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N E U R O S C I E N C E

Learning the sound inventory of a complex vocal skill 
via an intrinsic reward

Hazem Toutounji1,2,3
*, Anja T. Zai4,5, Ofer Tchernichovski6, Richard H. R. Hahnloser4,5†,  

Dina Lipkind7
*†

Reinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where 
sounding like one’s “tutor” is rewarding. However, what RL strategy generates the rich sound inventories for song 
or speech? We find that the standard actor- critic model of birdsong learning fails to explain juvenile zebra finches’ 
efficient learning of multiple syllables. However, when we replace a single actor with multiple independent actors 
that jointly maximize a common intrinsic reward, then birds’ empirical learning trajectories are accurately repro-
duced. The influence of each actor (syllable) on the magnitude of global reward is competitively determined by its 
acoustic similarity to target syllables. This leads to each actor matching the target it is closest to and, occasionally, 
to the competitive exclusion of an actor from the learning process (i.e., the learned song). We propose that a 
competitive- cooperative multi- actor RL (MARL) algorithm is key for the efficient learning of the action inventory 
of a complex skill.

INTRODUCTION

Animal behavior provides a unique opportunity for understanding 
evolutionary solutions to complex learning problems. One prime ex-
ample is learning the inventory of components for combinatorial vo-
cal skills such as speech sounds or birdsong syllables. In both humans 
and songbirds, the acquisition of vocal skills is thought to be sub-
served by a reinforcement learning (RL) mechanism (1–3), as evi-
denced by dopamine signaling (4–8). Dopaminergic neurons signal 
reward prediction error (RPE) by increasing or decreasing their firing 
rate when an appetitive outcome is respectively better or worse than 
expected (9–12). Similarly, in adult songbirds, dopaminergic projec-
tions to the basal ganglia signal whether aversive singing outcomes 
imposed by distorted auditory feedback are better or worse than ex-
pected (4). Such error signal coding is at the heart of many hypothe-
sized RL mechanisms of developmental birdsong learning (6, 8, 13).

The goal of RL is to maximize rewards, but internally motivated 
processes such as speech or birdsong learning readily occur in the 
absence of external rewards. Songbirds can successfully learn to 
imitate song recordings even in complete social isolation and with-
out any external feedback contingent on their performance (14–18), 
except for sensory feedback of their own song. Learning must there-
fore rely on intrinsically generated reward signals that are contin-
gent on the similarity between current and target performance. 
Namely, sounding like one’s “tutor” must be rewarding, and/or 
sounding dissimilar is aversive. However, it is not known what kind 
of RL mechanism and which form of intrinsic reward drive the ac-
quisition of an inventory of sounds necessary for performing com-
binatorial vocal sequences.

Here, we attempt to infer the intrinsic reward underlying the 
learning of a syllable inventory in zebra finches. We assess invento-
ry learning in terms of pitch, which zebra finches readily imitate 
(14, 18). Zebra finches have vocal combinatorial ability (17), despite 
typically singing a fixed syllable sequence. Juveniles learn the sylla-
ble inventory of their target song [a memorized song of an adult 
(19)] independently of syllable order, using a highly efficient 
“greedy” strategy (18). Namely, they make the minimal necessary 
changes to the sounds in their own vocal repertoire to match the 
syllables in the target song. This suggests a dedicated reward com-
putation for syllable inventory learning that is not contingent on 
sequential order. Our goal is to determine the functional form of 
the reward, namely, how it is contingent on the pitch similarity be-
tween the syllables a bird performs and the syllables in its tar-
get song.

We develop a multi- actor RL (MARL) model where independent 
RL actors control the performance of distinct syllables. Akin to 
multi- agent learning systems (20), actors maximize a common in-
trinsic reward by nullifying an RPE (4). We implement the greedy 
and order- independent learning observed in zebra finches by 
competitive- cooperative interactions among actors: (i) actors com-
pete over target syllables leading to each target being matched by the 
most similar actor and (ii) actors cooperate to maximize reward that 
increases in proportion to the number of matched targets. Such in-
teractions require a reward function that takes all possible pairwise 
actor- target comparisons into account.

