15 However, no simulation study evaluated

the performance of unanchored STC. In addition, not all

the simulation studies investigated the performance of

MAIC and STC simultaneously and there was a lack

of consensus on the superiority of performance where

they were both included in the simulation study. The dis-

crepancy in the conclusions could be due to the different

scenario settings used between the studies. However, all

the simulation studies conclude that covariates selection

is important, and all adjustment methods would lead to

bias if not all covariates need to be adjusted for are

included in the model.

Reviews show that indirect comparisons in HTA were

mostly unanchored and MAIC was used way more fre-

quently than STC.16–18 We believe that the more

frequently use of MAIC is not because the performance

of unanchored STC is worse than unanchored MAIC, but

purely due to the lack of awareness on how to conduct

unanchored STC. MAIC's reweighting procedure to bal-

ance population differences is intuitive and given the

reweighted data standard statistical analysis methods can

be used to obtain the indirect treatment effect. On the

other hand, it is unclear how to interpret and then use

the results from the outcome regression model in the

STC approach. The above discussion on marginal

vs. conditional estimands also highlights that depending
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on whether it is anchored or unanchored STC, the inter-

pretation could be different.

Under correct model specification, STC approach

would be more efficient than MAIC approach because

regression-based approaches give more precise estimates.

This advantage becomes more notable where overlap is

poor between the studies, and MAIC suffers from a large

reduction in the effective sample size after weighting. In

an extreme case of a lack of covariate overlap (large num-

ber of covariates and small sample size) MAIC may fail

to produce feasible weights; whereas STC would still be

feasible due to its ability to extrapolate beyond the

observed covariate space in the IPD study. The STC

approach also has the advantage that the model assump-

tions could be checked explicitly.19

In this paper, we aim to present a new methodology

to perform unanchored STC, which avoids aggregation

bias. We also aim to make the unanchored STC method

more accessible to users so that this approach can readily

be used in practice. We propose to use the NORmal To

Anything (NORTA) algorithm to simulate multivariate,

non-normal covariates to address the challenges in simu-

lating categorical variables raised by Ishak et al. (2015).4

We also present a non-parametric bootstrapping proce-

dure to obtain the correct standard error for the esti-

mated relative treatment effect. We conduct a

comprehensive simulation study to evaluate the perfor-

mance of the proposed unanchored STC method to fill

the evidence gap in the literature.

2 | METHODS

We assume that we are interested in estimating the treat-

ment effect of treatment B versus treatment A, where we

have IPD from a single-arm study for treatment B (the B

study) and aggregate data from another single-arm study

for treatment A (the A study). STC is a form of outcome

regression approach, where a regression model is fitted to

the IPD in the B study:

g θi Bð Þ X ið Þ
� �

¼ β0þβ >
1 X i, ð1Þ

where θi Bð Þ X ið Þ is the expected outcome for individual i

with covariate values X i in the B study (e.g., the probabil-

ity for binary outcomes); the subscript (B) indicates the

population; g is an appropriate link function (e.g., the

logit function for binary outcomes); β0 is the intercept, β1
is a vector of coefficients for prognostic factors and effect

modifiers; and X i is the full covariate vector including

prognostic factors and effect modifiers for individual i.

This formula is a simplified version of the standard STC

formula presented in Phillippo et al. (2018)6 as the

regression model does not have the treatment group as a

covariate in an unanchored STC.

Once the regression model coefficients in Equation (1)

have been estimated, the second step in the STC is to pre-

dict the outcome for the population in the A study where

only aggregate data are available. The predicted average

effect of treatment B in the A study population
bdB Að Þ ¼ g bθB Að Þ

� �
is obtained via marginalisation/

standardisation of the predicted conditional estimates for

the sampled individuals in the A study. This calculation

is explained in detail in the next section. Given the pre-

dicted average effect of treatment B in the A study popu-

lation and the reported treatment effect of treatment A in

the A study population bdA Að Þ, an unanchored STC pro-

duces an estimate of the relative treatment effect of B ver-

sus A in the A study population:

bdAB Að Þ¼bdB Að Þ�bdA Að Þ: ð2Þ

Note that the indirect comparison in Equation (2)

must be formed on the linear predictor scale because the

impact of an effect modifier is scale dependent.6 For

example, for a binary outcome bdB Að Þ is the estimated log

odds of receiving treatment B and bdA Að Þ is the estimated

log odds of receiving treatment A, both for the A study

population. Note that the A study may not report bdA Að Þ

on the linear predictor scale direct and transformation is

required. For example, for a binary outcome, the A study

may have reported probability of experiencing the out-

come bθB Að Þ. This needs to be transformed to the linear

predictor scale (log odds) before using it in Equation (2).

