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Abstract

Background: The quantity of documents being published requires researchers to specialize to a narrower field,

meaning that inferable connections between publications (particularly from different domains) can be missed. This

has given rise to automatic literature based discovery (LBD). However, unless heavily filtered, LBD generates more

potential new knowledge than can be manually verified and another form of selection is required before the results

can be passed onto a user. Since a large proportion of the automatically generated hidden knowledge is valid but

generally known, we investigate the hypothesis that non trivial, interesting, hidden knowledge can be treated as an

anomaly and identified using anomaly detection approaches.

Results: Two experiments are conducted: (1) to avoid errors arising from incorrect extraction of relations, the

hypothesis is validated using manually annotated relations appearing in a thesaurus, and (2) automatically extracted

relations are used to investigate the hypothesis on publication abstracts. These allow an investigation of a potential

upper bound and the detection of limitations yielded by automatic relation extraction.

Conclusion: We apply one-class SVM and isolation forest anomaly detection algorithms to a set of hidden

connections to rank connections by identifying outlying (interesting) ones and show that the approach increases the

F1 measure by a factor of 10 while greatly reducing the quantity of hidden knowledge to manually verify. We also

demonstrate the statistical significance of this result.

Keywords: Literature based discovery, Anomaly detection, Unified medical language system

Background
Literature based discovery (LBD) attempts to automat-

ically address the fact that the volume of publications

produced daily forces researchers to restrict the number

of articles they read, potentially resulting in inferable con-

nections being missed – for example, in the biomedical

domain, Swanson [1] found one publication mention-

ing Raynaud disease as affecting blood viscosity, platelet

aggregation, and vascular reactivity, and another stating

that fish oil has the opposite effect on the same, but the

connection between Raynaud disease and fish oil had not

been noticed. This forms the outline of the A-B-C model

[1] which extracts all pairs of A and B that are known to
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be related (such as Raynaud disease - blood viscosity) and

matches over B terms to find connections A - B - C where

A - B appear in one publication and B - C in another but

no single publication connects A directly to C.

However, this model proposes a high proportion of

everyday knowledge of the domain [2] as well as a high

number of spurious connections: for example, publica-

tions describing clinical trials will frequently mention

patients, trials or weeks, but connecting through any such

B terms will lead to a very large number of (meaningless)

connections. To avoid this problem, systems often carry

out heavy filtering: some options include restricting the

time period from which the data is drawn (e.g. [3]), man-

ually or semi-automatically creating stoplists (e.g. [4]),

restricting the types of terms or relations extracted (e.g.

[5]), or only using publications’ titles (e.g. [1]). All such
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restrictions can lead to important inferable connections

being missed.

A possible addition, or alternative, to filtering is re-

ranking of the resulting proposed connections: instead of

returning all the proposed hidden knowledge to a user

unordered, the connections are ordered by likelihood of

being an ‘interesting’ (non trivial, e.g. requiring clinicial

trials to ensure validity) hidden knowledge pair. Amongst

others, the order can be determined by the number of

linking (B) terms (LTs, e.g. [6]), computed confidence val-

ues (e.g. [7]), or by assigning weights and rankings to the

LTs based on medical subject headings (e.g. [4]).

We propose using anomaly detection to annotate poten-

tially interesting connections: i.e. we hypothesize that

these connections can be identified as outliers among a

vast quantity of correct, but uninteresting, connections.

To our knowledge, this is the first application of anomaly

detection to LBD. Moreover, an isolation forest imple-

mentation of anomaly detection [8] has linear time com-

plexity with a low memory requirement, allowing an LBD

system to be employed withminimal filtering reducing the

number of incorrectly discarded knowledge pairs.

Literature based discovery

Swanson’s [1] A-B-C approach outlined above has

remained a central method for LBD. This work employs

this model and focuses on open discovery, where all B

terms connected to the term of interest A are pursued to

find a reachable set of concepts C, rather than closed dis-

covery where a connection is already suspected between

given terms A and C and only the linking terms, the B

terms, are sought.