We test our model against several computationally simpler alter-
natives on the task of simulating the empirical learning trajectories 
(18) of juvenile male zebra finches that are experimentally induced 
to learn new syllables. We find excellent agreement with data for a 
competitive- cooperative reward model that acts over short distanc-
es (between actors and targets) in pitch space. The model success-
fully predicts a competitive hierarchy between syllables and calls in 
an experimental test where we incite birds to exclude an existing 
syllable from a song and replace it with a call. We conclude by pre-
senting the predictions of our model for the responses of dopami-
nergic projections to the songbird basal ganglia during the learning 
of a vocal inventory.
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RESULTS

Vocal imitation of a single syllable best agrees with a 
light- tailed distribution of intrinsic reward
We started with a simple one- syllable learning problem: A juvenile 
bird learns to adjust the pitch of a single syllable to resemble a target 
syllable sung by an adult tutor (Fig. 1A). We modeled the learning 
system as an RL agent consisting of an actor and a critic. This agent 
attempts to maximize an intrinsically generated reward R that is in-
versely related to pitch difference Δ between the bird’s syllable and 
the target. The actor is a motor program that samples variable sylla-
ble instances P from an underlying pitch performance distribution 
parameterized by its mean S (Fig. 1B). After each instance, an intrin-
sic reward R is generated from a reward distribution that is centered 
on a perfect imitation of the target syllable T (Δ = 0). The actor is 
associated with a critic that expects maximal reward for renditions 
near the actor’s mean performance S; the critic computes the expect-
ed reward or quality Q from a distribution with the same functional 
form as the reward but centered at S. The actor learns by computing 
the difference between the received reward R and the quality Q. This 
difference δ = R − Q is the RPE thought to be encoded by dopami-
nergic neurons (4, 21). Learning is driven by minimization of the 
square RPE (Fig. 1C). Each syllable instance leads to an update ΔS of 
the actor’s mean performance S according to a simple iterative rule 
(Eq. 7; Materials and Methods). This update brings the quality Q of 
the instance closer to the actual reward R and makes S more similar 
to the target T (see Materials and Methods). Syllable instances in the 
vicinity of S almost always result in a negative RPE (fig. S1). That is 
because the critic expects maximal reward near S, whereas the actual 
reward is maximal only when S matches T. However, the RPE is 
larger (less negative) for instances on the target side of S than in-
stances on the opposite side, which is what shifts S toward T. By con-
struction, the RPE is zero, and learning stops when S coincides with T.

We estimated the shape of the pitch performance distributions of 
zebra finch syllables from published data (18) and found them to be 
Gaussian (see Materials and Methods). To estimate the distribution 
of the putative intrinsic reward R as a function of pitch difference Δ, 
we examined a continuum of hypothetical reward distributions 
R(Δ), which we modeled as a generalized normal distribution (22) 
with two unknown parameters: the shape β and scale ς (Fig. 1D; see 
Materials and Methods). The scale parameter ς determines the SD 
and, consequently, the width of the distribution. The shape param-
eter β produces a normal distribution for β =  2 as a special case. 
Smaller values (β < 2) correspond to heavy- tailed distributions, and 
larger values (β > 2) correspond to light- tailed distributions. Heavy- 
tailed reward distributions exert long- range influence over syllables 
at a large pitch difference from the target. Light- tailed distributions 
exert short- range influence, rewarding only syllables that are relatively 

similar to the target. While previous studies have proposed either 
short (23) or infinite range (3) of differences from a target that can 
affect syllable performance, the actual range is unknown.

We inferred the model parameters β and ς by fitting our actor- 
critic model to actual learning trajectories from syllable- matching 
experiments [part of which was previously published (18)]. Juvenile 
males were trained with artificial song tutors to shift the pitch of a 
syllable by two semitones to match a syllable in a tutor’s song 
(Fig. 2A) or to shift two syllables toward two different targets. In the 
latter case (five birds), we treated the syllables’ learning trajectories 
as independent of each other (a total of 13 syllables in eight birds). 
This task was accurately accomplished (Fig. 2B) regardless of wheth-
er the pitch was shifted up or down, which is consistent with our 
assumption that the intrinsic reward distribution is symmetrical. 
Three syllables (in two birds, fig. S2A) exhibited oscillating trajecto-
ries, which RL models cannot account for, and we therefore exclud-
ed these syllables from parameter inference. Because we were 
interested in whether reward functions are qualitatively sub-  or 
super- Gaussian, we evaluated fit quality as a function of β by fixing 
β to distinct values and inferring ς via maximum likelihood estima-
tion (MLE; n = 10 syllables in seven birds; Fig. 2C and fig. S2B; see 
Materials and Methods).