2.1 | The prediction step

For linear regression models with an identity link func-

tion for continuous outcome, bdB Að Þ can be obtained by

plugging in the mean values of the X reported from the A

study in Equation (1), X . The estimate of the treatment

effect of B versus A in the comparator study population

for Equation (2) becomes

bdAB Að Þ ¼bdB Að Þ�bdA Að Þ

¼ bβ0þ β̂
>

1 X Að Þ

� �
�bθA Að Þ:

ð3Þ

This ‘plugging-in’ approach would lead to aggrega-

tion bias for models with non-identity link function.7,20

This is because there is non-linearity between the out-

come and covariates X (i.e., the mean of predicted out-

come is not the same as the predicted outcome calculated

4 REN ET AL.
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at the mean of X). By applying Bayes' theorem, Chang

et al. (2000) shows that the size of the aggregation bias is

log f xijjyij ¼ 1
� �

� log f xijjyij ¼ 0
� �h i

for a logit link func-

tion, where f xijjyij

� �
is the probability density function

for covariates xij given binary outcome yij.
21

To deal with non-linearity, an alternative approach is

to simulate individuals with a range of covariate values,

X , to match the population in the A study, and then

obtain the adjusted absolute effect on the linear predictor

scale (i.e., the log odds for binary outcomes) by averaging

the predictions of these individuals. Ishak et al. (2015)

suggests to simulate the same number of individuals as

the sample size of the comparator study.4 A simulation

study from Zhang et al. (2023) shows that there is an

under-coverage problem when maintaining the sample

size in simulating the comparator study, and nominal

coverage is achieved when increasing the sample size to

infinity (100,000).22 Remiro-Az�ocar et al. (2022) proposes

that the sample size does not have to correspond to the

sample size of the comparator study, but the size needs to

be sufficiently large to ensure stability and minimise sam-

pling variability.9 We opted for choosing a sufficiently

large sample size.

We now describe the procedure step-by-step using a

binary outcome as an example. Let the outcome Y be

binary. The expected outcome θB Að Þ in Equation (1)

becomes the probability of experiencing the outcome Y

when treated with treatment B in the A study

population:

θB Að Þ ¼P Y ¼ 1ð Þ

¼E P Y ¼ 1jXð Þ½ �

¼

Z
P Y ¼ 1jXð Þ f X Xð ÞdX ,

ð4Þ

where f X Xð Þ is the joint probability density function for

X representing the A study population if X contains all

continuous covariates; f X Xð Þ is the joint probability mass

function if f X Xð Þ contains all discrete covariates; and is a

joint density function with respect to an appropriate

dominating measure if X is a mixture of continuous and

discrete covariates. Equation (4) can be evaluated using

Monte Carlo integration with random samples X j

from f X Xð Þ:

bPB Að Þ Y ¼ 1ð Þ¼
1

N

XN

j¼1

P Y ¼ 1jX j

� �
: ð5Þ

The adjusted relative treatment effect in the A study

population, bdAB Að Þ, can be obtained using Equation (2)

given the predicted probability from Equation (5) and the

reported probability when receiving treatment A from

the A study (bPA Að Þ Y ¼ 1ð Þ):

bdAB Að Þ ¼bdB Að Þ�bdA Að Þ

¼ logit bpB Að Þ

� �
� logit bpA Að Þ

� �

¼ log
bPB Að Þ Y ¼ 1ð Þ

1�bPB Að Þ Y ¼ 1ð Þ

 !
� log

bPA Að Þ Y ¼ 1ð Þ

1�bPA Að Þ Y ¼ 1ð Þ

 !
:

ð6Þ

The general formula for the estimator bdB Að Þ is

d̂B Að Þ ¼ g
1

N

XN

j¼1

g�1 β̂0þ β̂
>

1 X j Að Þ

� � !
, ð7Þ

where we firstly obtain the predicted outcome on the nat-

ural scale for all N simulation samples sampled from

the joint covariate distribution, g�1 β̂0þ β̂
>

1 X j Að Þ

� �
,

(e.g., the probability for binary outcomes); then we obtain

the average predicted outcome on the natural scale

(e.g., the average probability for binary outcomes); finally

we transform the predicted outcome to the linear predic-

tor scale using g (e.g., the log odds for binary outcomes).

