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Abstract

We present an analytical model that unifies many of the inertial waves that have been recently observed on the
surface of the Sun, as well as many other modes that have been theoretically predicted—but have yet to be
observed—into a single family of mixed inertial modes. By mixed, we mean that the prograde- and retrograde-
propagating members of this family have different restoring forces and hence different behavior. Thermal Rossby
waves exist as prograde-propagating waves, while the high-frequency retrograde (HFR) wave is one example of a
member of the retrograde branch. This family of mixed modes has fully 3D motions that satisfy the anelastic form
of the continuity condition. As such, the horizontal velocity is both vortical and divergent with the later flow
component associated with a dynamically important radial velocity. The modes are differentiated by the number of
nodes in latitude, with the lowest latitudinal order corresponding to the traditional thermal Rossby wave of Busse,
the first latitudinal overtone to the mixed mode of Bekki et al., and the second overtone to the HFR wave
discovered by Hanson et al. There also exist infinitely more modes of higher latitudinal order whose frequencies
increase as the order increases. These higher overtones may correspond to many of the inertial modes that have
been recently identified by numerical eigenmode solvers.

Unified Astronomy Thesaurus concepts: Solar convective zone (1998); Solar interior (1500); Stellar oscillations
(1617); Internal waves (819); Astrophysical fluid dynamics (101); Hydrodynamics (1963)

1. Introduction

The recent detection of inertial waves on the Sun (e.g.,
Löptien et al. 2018) has renewed interest in such waves in the
solar context, as they are perceived as a potential diagnostic of
the solar interior, in particular the convection zone’s super-
adiabaticity (e.g., Gilman 1987; Gizon et al. 2021; Hindman &
Jain 2023). The number of distinct varieties of waves has now
begun to proliferate. The initial detection of sectoral equatorial
Rossby waves (Löptien et al. 2018; Hanson et al. 2020) was
quickly followed by critical-latitude and high-latitude inertial
modes (Gizon et al. 2021), and more recently the high-
frequency retrograde (HFR) waves (Hanson et al. 2022).

Recent efforts to characterize the HFR modes using
numerical eigensolvers have found predominately horizontal
motions at the surface and fully 3D motions in deeper layers.
The existence of a significant radial velocity component
distinguishes them from the highly toroidal equatorial Rossby
waves (Triana et al. 2022; Bekki 2024; Bhattacharya &
Hanasoge 2023). A further complication has arisen from the
studies of Triana et al. (2022) and Bhattacharya & Hanasoge
(2023), who report on a set of modes that are likely the n= 1
radial overtones of these HFR modes.

In addition to observational evidence, there are many inertial
waves that have only appeared in theoretical calculations and
numerical simulations. Prograde-propagating thermal Rossby
waves (e.g., Roberts 1968; Busse 1970; Calkins et al. 2013;
Hindman & Jain 2022) have long been predicted theoretically.
Low-frequency equatorially trapped waves for incompressible
fluids have been studied in the past (e.g., Bretherton 1964;

Matsuno 1966; Zhang 1993). More recently Bekki et al.

(2022b) identified a “mixed inertial mode” whose dispersion

relation spans both prograde and retrograde waves. When

prograde, the mixed mode corresponds to the thermal Rossby

wave of Roberts (Roberts 1968). When retrograde, the mode

possesses horizontal velocities that are reminiscent of a Rossby

wave with radial nodes. Bekki et al. (2022a, 2022b) dubbed

this mode mixed because it is akin to the mixed Yanai mode

(Gill 1982), which is an internal gravity wave when prograde

and a Rossby wave when retrograde.
Although equatorial Rossby waves in a stably stratified

atmosphere are reasonably well-understood, detailed studies of

inertial waves of all sorts in an unstable stratification are still

relatively sparse, and the nature of the wave cavities in the

Sun’s convection zone remains nebulous. Specifically, HFR

modes (Hanson et al. 2022) currently lack a convincing

theoretical explanation. Further, the origin of the restoring force

for the retrograde branch of the mixed mode of Bekki et al.