The approach relies on the relations used – if the con-

nection between A and B is incorrect, or not significant

for single step LBD purposes (e.g. HAS PRECISE INGREDI-

ENT), the inferred connections will either not be mean-

ingful (in the first case) or novel (in the second case).

Automatically extracted relations lead to a large variation

in the quality and quantity of hidden knowledge gener-

ated depending on the type of relation used – for example,

Preiss et al. [9] show that refining the relation (for example

basing them on linguistic principles rather than simple co-

occurrence) significantly reduces the quantity of spurious

relations produced.We propose two evaluations: (1) using

the relations contained in the Unified Medical Language

System (UMLS) metathesaurus (which are manually iden-

tified), and (2) the employment of the SemRep system

[10] which automatically extracts subject-relation-object

triples (such as X treats Y ) from biomedical text using

underspecified syntactic processing and UMLS domain

knowledge.

The UMLS metathesaurus contains inter-concept rela-

tionships, both hierarchical (such as ISA or PART OF),

and associative (such as MAY TREAT or MAY DIAGNOSE).

The hierarchical relationships are not useful for interest-

ing single step LBD – for example if the UMLS contains

fish oil MAY TREAT Raynaud’s disease, proposing the

valid missing relation fish oil MAY TREAT Raynaud’s phe-

nomenon (arising from Raynaud’s disease ISA Raynaud’s

phenomenon) is not interesting. For both SemRep rela-

tions and UMLS relations, concepts related via ISA are

merged and other UMLS hierarchical or part of rela-

tions are not used as features. To remove (often disused)

infrequent relations a minimum number of occurrences

of each relation is also imposed (for example, a mini-

mum frequency of 10 reduces the number of 2010AB

UMLS relations to 35). SemRep relations are very simi-

lar to UMLS relations, producing triples such as cuiA MAY

TREAT cuiB. For the purposes of the A-B-C model, the

relation itself is unimportant for the purposes of the A-B-

Cmodel as it is disregarded at the LBD stage. The anomaly

model uses the most common relations for the input given

and thus is trained separately for each version of UMLS

and for each version of SemRep.

Filtering knowledge

The hidden knowledge proposed by an LBD system forms

basis for further investigation and clinical trials. It is there-

fore important that the most promising pieces of hidden

knowledge can be identified in a manner that does not

discard other, potentially useful, knowledge.

The following filtering options are employed: (1) the

automatic creation of stoplists from common linking

terms [11], (2) the removal of terms with a high outde-

gree, and (3) the restriction of relations to those useful for

LBD. The first two filtering options remove terms such

as clinical trial, while the third option removes relations

from UMLS that are not useful for single step LBD (for

example, A HAS PRECISE INGREDIENT B and A TREATS

C will give a potentially new connection between A and

C, but this is not an interesting connection) and nega-

tive relations (such as, NEG TREATS i.e. does not treat)

from SemRep.

Re-ranking and anomaly detection

To reduce the quantity of hidden knowledge pairs

returned to a user (e.g. UMLS 2014AB generates 5,748,834

pairs), an order can be imposed on the hidden knowl-

edge generated: this is often based on traditional ranking

approaches such as information measure, shared connec-

tions or semantic-knowledge based ranking [12]. As an

alternative, we suggest re-ranking based on an anomaly

detection algorithm, as this approach is highly suitable

for datasets with very small numbers of outliers (which

for LBD translate to interesting pieces of hidden knowl-

edge). It is frequently used in security, for example in

fraud detection, and it has been employed within natu-

ral language processing, for example for the detection of
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anomalous text [13] which has a similar premise to hidden

knowledge generated by an LBD system.

A number of approaches to anomaly detection exist,

starting from manually created rules which are con-

structed by experts and are therefore difficult to main-

tain, to machine learning techniques which can capture

correlations between features and make predictions with-

out needing labelled data, merely based on the fact that

outliers are rare. The quantity of data generated by an

unfiltered LBD system may dictate the chosen anomaly

detection algorithm as identification of anomalies fre-

quently takes place in RAM.