This is a similar approach to the method used to esti-

mate the marginal causal log odds ratio from analyses that

adjust for covariates proposed by Zhang (2008),23 which

was also illustrated by Daniel et al. (2019).8 Remiro-Az�ocar

et al. (2022) proposed using this approach for anchored

STC so that the estimand is the marginal effect.9 In the

literature, this approach has been variously named stan-

dardisation, marginalisation or G-computation.

The difference between the standardisation method

used for unanchored STC and G-computation is that for

unanchored STC we only apply the standardisation

for arm B and use the reported effect for the arm A as the

marginal treatment effect for arm A. This is because

the regression model in Equation (1) does not have treat-

ment as a covariate as there is only a single arm, B.

When all covariates are continuous and normally dis-

tributed, the random samples of X j needed in Equation (7)

could be generated from a multivariate normal distribu-

tion with the observed means X and the correlation struc-

ture observed in the B study where IPD are available as the

comparator study would normally not report the correlation

structure. If data are not normally distributed, then an appro-

priate transformation is required before sampling. When the

covariates contain discrete variables, it would not be appro-

priate to sample from amultivariate normal distribution. We

introduce the NORmal To Anything (NORTA) algorithm to

sample the joint covariate distribution in Section 2.2, which

allows us to handle the situation where covariates are dis-

crete or a mixture of continuous and discrete.

REN ET AL. 5
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2.2 | NORTA for sampling covariates

One of the most popular approaches to simulate multi-

variate, non-normal data in the life or social sciences is

the NORmal To Anything (NORTA) approach proposed

by Cario and Nelson (1997).24 The idea is to sample from

a multivariate normal distribution and then transform

the sampled multivariate normal variables into variables

with other marginal distributions. This approach has a

long history in statistics and simulation and can be dated

back in 1970s.25,26 Cario and Nelson (1997) extended the

idea to discrete/mixed marginal distributions.24

To simulate a random vector X ¼ X1,…,Xkð Þ with the

following properties

1. X i �FX i
, i¼ 1,…,k and FX i

is the cumulative distribu-

tion function (CDF) for X i; and

2. Corr Xð Þ¼ΣX :

The NORTA algorithm proceeds as follows:

1. Simulate from Z¼ Z1,…,Zkð Þ, where Zi follows a mul-

tivariate normal distribution with mean 0 and correla-

tion matrix ΣZ , i¼ 1,…,k, that is Zi �MVN 0,ΣZð Þ.

2. Apply the probability integral transformation to sam-

pled Zi, such that U i ¼Φ Zið Þ, where Φ :ð Þ is the stan-

dard normal CDF and U i follows a standard uniform

distribution, U i �U 0,1½ �.

3. X is obtained using X i ¼F�1
X i

U ið Þ, where F�1
X i

:ð Þ is the

inverse CDF of X i.

Z1

.

.

.

Zi

.

.

.

Zk

0

BBBBBBB@

1

CCCCCCCA

X i ¼F�1
X i

Φ Zið Þð Þ
!

X1

.

.

.

X i

.

.

.

Xk:

0

BBBBBBB@

1

CCCCCCCA

The NORTA method is also known as a Gaussian cop-

ula method.27–29 This approach was used to model the

joint distribution for covariates in ML-NMR and paramet-

ric G-computation approach for population-adjusted treat-

ment comparisons in anchored indirect comparisons.7,9

One key point to note is that for i≠ j, the correlation

ρX i, jð Þ depends exclusively on ρZ i, jð Þ, and in general

ρX i, jð Þj j≤ ρZ i, jð Þj j.24,30 When applying NORTA to simu-

late covariates for the comparator study with aggregate

data, we need to specify the marginal distributions given

the summary statistics (such as mean and standard devia-

tion for a continuous covariate and percentage for a

binary covariate) reported from the comparator study

and the correlation matrix ΣX . We assume that the

correlation structure is the same between the comparator

study and the company's study with IPD, that is

Σ
AgD
X ¼Σ

IPD
X , and we choose the form of the marginal dis-

tribution for the covariates in the comparator study based

on assumptions about the sampling distribution of the

covariate (e.g., a Bernoulli distribution for a binary

covariate).