In 8 of the 10 trajectories on which model parameters were in-
ferred, light- tailed reward distributions (β = 4, 6, or 8) resulted in 
better fits [i.e., lower Bayesian information criterion (BIC) scores] 
than normal (β = 2) and heavy- tailed (β = 1) distributions (*P < 0.05 
and **P < 0.01, Benjamini- Hochberg corrected Wilcoxon signed- 
rank test on non- normalized BICs; Fig. 2D and fig. S2B). We ob-
tained similar results when we estimated β jointly with other model 
parameters (fig. S3A). BIC scores alone, however, are insensitive to 
overfitted models that fail to generalize to unseen data. Therefore, 
we also performed a bootstrap analysis by simulating multiple 
learning trajectories for each maximum likelihood estimate of β 
(Fig. 2E and fig. S2B). Light- tailed reward distributions resulted in 
improved goodness of fit [i.e., smaller root mean square error 
(RMSE)], between empirical and simulated trajectories in 6 of the 
10 cases (*P < 0.05 and **P < 0.01, Benjamini- Hochberg corrected 
Wilcoxon signed- rank test; Fig. 2F and fig. S3B); in 4 of the 10 cases 
in which the light- tailed model was not the best, the decrease in 
goodness of fit was small compared to heavy- tailed and normal 
models (Fig. 2G; thicker lines represent larger improvement by the 
best model compared to the second best). These results suggest 
that a light- tailed reward distribution guides the shift in syllable per-
formance toward a match with a target. Namely, a syllable instance 
triggers a nonzero intrinsic reward only if it is sufficiently similar to 
a target syllable. This solution is a special case of the multisyllable 
inventory learning problem that we turn our attention to next.

Fig. 1. Vocal imitation of a single syllable. (A) A juvenile male zebra finch adjusts the performance of a syllable (blue) to acoustically match its target—an adult “tutor’s” 

syllable (orange). (B) An actor- critic model for learning a syllable. (C) The motor program mean S is updated to minimize the mean squared RPe δ, which is at its minimum 

when S equals T (see eqs. 6 and 7 in Materials and Methods). (D) hypothetical intrinsic reward distributions modeled as a generalized normal distribution.
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Imitation of a multisyllable inventory best agrees with 
light- tailed reward distributions combined in a hierarchical 
sum- max operation
As a first step in modeling the learning of a multisyllable inventory, 
we investigated the respective roles of syllables and calls in learning. 
Birds use both syllables and calls in their vocal repertoire to match 
syllables in their target song (17, 18, 24), but previous findings (18) 
suggest that calls are only used in cases where there are more targets 
than syllables in a bird’s song. We reinspected previously published 
data and found that, when there are an equal number of syllables and 
targets, birds used syllables to match targets even when there were 
acoustically closer calls in their repertoire (Fig. 2H). We therefore de-
cided to model inventory learning as a hierarchical process that 

prioritizes syllables over calls: A call that is similar to a target will be 
ignored when a less similar syllable is also present within reward range.

Next, we set up to extend our reward model for learning a single 
target (Fig. 1, B and C) to the parallel learning of multiple targets 
(taking into account both syllables and calls in the bird’s repertoire; 
Fig. 3A). For that purpose, we used the inferred reward distribution 
contingent on the pairwise pitch difference between a syllable and a 
target (Fig. 2) as a functional component (or a basis function); we 
defined a global inventory reward R as a function of all reward com-
ponents Rij associated with pairing target i with syllable (or call) j 
(Fig. 3B). This approach allowed us to generalize the model from 
single to multiple targets without introducing any new model pa-
rameters.

Fig. 2. Vocal imitation of a single syllable best agrees with a light- tailed distribution of intrinsic reward. (A) A syllable- matching experiment: A bird that has learned 

a two- syllable song AB is induced to learn a new song, AB±2. The pitch of syllable B±2 is two semitones above or below that of B (an AB → AB+2 experiment is shown). 