(2022a) is unclear. Presumably, there is a conservation of

potential vorticity principle that can be invoked, as there are for

equatorial Rossby waves and thermal Rossby waves, but the

principle has yet to be uncovered. Due to the structure of the

mixed mode’s horizontal flow field, Bekki et al. (2022a)

suggested that the mode is an equatorial Rossby wave with one

radial node. However, unlike an equatorial Rossby wave, the

mode appears to have significant vertical motion, and hence

this classification remains a conjecture. For this reason, Blume

et al. (2024) referred to the same mode that appeared in their

numerical simulations simply with the phrase retrograde

inertial mode. In this Letter, we propose that many of the

observed modes are a generalization of “mixed modes” (Bekki

et al. 2022a), all members of the same family with varying

numbers of nodes in latitude.
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The Letter is organized as follows. Section 2 gives a brief

description of the geometry of the solution domain. Section 3

provides the governing equations and the boundary conditions.

Section 4 focuses on the dispersion relation of the resulting

eigenmodes, while Section 5 presents their eigenfunctions.

Finally, a brief discussion and conclusions are provided in

Sections 6 and 7.

2. The Cylindrical Model

In Hindman & Jain (2022), we demonstrated that gravita-

tional stratification modifies the propagation of thermal Rossby

waves in two ways. First, the increasing pressure with depth,

coupled with the compressibility of the gas, provides a

compressional β-effect that leads to prograde propagation.

Second, the radial density stratification can naturally trap waves

generating a submerged wave cavity. How such waves are

trapped latitudinally is still poorly understood; however, in Jain

& Hindman (2023) we showed that when the inertial wave

propagates latitudinally, they can propagate in either zonal

direction, retrograde or prograde. When prograde propagating,

the waves are simply thermal Rossby waves with latitudinal

nodes. When retrograde propagating, the waves are some other

form of inertial wave. Here we demonstrate that each latitudinal

overtone is actually a mixed mode. The prograde thermal

Rossby waves smoothly transition to retrograde inertial waves

as the azimuthal order m passes through zero.
We accomplish this by adopting the same geometry as Jain

& Hindman (2023); we solve for inertial waves within a

cylindrical annulus that mimics an equatorial channel in a

sphere. The sphere is mapped onto the annulus by letting the

cylindrical radius r equal the spherical radius and letting the

cylindrical azimuth f equal the spherical longitude. Finally, we

map the axial coordinate of the cylinder y onto the spherical

latitude Θ through the relation y=ΘRe. The inner cylindrical

boundary is tangent to the base of the convection zone and the

outer boundary to the photosphere (at a radius of Re= 696

Mm). We adopt a depth D= 200Mm for the convection zone

and a height L= Re for the cylindrical annulus (see also Figure

4 of Jain & Hindman 2023). This millstone-shaped model

provides natural trapping in the radial coordinate r (through the

density stratification) and trapping by imposed boundary

conditions in the latitudinal coordinate Θ.
Since the top and bottom cross sections of the cylindrical

annulus are flat, our model lacks a topographical β-effect.
However, as we mentioned previously, the density stratification

within our model leads to a compressional β-effect. The

compressional effect dominates the topographical effect when

there are many density scale heights across the fluid layer

(Glatzmaier & Gilman 1981). With just over 10 scale heights

spanning the Sun’s convection zone, the topographical effect

should be secondary to the compressional effect.

3. Governing Equations and the Boundary Conditions

Purely for simplicity, we ignore the curvature terms that

appear in the fluid equations, and the resulting equation set

corresponds to those in an equatorial f-plane with boundaries in

latitude and radius. Within such geometry, Jain & Hindman

(2023) derived a radial wave equation and the corresponding

local dispersion relation for low-frequency inertial waves,
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where δP is the Lagrangian pressure fluctuation, ρ0(r) is the

atmosphere’s mass density, kr(r) is the local radial wavenum-

ber, and kc(r) is the acoustic-cutoff wavenumber. The density

scale height is denoted by H, the buoyancy frequency by N, and

the rotation rate by Ω. The wavenumbers kf=m/Re and

kΘ= λπ/L are the longitudinal and latitudinal wavenumbers,

respectively, and kh is the total horizontal wavenumber,

= +f Qk k kh
2 2 2. The quantities m and λ correspond to the

azimuthal order and the latitudinal order of the wave mode.
In the local dispersion relation (Equation (2)), the three terms

in the square brackets lead to radial propagation, with the first
two producing inertial waves and the last responsible for
internal gravity waves. The first of the inertial terms captures
the compressional β effect and is sensitive to the direction of
zonal propagation and to the density stratification. For prograde
waves (ω/kf> 0), the term is positive and enables thermal
Rossby waves. The second term in square brackets is
proportional to Qk