If we use Σ
IPD
X in step 1 of NORTA algorithm, the

sampled covariates will not have the desired correlation

matrix as Σ
IPD
X and instead the correlations would be

smaller for the comparator study than the study with

IPD, j ρAgDX i, jð Þ j ≤ ρIPDX i, jð Þ
�� ��. In both ML-NMR and para-

metric G-computation approach for anchored indirect

comparisons, the impact of not simulating covariates for

the comparator with the desired correlation matrix was

not discussed explicitly. A simulation study by Phillippo

et al. (2020) investigated the impact of correlation

between covariates for anchored STC and concluded that

the performance of anchored STC is not affected by the

correlation between covariates.10 We also propose to use

NORTA/Gaussian copula to sample covariates for the

comparator study given its convenience in obtaining

the samples for multiple data types. We will evaluate the

impact of not obtaining the desired correlation for

the covariates for the comparator study in unanchored

case in a simulation study (Section 3).

2.3 | Bootstrap for estimating
standard error

We propose to use the non-parametric bootstrap

method31 to compute the variance of bdAB Að Þ in

Equation (7) due to the lack of a closed-form expression

for this variance. Because only the IPD from the B study

with treatment B can be resampled, we propose to calcu-

late the variance of bdAB Að Þ by decomposing this variance

into two parts (the variance for bdB Að Þ and the variance for
bdA Að Þ), where the variance for bdB Að Þ is computed using the

bootstrap approach and the variance of bdA Að Þ is computed

using the reported summary statistics from the study

with aggregate data (for example, with binary data there

is a closed-form formula of the variance for the log odds).

Var bdAB Að Þ

� �
¼Var bdB Að Þ

� �
þVar bdA Að Þ

� �

¼ bV bdB Að Þ

� �
þVar bdA Að Þ

� �
,

where bV bdB Að Þ

� �
is the variance for bdB Að Þ obtained using

the bootstrap approach. The bootstrap procedure pro-

ceeds as follows:

6 REN ET AL.
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1. Draw a bootstrap sample P�
1,…,P

�
n from the IPD study.

Fit an appropriate regression model to the bootstrap

sample P�
1,…,P

�
n. Predict the outcome for the study A

population. Compute bd
�

B Að Þ using Equation (7).

2. Repeat step 1 for M times, which yields

to bd
�

B Að Þ,1,…,
bd
�

B Að Þ,M .

3. Compute the bootstrap mean: d
�

B Að Þ ¼
1
M

PM

j¼1

bd
�

B Að Þ,j.

4. Compute the bootstrap vari-

ance: Var bdB Að Þ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM

j¼1

bd
�

B Að Þ,j�d
�

B Að Þ

� �s
:

2.4 | Sparse data bias in generalised
linear model

The maximum likelihood estimates (MLEs) for general-

ised linear models may be biased when there are few or

no study participants at key combinations of the outcome

and covariates. The bias, sometime called sparse data bias

tends to move away from the null (i.e., a downward

bias when the estimate is below 1 and an upward bias

when the estimate is above 1).32 This bias is often ignored

in practice under the assumption that the bias is negligi-

ble compared with the standard error of the estimate.33

However, a simulation study showed that when the num-

ber of events is relatively small and there is large imbal-

ance in the levels of a covariate, an odds ratio estimated

from a logistic regression model using the maximum like-

lihood method would have a large bias.34

Firth-type penalisation has been used in practice to

reduce the small sample bias of the coefficients derived

using the maximum likelihood method.35 Puhr et al. (2016)

has shown that while bias in the estimates of the coeffi-

cients is reduced using a penalisation approach, it comes at

the cost of introducing bias in the prediction of probabili-

ties.36 They also illustrate that the maximum likelihood

method provides an average predicted probability equal to

the observed proportion of events observed in a logistic

regression.36 Because the STC method involves predicting

the probability for the comparator study, we propose to use

the maximum likelihood method without penalisation. Our

simulation study also investigates the impact of sparse data

bias on the performance of the STC approach when using a

generalised linear model.