(B) left: learning trajectory of a bird trained with the task in (A), showing the median pitch of consecutive instances of syllable B after the presentation of the new tutor 

song (day 0). Right: learning outcomes in all birds trained with two- semitone pitch shifting tasks, showing pitch distributions [median ± 95% confidence interval (ci)] at 

the start point and end point of learning for each shifted syllable. Gray shading denotes three syllables excluded from parameter estimation. (C) left: inferred mean pitch 

shifting trajectories fitted with maximum likelihood estimation (Mle) to the learning trajectory of the bird in (B, left), assuming reward distributions with different values 

of β. Right: Zoom- in on the learning part of the trajectory. (D) Bayesian information criterion (Bic) [arbitrary units (a.u.)] for each syllable trajectory, assuming reward dis-

tributions with different values of β (dashed lines connect same- syllable data; n = 10). Bic scores are normalized such that 1 corresponds to the worst and 0 to the best fit. 

(E) Observed (black) and bootstrapped (color) pitch trajectories of the pitch- shifted syllable shown in (B, left). Shaded area represents median ± 50% ci of simulated tra-

jectories. color gradient represents bootstrap density. (F) RMSe between observed and bootstrapped learning trajectories (dashed lines connect same- syllable data; open 

circles represent the RMSe of the best reward model per syllable). (G) Best (smallest RMSe) reward distribution for each empirical learning trajectory. (H) Two examples of 

a syllable that shifted to match a target although a call was initially closer. st, semitones.
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The global reward function R must reproduce the context- 
independent and greedy syllable learning trajectories observed in 
zebra finches. Context independence with respect to target positions 
can be achieved via the sum operation due to its associative prop-
erty (a sum does not depend on the order in which the summands 
are added, i.e., it is permutation insensitive). Greedy matching of 
targets by syllables can be achieved by the maximum operation 
(which ignores all values smaller than the maximum). Accordingly, 
we constructed the inventory reward R as a sum- max operation 
over pairwise reward components Rij (Fig. 3B): Namely, it is a sum 
R = ∑i Ri of partial rewards, where the partial reward Ri = maxj Rij 
associated with target i is given by the maximal pairwise reward that 
can be obtained for that target, i.e., it is computed with respect to the 
most acoustically similar vocalization. To implement the prioritiza-
tion of syllables over calls, the maximum operation in our model is 
a hierarchical two- stage process: In a first stage, the maximum is 
taken over syllables, and, if no syllable is within the reward range, 
then, in a second stage, the maximum is taken over calls (see Materi-
als and Methods and fig. S4A). Note that such a two- stage maximum 
operation can naturally emerge from a light- tailed reward compo-
nent because the latter approximates a decision- making process 
driven by reward being either inside or outside some range. In con-
trast, normal and heavy- tailed models are less binary in nature and 
so an explicit decision- making step would be required to implement 
a prioritization of syllables over calls.

The inventory reward R is delivered to a group of actors (each as 
in Fig. 1B), one actor per vocalization type (syllable or call; Fig. 3B). 
Actors produce vocalizations independently of each other, and each 
learns to adjust its mean performance based on the identical reward 
R that they receive. We assume that reward R is delivered after each 
syllable or call instance (rather than at the end of a song) and that 
partial rewards Ri are computed with respect to the syllable or call 
instance just performed Pj and the means S (i.e., motor memories) 
of the other syllables and calls in the bird’s current inventory (see 
Materials and Methods and fig.  S4B). Upon production of an in-
stance, an actor learns from the RPE that is defined as the difference 
between the inventory reward R and an expected reward Q com-
puted by this actor’s critic (see Eq. 11 in Materials and Methods). By 
construction, the RPE is zero, and learning stops when each target is 
matched by an actor’s mean.

To test our model, we used data of a published set of multisyllable 
learning experiments (18), where juvenile males were induced to 
learn two new targets. Both new targets resembled a single syllable 
in the birds’ song (i.e., were pitch- shifted by two semitones up and 
down from that syllable; Fig. 4A) but were either at a corresponding 
or at a non- corresponding position in the target motif. Birds pre-
dominantly shifted the pitch of the syllable to match one of the new 
targets, regardless of whether it was at the corresponding serial posi-
tion in the motif or not and recruited a call to match the other target 
(7 of n = 8 birds; Fig. 4B and fig. S5A). Consistent with a prioritiza-
tion of syllables over calls, the song syllable shifted toward the target 
to which it was more similar (fig. S5, A and B, left), while the call 
shifted to the other target, even when it was more similar to the tar-
get matched by the syllable [three of the eight cases; fig. S5, A and B, 
right; these findings were not published in (18)].