One-class support vector machine (SVM) [14] is a nov-

elty detection algorithm suitable for highly unbalanced

datasets. It extends the original SVM methodology so

that only the larger class (in this case the ‘uninterest-

ing’ knowledge) is used for training, and new data is

classified as either similar or different to the training

set. To avoid potential one-class SVM memory issues,

isolation forests [8] which have been shown to be sim-

ilarly useful for anomaly detection while maintaining a

small memory footprint are also explored. They exploit

the fact that attribute-values should be very different

for (the numerically small class of ) anomalies, and thus

when a decision tree is built these attribute-values should

appear close to the root of the tree. The approach par-

titions the data into smaller sections, builds decision

trees for these and uses path lengths within these to

identify outliers.

Aside from differing memory requirements, the two

approaches frame the problem differently: unlike isolation

forests, one-class SVM is a novelty detection algorithm –

new observations are classified as being within the reg-

ular set or not. Overall, outlier detection algorithms do

not assume the existence of a clean dataset for regular

data which fits better with the LBD premise than a typical

classifier.

Experiment set-up
Machine learning algorithms, including anomaly detec-

tion, use features to represent data in vector form and then

create models from these representations. Terms them-

selves can be valuable features: for example, before the

link was verified, Raynaud disease source term, fish oil

target term, and blood viscosity linking term should have

been identified as an interesting hidden connection based

on the terms alone. However, two difficulties present

themselves when terms are used directly: (i) a large num-

ber of terms would result in very long feature vectors,

for example UMLS 2017AB contains 3,640,131 distinct

terms, and training a machine learning algorithm with

such input without over-training would require very large

training corpora, (ii) not all terms are equal, for exam-

ple a linking term such as blood viscosity is more valuable

(for the identification of interesting knowledge) than

patient.

The first problem is addressed by observing that each

concept in UMLS is also assigned a broad semantic

type, such as Disease or Symptom or Clinical Drug.

Using these semantic types instead of terms directly

results in e.g. Raynaud disease – blood viscosity – fish

oil connection turning into Disease or Symptom as

source term, Pharmacologic Substance as target term,

with Physiologic Function as linking term (note that other

broad categories, such as word embeddings, could be

employed).

The solution to the second issue uses the fact that terms

can be weighted differently based on their importance

which can be propagated to their semantic types, and so

the feature vectors. Such a weighting can be provided by,

e.g., the PageRank algorithm [15] which assigns a value to

each vertex in a graph depending on the probability of a

random walk ending up there in a sufficiently large time.

Since UMLS concepts can be viewed as the vertices of

a graph, with the semantic network relationships as the

edges, the PageRank algorithm can be applied to all the

vertices to produce a numerical weight for each vertex

(and thus term).

For each proposed hidden knowledge pair A − C, there

is at least one linking term B1 such that the connec-

tions A − B1 and B1 − C are known. However, there

can be more than one linking term – we include the

number of linking terms as a features as we hypothesize

that it will be inversely correlated with interestingness

value.

To summarize, for a given candidate hidden knowledge

pair, A and C, with linking terms B1, . . . ,Bn, the chosen

features are:

1 n, the number of linking terms.

2 A ’s semantic type distribution (using A ’s PageRank).

3 C ’s semantic type distribution (again using C ’s

PageRank).

4 The distribution across semantic types of the

PageRanks of all LTs.

5 A distribution over the chosen connecting relations

between A and Bi and Bi and C (a sum of the Bi’s

PageRanks).