2 and hence is positive only when the wave
is latitudinally propagating. This term generates the traditional
inertial oscillations that require variation along the rotation axis
(e.g., Bryan 1889; Greenspan 1968; Rieutord & Valdettaro
2018). Such waves can be either retrograde or prograde
propagating. When prograde, this term modifies the cavity for
thermal Rossby waves by essentially adding an additional
restoring force.
If one considers a specific atmosphere and appropriate

boundary conditions in radius and latitude, Equations (1) and
(2) result in global eigenmodes. Jain & Hindman (2023)
considered a neutrally stable polytrope chosen to represent the
Sun’s convection zone. In such an atmosphere, the buoyancy
frequency is identically zero, N= 0, and the waves present are
purely inertial. The internal gravity waves are removed. We
found that in such an isentropic atmosphere, the governing
equation for atmospheric waves reduces to Whittaker's
equation, which has analytic solutions (see Hindman &
Jain 2022, 2023; Jain & Hindman 2023). For the millstone
model that we are using here, the solutions can be expressed
using Whittaker’s function  (see Abramowitz & Stegun
1968),
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where ω is the wave’s temporal frequency, ζ is a potentially

complex nondimensional depth,

z v= - -k R r2 1 , 5h
2

( ) ( )

2

The Astrophysical Journal Letters, 965:L8 (7pp), 2024 April 10 Jain, Hindman, & Blume



and the parameters κ, μ, and ϖ are defined through the

relations
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The parameter α is the polytropic index, which for a neutrally

stable atmosphere depends explicitly on γ, the gas’s adiabatic

exponent, α= (γ− 1)−1.
This solution (Equation (4)) has been constructed such that it

satisfies both radial and latitudinal boundary conditions. The
solution is regular at the photosphere, where r= Re (and
ζ= 0). Further, the solution satisfies Neumann boundary
conditions in latitude,
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With such a boundary condition, the latitudinal order takes on

nonnegative integer values, λ ä [0, 1, 2, 3,...]. In order to

satisfy an appropriate boundary condition on the inner cylinder,

one must choose the eigenvalue κ correctly. Through

Equation (6), this is equivalent to choosing eigenfrequencies.

We opt to apply a Dirichlet boundary condition at the base of

the convection zone, δP(r= Re−D)= 0. There are an infinite

number of radial overtones each with a different eigenfre-

quency ωn labeled by the radial order n, which indicates the

number of radial nodes in the eigenfunction for the Lagrangian

pressure fluctuation. Here, we will only explicitly consider the

radial fundamental n= 0 and the first radial overtone n= 1.
The components of the velocity can be derived from the

Lagrangian pressure fluctuation through differential operators.
In the low-frequency limit, where the waves have frequencies
that are much smaller than those of surface gravity waves (i.e.,
ω2

= gkf and ω2
= gkΘ), the differential operators reduce to

the following relationships:
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where g is the gravitational acceleration and uf, uΘ, and ur are

the three velocity components in the longitudinal, latitudinal,

and radial directions, respectively.

4. Dispersion Relation

It is clear from Equation (4) that the eigenfunctions consist
of a family of modes with varying numbers of nodes in latitude.
Figure 1 shows the eigenfrequencies as a function of azimuthal
order m for the five lowest latitudinal orders. For clarity of
presentation, only the radial fundamental modes (n= 0) and the
first overtone (n= 1) are illustrated. For reference, we also
mark the frequencies of equatorial Rossby waves with the gray
filled circles, using the theoretical dispersion relation
w = - Wm k R2 h

2 2
. Further, we have included the zero-

frequency geostrophic mode (horizontal gray line) that resides
within a neutrally stable atmosphere (see Hindman &
Jain 2022). Prograde waves are in the first and third quadrants

where ω/m> 0. Retrograde waves correspond to those in the
second and fourth quadrants where ω/m< 0. As such, the
dispersion diagram has reflection symmetry across the origin.
All of the modes that possess at least one node in latitude are

mixed, in the sense that the dispersion relation for a given
latitudinal order consists of both prograde and retrograde
solutions that smoothly join each other as m passes through
zero. The prograde branch has a wave cavity arising from the
first term in square brackets in Equation (2). The retrograde
branch has a different cavity produced by the second term in
the square brackets. The fundamental latitude mode (λ= 0)
lacks this property, as it lacks retrograde solutions. For λ= 0,
only the prograde branch exists, and it corresponds to the
thermal Rossby wave of Busse (Busse 1970).