3 | SIMULATION STUDY

The design of this simulation study follows a structured

approach proposed by Morris et al. (2019),37 which

involves specifying aims, data-generating mechanisms,

methods, estimands and performance measures.

All simulations and analyses were performed using R

software version 4.2.2. Program code file for data simula-

tion and analyses can be found at https://github.com/

SRenScharr/unanchored-simulated-treatment-comparison.

The GitHub page also contains an example analysis to

demonstrate the use of the proposed method in practice.

3.1 | Aims

This simulation study aims to (i) assess the impact of sim-

ulated covariates for the comparator study using the

NORTA algorithm do not have the desired correlation

matrix in unanchored STC, (ii) assess the impact of spare

data bias on the performance of the unanchored STC

when the covariates included in the model have large

imbalance within the strata. For completeness, the ‘plug-

ging-in’ of the mean covariates approach is also

performed.

3.2 | Data-generating mechanisms

In this simulation study, we consider a binary outcome

with two covariates representing the full set of known

prognostic factors and effect modifiers and an additional

covariate indicating treatments (A and B). Data are simu-

lated for two studies from a logit model: the IPD study

and the aggregate data study, where each study has two

treatment groups. We compute the summary statistics for

the aggregate data study and only take the A arm of the

aggregate data study and the B arm of the IPD study to

the analysis.

The logit model with interaction follows the form

yij �Bern θij
� �

logit θij
� �

¼ β0þβ1xij1þβ2xij2þβ3� trtijþβ4� trtij�xij2

where yij denotes individual i in study j which is gener-

ated from a Bernoulli distribution with probability θij; xij1
and xij2 denote the two covariates; trtij is the treatment

indicator which is 1 if treated with treatment B and 0 if

treated with treatment A;  is the indicator function

which is 1 when there is an interaction between covariate

x2 and treatment and is 0 otherwise. We set β0 ¼�0:25,

β1 ¼ 0:09 and β2 ¼ 0:15.

We consider the situation where both covariates are

binary and also consider a series of scenario analysis to

explore if the unanchored STC approach is sensitive to

the magnitude of the difference in the marginal means of

REN ET AL. 7
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covariates within each study and between studies, the

strength of the correlation between the covariates,

the strength of overlap between studies, the strength of

treatment and covariate interaction β4 (i.e., effect modifi-

cation), the strength of the treatment effect β3, and the

sample size per arm.

In total, 120 scenario analyses were explored in this

simulation study with the parameters varied in the fol-

lowing way:

1. Magnitude of the marginal means and strength of

overlap between studies:

i. small for both studies (0.1 for aggregate data

study vs. 0.2 for IPD study, large overlap);

ii. large for both studies (0.9 for aggregate data study

vs. 0.8 for IPD study, large overlap);

iii. moderate for both studies (0.5 for aggregate data

study vs. 0.6 for IPD study, large overlap);

iv. small for one and large for the other (0.2 for

aggregate data study vs. 0.8 for IPD study, small

overlap).

A crude measure based on the difference between the

two binary variables is used to indicate strength of over-

lap: a small difference of 0.1 for large overlap and a large

difference of 0.6 for small overlap.

2. Strength of correlation between the covariates (ρZ is

the correlation for the multivariate normal variables

in step 1 of NORTA. The actual correlation between

the two covariates for each scenario can be found in

the online supporting material Appendix 1 Table 1.):

i. weak in both studies (ρZ ¼ 0:2);

ii. strong in both studies (ρZ ¼ 0:9);

iii. weak in one and strong in the other (ρZ ¼ 0:2 for

aggregate data study and ρZ ¼ 0:9 for IPD study).

3. Strength of effect modification:

i. no effect modification β4 ¼ 0;

ii. small effect modification β4 ¼�0:1;

iii. large effect modification β4 ¼�0:3.

4. Strength of treatment effect

i. large treatment effect β3 ¼�0:45;

ii. small treatment effect β3 ¼�0:1.

5. Sample size:

i. 200;

ii. 1000.