Although these data were collected before formally developing 
the model, the data were not used for parameter estimation (Fig. 2). 
We therefore used these data to test our model and compare it to 
alternatives (see below). We compared simulated and empirical 
learning trajectories (as in Fig. 2E), in terms of both learning end 
point and trajectory shape. We compared simulated learning trajec-
tories generated by light- tailed, normal, and heavy- tailed variants of 
the model (with model parameters as inferred in Fig. 2, except for 
the performance distributions’ initial means and daily variances that 
we estimated in each bird separately; Fig. 4C and fig. S5C, left and 
middle). The light- tailed model was significantly better at matching 
the empirical trajectories (P < 0.01, Benjamini- Hochberg corrected 
Wilcoxon signed- rank test; Fig. 4D, left, and fig. S5D), including the 
replication of a failure of a bird to match one of the targets (Fig. 4, E 
and F). In that bird, the performance distribution of the song sylla-
ble is relatively narrow and, consequently, lies outside the range of 
light- tailed reward distributions but is within the ranges of normal 
and heavy- tailed distributions. Therefore, only the light- tailed dis-
tribution correctly predicts the failed shifting of the syllable in this 
bird (Fig. 4F, top).

The light- tailed variant of our MARL sum- max model produces 
good fits with empirical data, but a sum- max reward is computa-
tionally intense, requiring all possible pairwise similarity evalua-
tions at each step. We tested two alternative reward models to see 
whether simpler reward computations can provide comparable 

Fig. 3. Vocal imitation of multiple syllables. (A) learning a multisyllable inventory, driven by a putative intrinsic scalar inventory reward R, which depends on the pair-

wise pitch differences Δij between the learner’s vocalizations (syllables and calls) and the targets provided by a tutor. (B) A hypothesized computation of inventory reward 

R from pairwise light- tailed reward components Rij (circles) that are contingent on syllable- target (or call- target) pitch differences. The reward R is the sum of partial re-

wards Ri computed for each target Ti via a hierarchical max operation over pairwise reward components. inhibition (curved lines) among pairwise reward components 

leads to competition among actors and inhibition from syllables onto calls leads to prioritization of syllables over calls.
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results. First, we tested a sequential- order–dependent (SOD) model, 
previously proposed by Fiete and colleagues (3) (see Materials and 
Methods). In the SOD model, the reward delivered after each vocal-
ization instance is a function of the similarity between that instance 
and the temporally aligned target (rather than of all possible pair-
wise similarities). In addition, target syllables have an infinite range 
of influence, i.e., they can attract even very dissimilar vocalizations. 
This is achieved via a binarized reward with an adaptive threshold 
that guarantees equal numbers of rewarded and unrewarded in-
stances at any pitch distance from a target (3). In contrast to the 
MARL sum- max model, which made the correct (empirically ob-
served) assignment of syllables to targets in eight of the eight cases, 
the SOD model succeeded in three cases only (Fig. 4D, right, SOD 1 
model). The context- dependent evaluation algorithm in the SOD 
model led to an incorrect assignment of temporally aligned targets 

in four cases where birds shifted a syllable to a misaligned target, 
while the binarized reward computation did not predict the ob-
served failure of one bird (Fig. 4E) to shift a syllable to a target. In 
total, the SOD model resulted in a large simulation error in five of 
the eight birds, compared to near zero simulation error with the 
MARL sum- max model. We also tested a variant of the SOD model 
with a light- tailed reward computation, which correctly predicted 
the case of failed shifting, but did not predict the matching of mis-
aligned targets, resulting in very large errors in four of the eight 
birds (Fig. 4D, right, SOD 2 model; see Materials and Methods).

Next, we tested a reward model, which like the MARL sum- max 
model, is context- independent and competitive, but where, instead 
of actors competing over targets, the targets are competing over ac-
tors [a max- over- targets (MOT) model]. In the MOT model, instead 
of selecting the most acoustically similar actor for each target, we 

Fig. 4. Imitation of a multisyllable inventory best agrees with light- tailed reward distributions combined in a hierarchical sum- max operation. (A) example of a 

multisyllable matching experiment, in which a bird that has learned a two- syllable song AB is induced to learn a new song with two new target syllables B+2 and B−2, with 

pitch two semitones above and below that of B, respectively. The bird’s repertoire includes song syllables and calls. (B) Top: Pitch trajectory in one bird trained with the 

task in (A). Bottom: Results across birds (n = 8), showing pitch distributions at start point and end point of learning. (C) Bootstrapped pitch- trajectory distributions of the 

call (top) and syllable (bottom) of the bird shown in (B, top). Median ± 50% ci are shown for the light- tailed (shaded), normal and heavy- tailed reward models. (D) left: 