5. Eigenfunctions

Using Equations (8)–(10), one can easily deduce that the
motions are anelastic,

r = 0, 11
u0· ( ) ( )

instead of incompressible (∇ · u= 0). Specifically, the hor-

izontal motions, Equations (8) and (9), consist of both a

vortical piece and a divergent piece. This is readily apparent in

Figure 2, which presents the horizontal flow field for three

distinct retrograde propagating eigenmodes, all with m= 2 and

n= 0, and with λ ranging from 1 to 3. The color image

underlying the vector field shows the radial vorticity ξr of the

corresponding mode, which can be shown to be directly

proportional to the latitudinal derivative of the Lagrangian

pressure fluctuation,
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Figure 1. Eigenfrequencies of inertial modes trapped radially and latitudinally
within a millstone-shaped equatorial channel. The dimensionless eigenfre-
quencies are plotted as a function of the azimuthal order, m. Different colors
correspond to different latitudinal orders, λ, as indicated in the legend. The
solid and dashed curves are for radial orders n = 0 and 1, respectively. The
horizontal gray line corresponds to the zero-frequency geostrophic mode. For
reference, we also show the frequencies of equatorial Rossby waves with the

gray filled circles, given by w W = - m k R2 h
2 2

. The modes with positive
zonal phase speed, ω/m > 0, propagate in the prograde direction, whereas
modes with negative phase speed ω/m < 0 are retrograde propagating.
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We have chosen not to illustrate the fundamental latitudinal

mode, λ= 0, because its eigenfunction is a constant function of

latitude, and the latitudinal velocity component and the radial

vorticity are identically zero everywhere.
Figure 3 presents the radial eigenfunctions for the zonal

velocity uf, the radial vorticity ξr, and the horizontal
divergence Δh. This latter quantity is directly proportional to
the radial derivative of the Lagrangian pressure fluctuation,

f
w
r

d
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Figures 2 and 3 clearly demonstrate that the radial vorticity and

the horizontal divergence have similar magnitudes. Further, as

expected, the number of nodes that appear in the eigenfunction

in latitude and radius is variable-dependent. For example, The

fundamental radial mode (n= 0) has zero nodes in latitude in

the radial vorticity ξr, the radial velocity ur, and the Lagrangian

pressure fluctuation δP. Whereas, the two horizontal velocity

components, uf and uΘ, and the horizontal divergence Δh each

have one radial node. Similarly, the first latitudinal overtone

(λ= 1) has one latitudinal node in the eigenfunctions for the

zonal velocity, radial velocity, horizontal divergence, and

Lagrangian pressure fluctuation, and zero latitudinal nodes in

the latitudinal velocity and the radial vorticity.

6. Discussion

6.1. A Unified Family of Mixed Modes

The central premise of this work is that the family of mixed
modes that we have identified encompasses a wide variety of
inertial waves that have been previously observed or
theoretically predicted. Our supposition is based on the

similarity in the eigenfrequencies, how those frequencies vary
with the azimuthal order m, the direction of propagation
(prograde versus retrograde), and the equatorial symmetry of
the eigenfunctions.
To illustrate our proposed unifying model, we provide a

summary in Figure 4. This figure provides a close-up view of
the dispersion relation for the radial fundamental n= 0 for

Figure 2. Arrows indicate the horizontal flow for three distinct modes as a function of longitude and latitude for a depth that is 2 Mm below the photosphere. The
underlying color image shows the radial vorticity component with red tones for positive vorticity and blue tones for negative. Each panel illustrates the mode with
azimuthal order m = 2 but for different latitudinal orders, as indicated to the right. All flow fields are clearly both vortical and horizontally divergent.

Figure 3. Radial eigenfunctions for an HFR mode (λ = 2) for an azimuthal
order m = 2 and for the radial fundamental n = 0. The eigenfunctions are
shown as a function of dimensionless radius, r/Re. The real part of the zonal
velocity (magenta curve) and radial vorticity (blue) are illustrated, whereas the
imaginary part of the horizontal divergence (green curve) is shown. Each
eigenfunction is scaled by the mass density ρ0 and the zonal velocity is further
scaled by the horizontal wavenumber kh so that it has the same units as the
other variables. The radial vorticity and horizontal divergence have similar
magnitudes but differing radial structures.
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Figure 4. Summary of the family of mixed inertial waves that we explore here and their identification with inertial waves as reported in a selection of previous studies.
We argue that many of the waves previously discovered through observations or through theoretical calculations, including the HFR mode, are simply latitudinal
overtones within the same family of mixed inertial modes. We have overplotted the observed frequencies of HFR modes (Hanson et al. 2022) with blue pluses and the
“mixed modes” of Bekki et al. (2022a) with red asterisks.
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various latitudinal overtones. In addition, we present several of