The sample size of 200 reflects the typical size of studies

in submissions used population-adjustment approaches to

HTA authorities.38 The sample size of 1000 is used to test

the asymptotic properties of the proposed STC approach.

3.3 | Estimands

The estimand of interest is the marginal log-odds ratio in

the aggregate data study population. Because of the non-

collapsibility issue with the odds ratio, there is no closed

form for calculating the true marginal logodds ratio. In

the simulation study, we calculate the true log-odds ratio

by conducting a simple logistic regression with treatment

as the covariate using the simulated data for both arms

(setting the sample size to be 5 million per arm) in the

aggregate data study.

3.4 | Methods

Each simulated dataset is analysed using the pro-

posed unanchored STC approach described in

Section 2 where covariate distribution for the aggre-

gate data study is simulated using the NORTA algo-

rithm given the marginal means from the aggregate

data study and assuming the correlation structure of

the covariates in the aggregate data study is the same

as the IPD study. 1000 bootstrap samples were used

to derive the appropriate standard error of the treat-

ment effect. 10,000 individual profiles were simulated

in the prediction step.

3.5 | Performance measure

2000 Monte Carlo replicates were generated for each

scenario. The performance of the methods is evaluated

using the bias, empirical standard error, model standard

error and coverage probability. The bias provides a mea-

sure of the accuracy of the unanchored STC method and

is computed as the average difference between the esti-

mate from each repetition and the truth. The empirical

standard error measures the true variability of the esti-

mate and is computed as the standard error of the

repeated estimates. The model standard error provides

an estimate of the empirical standard error and is com-

puted as the square root of the average estimate vari-

ance of the treatment estimate from each repetition. The

coverage probability measures the probability that the

confidence intervals contain the true value and is com-

puted as the proportion of repetitions with its 95% confi-

dence interval (CI) contains the truth. We consider that

a good method would be unbiased (the bias is close to

zero) with small empirical standard error, is well esti-

mated by the model empirical error, and the coverage

probability is close to 95%.
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3.6 | Results

Figures 1–3 show the simulation results for all 120 scenar-

ios. The results are also tabulated in Appendix 1

Tables 1–5. Figure 1 shows that the size of the bias is

affected by overlap, size of the study and the strength of

the relative treatment effect. The bias is close to 0 in sce-

narios where there is large overlap in covariates between

the two studies (i.e., the difference in the covariate mar-

ginal means between studies is small). The bias in the

scenarios with small overlap in covariates between

the studies and small sample size is noticeably higher

than other scenarios. Within the scenarios with small

overlap and small sample size, the size of the bias seems

associated with the magnitude of the relative treatment

effect. The bias is larger in the case when the treatment

effect is large than the case when the treatment effect is

small. The bias reduces to close to 0 in the scenarios with

small overlap when the sample size increases from 200 to

1000 per arm.

The size of the bias is not influenced by the strength

of the correlation between the two covariates or the

strength of the correlation across the two studies. It is

also not affected by the fact that we do not obtain the

desired correlation matrix using the correlation from the

IPD study in step 1 of the NORTA algorithm.

Figure 2 shows that across all scenarios the standard

errors estimate the empirical standard errors well in gen-

eral. Increasing the sample size may be associated with a

reduction in the discrepancy between the model standard

error and the empirical standard error. Coverage is at the

nominal level across all scenarios with no obvious pat-

terns observed (Figure 3).

The results from using the ‘plugging-in’ of the mean

covariates approach are presented in the online support-

ing material Appendix 2. In summary, the ‘plugging-in’

approach performs similarly to the simulation-based

approach when assessing bias. However, the coverage

was below the nominal level (between 70% and 80%) for

the ‘plugging-in’ approach in the case there are small

overlap between the two studies. In the low coverage

cases, the model standard error was much smaller than

the empirical standard error.