A visual representation of the features used can be

seen in Fig. 1. The feature vectors are sparse, particu-

larly the A and C sections: for example, all suggested

connections from Acetaminophen 2.71 MG/ML will only

contain its PageRank in the semantic type field corre-

sponding to Clinical Drug in the first 2–134 segment of

the feature array. However, separating the information

regarding source and target terms allows the system to

learn about useful combinations of these (such as A ∈

{disease or symptom} and C ∈ {clinical drug}).
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Fig. 1 Feature array for one hidden knowledge pair (metathersaurus relations from 2010AB)

Results and discussion
Since the knowledge generated by an LBD system is new,

there is no gold standard for evaluation. A widely accepted

method for evaluation of large scale systems is timeslicing

[16], which consists of selecting a date, generating hidden

knowledge from data prior to this date while creating a

gold standard from data after the cutoff date and compar-

ing the generated hidden knowledge to the automatically

created gold standard. Three separate cutoff dates are

required for these experiments: the anomaly detection

model is built from hidden knowledge generated from

information up to date1 with gold standard annotation

(outliers) annotated from information up to date2. The

trained model is then used to classify hidden knowledge

generated from information up to date2, and an evaluation

is performed against information up to date3. Note that

even though information up to date2 is used to classify

the data for the model, there is no overlap of the anomaly

detection model thus trained and the hidden knowledge

generated from date2. The UMLS results are presented in

Table 1 and include the size of the gold standard (|GS|),

the original quantity of hidden knowledge proposed (orig

|HK|) and the original F-measure (orig F). For UMLS, the

gold standard contains pairs appearing in UMLS date3
that did not appear in UMLS date2, while for SemRep

the gold standard corresponds to relations extracted from

PubMed abstracts between date2 and date3 that did not

appear in PubMed before date2. The pairs of results, the

quantity of hidden knowledge for the isoforest (iso |HK|)

and one-class SVM (one |HK|) and their F-measures are

also included. The results correspond to removal of the

following terms: (1) those with an outdegree exceeding

5000, or (2) occurring more than 10,000 times as link-

ing terms. Experiments with varying outdegree values

and common linking term frequency did not yield any

significant differences in performance and the chosen val-

ues were selected to ensure a reasonable model training

time. However, the performance (F-measure) improve-

ment with anomaly detection was significant for both

isoforest and one-class models (p = 0.018 for isofor-

est and p = 0.0015 for one-class using a paired t-

test), and the one-class model performed significantly

(p = 0.0094) better than the isoforest model. Com-

bined with the reduction in quantity of hidden knowledge

(which is frequently around factor of 5 for the isolation

forest model), these results show that anomaly detection

yields significant improvement over a straight forward

LBD model.

Discussion

While the F measure based on the anomaly detection

algorithm shows an improvement, it may still seem low.

However, this is not an unexpected value: e.g. Preiss and

Stevenson [17] obtain an F-measure between 1 × 10−03

and 3 × 10−03 for their large scale literature discovery.

Analysing the precision (and thus F measure), the options

for annotated outliers which do not appear in the gold

standard are:

1 The hidden knowledge suggested should appear in

UMLS but is missing.

2 The hidden knowledge generated has not yet been

discovered.

3 The hidden knowledge produced is incorrect.

Note that since the hidden knowledge is generated from

manually annotated UMLS relations, point 1 is ruled out.

Conversely, it is necessary to investigate pairs in the

gold standard which are annotated as normal (i.e. non

interesting) by the anomaly detection algorithms. A large

proportion of gold standard outliers classified as normals

Table 1 UMLS results showing F-measures and quantities of Hidden Knowledge from original, isolation forest and oneclass SVM

generation

Train - Test - Eval |GS| Orig |HK| Orig F Iso |HK| Iso F One |HK| One F

2006 - 2010 - 2013 10,237 2,104,116 0.0049 352,518 0.0055 1,986,652 0.0099

2007 - 2011 - 2014 8,851 1,914,307 0.0046 399,630 0.0068 1,800,667 0.0093

2008 - 2012 - 2015 5,476 2,094,190 0.0026 2,943 0.0045 1,964,551 0.0050

2009 - 2013 - 2016 9,040 3,547,949 0.0025 746,843 0.0030 3,407,363 0.0051

2010 - 2014 - 2017 24,772 5,748,834 0.0043 2,408,314 0.0048 5,434,823 0.0074
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corresponds to relationships between two concepts of the

same (or closely related) semantic type, such as:

A:Miconazole nitrate 2% cream, top (clinical drug)