RMSe between experimental and bootstrapped syllable learning trajectories. Right: comparison of the end- point simulation error between the MARl sum- max model 

with light- tailed reward (filled green circles) and two SOd models that follow the song learning approach proposed by Fiete and colleagues (3). (E) Pitch trajectories of 

song syllable B and call in a bird that failed to match one of the targets [bird 5 in (B), bottom]. (F) Same as (c) for the bird shown in (e).
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select the most acoustically similar target for each actor, so that each 
actor ends up matching the target that is most similar to it. This 
model is computationally simpler than the MARL sum- max model, 
because each step involves only the pairwise comparisons between a 
given actor and each of the targets, rather than all possible compari-
sons. However, the MOT model would not ensure that all targets are 
matched in cases where a target is not closest to any syllable or call. 
We therefore tested model predictions in two cases where the sylla-
ble and the call start points were closer to the same target and were 
both within the reward range of both targets (birds 1 and 3; fig. S5C, 
right). We ran simulations of the MOT model using heavy- tailed, 
normal, and light- tailed reward components as before. In each case, 
the MOT model predicted that the call and syllable will match the 
same target, contrary to the empirical data (97 and 55% of simula-
tions with light- tailed MOT model compared to 9 and 5% for the 
light- tailed MARL sum- max model). In summary, a MARL sum- 
max reward model with light- tailed components significantly 
outperformed computationally simpler models in reproducing 
empirical multisyllable learning trajectories.

Light- tailed sum- max intrinsic reward predicts the exclusion 
of a syllable from a song and its replacement with a call
The case of a bird failing to match a target (Fig. 4E) raises an inter-
esting question: What happens when there is a target that does not 
have any syllables in its reward range, and a syllable that is not with-
in the reward range of any target? In such a case, our model predicts 
that the syllable would not shift from its mean (and in effect be 
dropped from the learning process) and that a nearby call could 
shift to the unoccupied target (because there are no syllables in that 
target’s reward range). We reinspected the data of the bird shown in 
Fig. 4E to search for a call performed in the acoustic vicinity of the 
unmatched target but found that no such call was present. Never-
theless, the possibility of a song syllable being left out in favor of a 
call triggered our interest, and we decided to further investigate this 
prediction of our model.

We presented juvenile male zebra finches (n = 6) with a learning 
task in which one syllable in the target song is shifted up or down by 
four semitones with respect to a syllable in the bird’s current song 
(AB → AB±4; Fig. 5A). In this experimental situation, there is a sin-
gle off- target syllable in the bird’s song, B, and a single unmatched 
target in the tutor song, B±4, but the two are separated by a relatively 
large pitch difference. A hierarchical sum- max reward computation 
based on light- tailed components predicts that song syllable B is 
outside the reward range of the target syllable B±4 (fig. S6A) and, 
therefore, that it will not shift to match the target (Fig. 5B, top). Con-
sequently, if the bird’s repertoire happens to contain a call C that is 
within the reward range of the target, then the call will shift to match 
it instead (Fig.  5B, bottom). In contrast, normal and heavy- tailed 
versions of the model predict that song syllable B is within the re-
ward range of a four- semitone–shifted target and, therefore, will 
shift to match it, even if there is an acoustically closer call in the 
bird’s repertoire (Fig. 5B, middle and bottom), because syllables are 
prioritized over calls.

None of the six experimental birds shifted song syllable B toward 
target B±4 (Fig. 5, C and D, and fig. S6B). In five of the six birds, B±4 
was instead matched by a call (or another sound originally per-
formed outside of the song motif), which was initially acoustically 
closer to the target (e.g., Fig. 5D, birds 2 and 3). In all five cases, the 
call was fully or partially incorporated into the song motif (Fig. 5E), 

replacing song syllable B. This was evident from an increase in the 
frequency of transitions between the call and motif syllables and a 
concurrent decrease in the frequency of transitions between song 
syllable B and other motif syllables (Fig. 5F; P = 0.0625, Wilcoxon 
signed- rank test; cf. fig. S3F). In addition, the performance rate of 
syllable B decreased significantly (n  =  6, P  =  0.0312, Wilcoxon 
signed- rank test), while call performance increased in three of the 
five birds (Fig. 5G), with two of the birds stopping performing syl-
lable B altogether (bird 2, Fig. 5D; and bird 5, fig. S6B). We conclude 
that syllable B was functionally dropped from the song motif, and its 
function was transferred to a call. In the single case where no call 
shifted to match target B±4, the bird continued performing syllable 
B at the original pitch but at a lower rate (bird 4, Fig. 5D).