In summary, this simulation demonstrates that the

unanchored STC approach using the NORTA algorithm

to simulate covariates provides an asymptotically unbi-

ased estimate for the population-adjusted indirect com-

parison for binary outcomes. Within the unanchored

FIGURE 1 Bias along with 95% Monte Carlo confidence intervals for different scenarios. (S, M and L for marginal means indicate

small, moderate and large marginal mean. S and L for overlap indicate small and large overlap. W and S for correlation indicate weak and

strong correlation.)
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STC, our proposed way of using the NORTA algorithm to

sample covariates would result the correlation matrix

from the sampled covariates not matching the input cor-

relation matrix from the IPD study. The simulation study

shows that unanchored STC is unaffected by this issue,

and still provides an asymptotically unbiased estimate. In

the case of sparse data, (i.e., when the covariates have

large imbalance within the strata), unanchored STC is

associated with the sparse data bias only in the situation

where the overlap in covariates between the studies are

small and the studies have small sample size. In the situ-

ation where there is sufficient overlap or limited overlap

but large sample size, unanchored STC still provides an

unbiased estimate.

4 | DISCUSSION

Unanchored MAIC or STC is required to adjust for the

population differences when deriving the indirect treat-

ment effect using single-arm studies with only aggregate

data are available for the comparator arm. It is unclear

why unanchored MAIC is used far more frequently than

unanchored STC in HTA. This may relate to the lack of

clarity on how unanchored STC could be performed. We

proposed to use the NORTA/Gaussian copula approach

to simulate covariates with any desired marginal distribu-

tions. We also illustrated how to predict the treatment

effect and obtain the appropriate standard errors using

bootstrap so that the estimate is unbiased and has good

coverage rates. We aim to make unanchored STC more

accessible to users in practice by providing example R

code for data simulation and analysis on GitHub.

Our proposed way of using the NORTA algorithm to

simulate covariates from the comparator study is

to incorporate the correlation in the IPD study without

any transformation. This approach is easy to imple-

ment, however the drawback is that the simulated cov-

ariates for the comparator study will not have the

desired correlation matrix (i.e., the correlation for the

sampled covariates does not match the correlation in

the IPD study).

We emphasise that the use of marginalisation and

predicting on the natural scale to obtain the average pre-

dicted outcome on the natural scale before transforming

to the linear predictor scale to obtain the marginal treat-

ment effect is important. This procedure ensures that the

estimated marginal treatment effect is unbiased.

FIGURE 2 Empirical and model error along with 95% Monte Carlo confidence intervals for different scenarios. (S, M and L for

marginal means indicate small, moderate and large marginal mean. S and L for overlap indicate small and large overlap. W and S for

correlation indicate weak and strong correlation.)

10 REN ET AL.

 1
7
5
9
2
8
8
7
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/jrsm

.1
7
1
8
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

0
/0

4
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



How much bias would be introduced by the ‘plug-

ging-in’ approach depends on how non-linear the func-

tion is and whether the density mass of the input

parameters for the non-linear function would be concen-

trated on the non-linearity part of the function. Although

in our simulation settings, the ‘plugging-in’ approach

does not appear to introduce additional bias we argue

that the simulation-based approach should always be

used in the case of a non-linear link function in practice

to eliminate aggregation bias.

Bootstrap need to be applied to obtain the correct

standard error for the treatment effect. Because only the

IPD arm could be resampled, the variance calculation

should be separately for the treatment and control arm in

the comparator study. This is relatively easy to achieve

for either binary or continuous outcome as there is a

closed formula for the variance for the control arm in the

comparator study. However, this is not the case for time-

to-event outcome. We used 1000 bootstrap samples due

to computational constraints in the simulation study. In

practice, a larger number of bootstrap samples may be

required depending on the input data. We suggest users

determine the appropriate number of bootstrap samples

by increasing the number of bootstrap samples until the

results from multiple analyses using different random

seeds stabilise.9

Our simulation study is the first simulation study for

unanchored STC. It shows the issue relating to using the

correlation from the IPD study directly in the NORTA

algorithm does not have an impact on the performance

of the unanchored STC method. We varied the strength

of the correlation between the two covariates within each

study and across the two studies, and observed similar

magnitude of bias and coverage across all scenarios. This

finding is consistent with the findings from Phillippo

et al. (2020)10 that the assumed correlation structure of

the aggregate data trial has negligible effect on the results

in the anchored STC.