C:Miconazole product (organic chemical and

pharmacologic substance)

Examples such as these are not interesting hidden knowl-

edge, however their appearance in the training data will

have an effect on the created models, and although this

example was not classified as anomalous, other examples

may be (and those may bemissing fromUMLS). The obvi-

ous refinement, removing pairs with identical semantic

types, would unfortunately also remove potentially useful

pairs, such as:

A: liver; inflammation (disease or syndrome)

C: chronic active hepatitis (disease or syndrome)

To avoid producing hidden knowledge between identi-

cal semantic types, Yetisgen-Yildiz and Pratt [5] suggest

restricting an LBD system to connections between disease

source terms and chemicals & drugs, genes & molecu-

lar sequence target terms, hypothesizing that it is more

likely that interesting connections will appear between

concepts of specific semantic types. However, restricting

the semantic types reduces the gold standard (and thus

also the training data) to unusable levels – the size of the

gold standard before and after (Y-P) restriction are shown

in Table 2.

As part of the model, isolation forest produces (100)

decision trees where leaf nodes appearing close to the root

of the tree represent outliers, while deep tree structures

show non outlier data. The trees also allow the decision

points to be examined: the most common decision points

are the expected A:disease or syndrome, C:disease or syn-

drome, LT:disease or syndrome, number of linking terms,

A:clinical drug, relation:associated_with, LT:finding, rela-

tion:may_treat, and C:finding.

At a first glance, an unexpected result is themuch higher

performance of one-class SVM over isolation forest: one-

class SVM is a novelty detection algorithm and thus seems

less suitable to the problem of identification of interest-

ing hidden knowledge than isolation forests. However, the

Table 2 The reduction in the UMLS gold standard when

Yetisgen-Yildiz and Pratt semantic type filtering is used

Train - Test - Eval Orig |GS| Y-P |GS|

2006 - 2010 - 2013 10,237 275

2007 - 2011 - 2014 8,851 486

2008 - 2012 - 2015 5,476 739

2009 - 2013 - 2016 9,040 235

2010 - 2014 - 2017 24,772 649

two are suited to different types of distributions (one-

class SVM being better with problems which are strongly

non-Gaussian), and have different parameter sensitivities.

While intuitively the data should be separable, and thus

an increase in performance is expected using anomaly

detection, the small quantity of training data containing

the most useful patterns is most likely to blame for the

small increase in performance – the hypothesis is vali-

dated, but much greater improvements are likely to be

seen with the technique if better training data is supplied

to the algorithm.

Similar results are obtained with automatic relations

from publications using SemRep. The most recent release

of the Semantic Medline database [18] (version 31_R,

to 31/12/2017) was used in a 2010 - 2014 - 2017, train

- test - eval, split and an isoforest F-measure improve-

ment of 0.0024 over an original F-measure of 0.0014

was observed (unfortunately the one-class SVM model

exceeds 125GB RAM and thus failed to train.). Again, the

gold standard (and therefore the training data) is rather

small at 5094 pairs of hidden knowledge and this is likely

the cause of the low F-measure. However, the anomaly

detection model is shown to also increase performance

when an automatic technique for relation extraction

is used.

Conclusions and future work
Literature based discovery, an automatic method to gen-

erate inferable connections from relations, suffers from

generating toomany hidden connections when performed

at scale. We apply one-class SVM and isolation forest

anomaly detection algorithms to a set of hidden connec-

tions to rank connections by identifying outlying (inter-

esting) ones and show that the approach significantly

increases performance (F measure) while reducing the

quantity of data passed on for manual verification. The

performance is explored using manually annotated rela-

tions contained in the UMLS, but similar results are also

shown to hold when an automatic relation extraction

method is employed.

We hypothesise that the performance could be

increased given a greater number of ‘interesting’ con-

nections in training data, and future work includes

optimization of the training, testing and evaluation splits.

Abbreviations

LBD: Literature based discovery; LT: Linking term; SVM: Support vector

machine; UMLS: Unified medical language system
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