the previously identified inertial waves; we have overplotted

the observed frequencies of HFR modes (Hanson et al. 2022)

with blue pluses and the “mixed modes” of Bekki et al. (2022a)

with red asterisks.
Specifically, we propose that all prograde-propagating waves

are thermal Rossby waves. The lowest latitudinal order λ= 0

corresponds to the traditional thermal Rossby wave of Busse

(Busse 1970; Calkins et al. 2013; Hindman et al. 2020;

Hindman & Jain 2022) and the first latitudinal overtone (λ= 1)

to the thermal Rossby wave of Roberts (Roberts 1968; Bekki

et al. 2022a). Note that such waves do not require an unstable

stratification. The restoring force is purely the Coriolis force

and, in an unstable atmosphere, buoyancy only leads to

instability for short wavelength waves. The wavenumber,

which marks the transition from stable to unstable, depends on

the buoyancy frequency (see Hindman & Jain 2023). In the

limit of neutral stability, this transition wavenumber becomes

infinitely large and all wavelengths become stable.
On the retrograde side of the diagram, the first latitudinal

overtone (λ= 1) corresponds to the mixed mode identified by

Bekki et al. (2022a), the second overtone (λ= 2) to the HFR

wave discovered by Hanson et al. (2022), and the third overtone

(λ= 3) seems to correspond to the high-frequency, equatorially

symmetric mode reported in Bhattacharya & Hanasoge (2023).

Finally, we note that the frequency dependence for our λ= 2,

n= 1 overtone (see Figure 1) has similar behavior to the radial

overtone noted in eigenmode calculations by Triana et al. (2022)

and Bhattacharya & Hanasoge (2023). It is interesting to note

that this entire family of mixed modes is also present in 3D

dynamo simulations of the Sun’s convection zone and radiative

interior (Blume et al. 2024).
Note that the comparison in Figure 4 between our

analytically derived frequencies and those from observations

and numerical eigensolvers is qualitative as our assumption of

an f-plane geometry at the equator does not take into account

the curvature effects, which produce natural equatorial trapping

of the waves. Further, it is likely that the spatial extent of the

latitudinal cavity depends on the azimuthal order m, which our

simple model ignores. For example, the latitudinal turning

point for equatorial Rossby waves (which have spherical

harmonic eigenfunctions) depends on the ratio m/l, where l is

the harmonic degree. Finally, the inertial modes are all very

sensitive to the superadiabaticity of the convection zone, with

the relevant parameter being the ratio of the buoyancy

frequency to the rotation rate, |N|/Ω. For tractability, we have

adopted neutral stability; but, in reality, the upper portion of the

convection zone has a superadiabaticity that is probably

important, |N|>Ω.

6.2. Truly 3D Fluid Motions

Unlike equatorial Rossby waves, the modes that we explore

here have a significant radial component of the velocity. This

can be seen directly in Equations (8)–(10) where modes with

frequencies ω close to the rotation rate Ω, clearly have a radial

velocity comparable in magnitude to the horizontal compo-

nents. The relative importance of the radial velocity can also be

seen indirectly in Figures 2 and 3. Using the anelastic relation,

we recognize that the existence of the horizontal divergence

arises from a significant radial velocity component,

r
D = -

¶
¶
u

r
. 14h

r0( )
( )

The fact that the horizontal velocity field is both vortical and

divergent requires that the radial velocity is dynamically

significant.

7. Conclusion

Using a simple analytical model of a neutrally stable polytrope
in an equatorial f-plane geometry, we demonstrate the existence of
a family of mixed inertial modes. The prograde-propagating
branch corresponds to thermal Rossby waves and the retrograde-
propagating branch includes many waves that have been identified
previously in the literature. We suggest that many of the inertial
waves that have been either observed or found with numerical
eigenmode solvers, including the HFR mode, are in fact all
related, being latitudinal overtones mixed with the prograde
thermal Rossby waves. In summary, on the basis of our model,
we reckon that there are only two unique families of propagating
inertial waves in the solar convection zone: the equatorial Rossby
waves, which are primarily horizontal in motion, and a spectrum
of mixed modes that possess truly 3D motions.
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