We found that sparse data bias together with the size

of overlap in covariates between the two studies influ-

ences the size of the bias the most. When overlap is large

or the sample size is big, a large imbalance within the

strata of a covariate does not have an impact on the per-

formance of the unanchored STC method. The magni-

tude of bias and coverage were similar in the case with

either small or large marginal means for the two covari-

ates compared to the case with moderate size marginal

means. However, when there is one covariate with a

FIGURE 3 Coverage along with 95% Monte Carlo confidence intervals for different scenarios. (S, M and L for marginal means indicate

small, moderate and large marginal mean. S and L for overlap indicate small and large overlap. W and S for correlation indicate weak and

strong correlation.)
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small marginal mean and other covariate with a large

marginal mean, there is a noticeable increase in the size

of the bias. As the overlap reduces, the bias increases;

however, the bias reduces with an increasing of the

sample size even in the case of large proportion of non-

overlap between covariates. This shows that the unan-

chored STC method provides an asymptotically unbiased

estimate of the treatment effect for binary outcomes. This

property is as expected because the maximum likelihood

estimate for a logistic regression is asymptotically

unbiased.

We also found that whether a covariate is an effect

modifier or the strength of the effect modification does

not have an impact on the performance of the unan-

chored STC method. This finding is in line with the find-

ings from Phillippo et al. (2020)10 in the anchored STC.

When the true relative treatment effect is large, the lack

of overlap between the two studies has the most profound

effect on the bias and this scenario is associated with the

largest bias across all scenarios varying other factors.

Our simulation only investigated the performance of

the unanchored STC with binary data. Single-arm studies

most frequently occur in oncology trials, where time-

to-event endpoint such as overall survival or progression-

free survival would be the primary outcome of interest.

The use of marginalisation and the NORTA algorithm to

sample covariates should still be applied because the link

function is not identical in the outcome regression model.

However, it remains unclear what model may be the best

to use in the outcome regression step, for example, a cox

regression model vs. a parametric survival model, as this

would have an impact on the extrapolation which is an

important area for consideration in HTA due to the lim-

ited follow-up time within a clinical study. Another chal-

lenge with time-to-event outcome is how to obtain the

marginal treatment effect and uncertainty associated

with this estimation, for example, a constant hazard

vs. time-varying hazards; and the relationship between

this marginal treatment effect to the outcome regression

used for prediction. Further research is required to

develop an unbiased unanchored STC approach for time-

to-event data.

We only included two covariates (both binary) in our

simulation study whereas in practice it is likely a larger

number of covariates and other types of covariates would

be determined as the potential prognostic factors and

effect modifiers. Our simulation study shows that the cor-

relation structure does not influence the performance of

the method. We fully expect this property to be main-

tained with a higher dimensional correlation matrix,

although further research is required to confirm this. In

terms of implementing the NORTA/Gaussian copula

approach to simulate more than 2 covariates and other

types of covariates, the code available on GitHub could

be easily extended [e.g., the normalCopula() function] by

choosing the appropriate marginal distribution given the

summary statistics for the covariates.

We did not investigate the scenario where not all

prognostic factor and effect modifiers are included in the

regression model as it is clear from previous work10–15

that not adjusting for all important covariates lead to

bias. We also did not investigate the scenario where the

covariate-outcome relationship is nonlinear as this would

obviously lead to biased results because the STC

approach relies on the outcome regression model cor-

rectly model the relationship between covariates and out-

come, and this has been demonstrated in the anchored

STC case from previous work.10 We also did not compare

the performance of unanchored MAIC with our proposed

unanchored STC approach. MAIC approach has been

extensively investigated in the literature and its proper-

ties are well understood.10–15 However, there is discrep-

ancy in the conclusions on the superiority of

performance between MAIC and STC in the anchored

case, which could be due to the different scenario settings

used between the studies. A further comprehensive simu-

lation study comparing unanchored MAIC and unan-

chored STC could be useful.

To conclude, we provided a step-by-step guide on

how to conduct an unanchored STC approach and per-

formed a simulation study to evaluate the performance of

the proposed procedure using a binary data. The simula-

tion study shows that our proposed implementation of

unanchored STC performs well across all scenarios apart

from in the case of small overlap between the studies

with small sample size. In this worst-case scenario, the

absolute bias was still less than 0.05 on the log-odds ratio

scale in the simulation scenarios that we explored. We

encourage analysts to consider using unanchored STC

when conducting unanchored indirect comparisons with

single-arm studies.
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