We tested how well a light- tailed sum- max model fits empirical 
learning trajectories, compared to normal and heavy- tailed models, 
by simulating learning trajectories of both syllables and calls 
(Fig.  5H and fig.  S6C). All simulations used previously estimated 
parameters (Fig.  2), without further adjustments to the new data 
except for the performance distributions’ initial mean pitches and 
daily variances that we estimated in each bird separately. The light- 
tailed model was superior to normal and heavy- tailed model vari-
ants, returning smaller errors between simulated and empirical 
learning trajectories in five of the six birds (#: 0.05  <  P  <  0.1, 
Benjamini- Hochberg corrected Wilcoxon signed- rank test; Fig. 5I 
and fig. S6D) and replicating the failure of the bird that did not have 
a call at the acoustic vicinity of the B+4 target to accomplish the 
learning task (bird 4, Fig. 5H). Note that under normal and heavy- 
tailed models, the syllable and the call can converge to the same tar-
get, which is possible when two actors are within the reward range 
of a single and common target (also see Discussion).

In summary, the experimental outcomes support the predictions 
of a light- tailed sum- max reward computation with prioritization of 
syllables over calls. These results demonstrate a unexpected feature of 
vocal learning in zebra finches, which is a direct consequence of a 
competitive and light- tailed reward computation: An intrinsic re-
ward is not necessarily contingent on all syllables that a bird is per-
forming but only on those syllables that are sufficiently similar to at 
least one syllable in the target song. Syllables that are too dissimilar to 
contribute to the reward computation end up being dropped (fully or 
partially) from the song motif. These findings underscore a consider-
able modularity and flexibility of zebra finches’ developing songs and 
raise the interesting question of the adaptive value of such modular 
vocal development in birds’ complex natural social environment.

The light- tailed sum- max model makes testable predictions 
of dopaminergic neuron tuning in the VTA during learning 
of a syllable inventory
The intrinsic inventory reward in our model is fed into a compu-
tation of the RPE δ, which tracks deviations from expected re-
ward (Fig. 1B and Materials and Methods). Assuming that δ is 
proportional to the putative firing rate of dopaminergic neurons 
projecting into the avian song system, our model provides predic-
tions for dopaminergic firing in juvenile birds learning a multisyl-
lable inventory (Fig. 6). We present our model’s predictions in a 
juvenile bird at the onset of learning in each of our three experi-
mental scenarios: learning a single target syllable shifted by two 
semitones from a syllable in the bird’s song (Fig. 2A), learning two 
different two- semitone–shifted targets (Fig.  4A), and learning a 
four- semitone–shifted target (Fig. 5A).
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Fig. 5. Light- tailed sum- max intrinsic reward predicts the exclusion of a syllable from a song and its replacement with a call. (A) A syllable- matching experiment 

testing the prediction of a syllable being excluded from the song (an AB → AB+4 experiment is shown). The bird’s repertoire includes song syllables and calls. (B) Predic-

tions of light- tailed, normal, and heavy- tailed versions of a MARl sum- max reward model for the experiment in (A). Top and middle: The bird’s repertoire only includes 

syllables (dark gray). Bottom: The bird’s repertoire also includes calls (light gray) (C) Results across birds (n = 6) trained with the task in (A). (D) Pitch trajectories of three 

experimental birds. (E) Stack plot of consecutive instances of a call that shifted to match the target B−4 in bird 2 in (d). colors, pitch in call instances. Grayscale, Wiener 

entropy in neighboring syllables. Sonograms show examples of the call performance at experiment start (bottom) and end (top). The call, initially performed outside the 

song motif (bottom), was incorporated into the song (top). (F) left: Performance frequency of bigrams containing song syllable B and other motif syllables (% of total bi-

grams) at the start and end point across birds. Right, same as left for the call. (G) Performance frequencies of syllable B and the call (3- day average of total syllables per-

formed) at the start and end point across birds. (H) Bootstrapped pitch- trajectory distributions of the syllable and call (two of the three birds) of the birds shown in (c). The 

shaded area represents the median ± 50% ci and is shown for the light- tailed reward simulations only. Only the median is shown for the heavy- tailed and normal reward 

simulations. (I) RMSe between experimental and bootstrapped syllable learning trajectories.
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In the case of learning a single two- semitone–shifted target 
(Fig. 6A), the light- tailed reward model predicts selective tuning of 
ventral tegmental area (VTA) neurons to pitch values at the target- 
adjacent tail of the performance distribution (i.e., target selectivity) 
so that syllable pitch is driven in the direction of higher firing rate, 
i.e., smaller deviation from the target. However, target selectivity is 
restricted to a small range of pitch values at the tail, where the per-
formance distribution overlaps with the light- tailed reward distribu-
tion. This means that VTA tuning is mostly insensitive to variations 
in pitch difference Δ between syllable and target pitch. This is con-
sistent with reports of weak sensitivity of VTA response to the mag-
nitude of negative RPEs upon external reinforcement (4, 25, 26), 
which comes here as a direct consequence of the intrinsic light- 
tailed reward. The heavy- tailed and normal reward models also pre-
dict target selectivity of VTA neuron responses but fail to account 
for insensitivity to variations in Δ.

In the case of learning two different two- semitone–shifted tar-
gets T1 and T2 (Fig. 6B), VTA tuning is expected to depend not only 
on the performance distribution of the now sung syllable but also on 
the distributions of other syllables (or calls) in a bird’s repertoire: 
When a single syllable S1 is at a distance of two semitones from both 
targets, the absence of competing syllables (i.e., of syllables that are 
within the reward range of one of the targets) would result in a sym-
metric VTA tuning (although in practice, a syllable would always be 
slightly closer to one of the targets, resulting in a slight asymmetry). 
In contrast, a competing syllable S2 proximal to one target, e.g., T1, 
would break this symmetry, rendering the VTA neuron more selec-
tive to the other target T2 by firing more following instances of S1 in 
the vicinity of T2 than instances in the vicinity of T1.

In the case of a four- semitone target (Fig. 6C), the light- tailed 
reward model (in contrast to the heavy- tailed and normal reward 
models) predicts lack of target selectivity due to the reward being 
practically zero. This would lead to the syllable pitch drifting ran-
domly around its mean (Fig. 5, B and D). Note that the zero- reward 
implies that the RPE δ ≈ −Q, which means that the firing rate in-
creases slightly with increased distance from the mean.

Last, when a syllable matches a target (Fig. 6D), i.e., in adult birds 
that have learned their song, the model predicts a flat pitch tuning 

curve due to absence of RPE. In reality, however, small pitch fluctua-
tions (27) are predicted to lead to the emergence of inverted- U tun-
ing because the intrinsic reward decreases away from the target.

In summary, our model predicts that the syllable- related (or call- 
related) tuning of VTA neurons depends dynamically on the pitch 
difference between the vocalization and the target it is closest to. 
This leads to both asymmetric (Fig.  6, A and B) and symmetric 
(Fig.  6, B to D) tuning curves in dopaminergic neurons, and the 
symmetric curves can be either concave (Fig.  6C) or convex 
(Fig. 6D). Asymmetric and inverted- U tuning curves as in Fig. 6 (A 
and D) have been reported in adult birds (21), but our predictions 
on tuning in juveniles including the dependence on multiple proxi-
mal syllables and calls (Fig. 6B) remain to be explored.

DISCUSSION

Our work shows that an inventory of actions underlying a combina-
torial behavior—birdsong—can be learned by a set of independent 
RL actors in a self- reinforced manner from an intrinsic scalar re-
ward. By fitting alternative RL models to empirical developmental 
trajectories, we were able to infer and test the properties of this in-
trinsic reward, rejecting SOD models in favor of a greedy and 
context- independent model with light- tailed reward components. 
We tested the prediction that such learning algorithm can lead to 
the dropping of song syllables and the recruitment of calls instead. 
The model makes testable and detailed predictions for the activity 
patterns of dopaminergic neurons in the songbird brain during 
learning (Fig. 7A).

Our model assumes independence on three separate levels: 
among actors in the action system, among critics in the value system 
(see Materials and Methods), and among reward components in the 
reward system. We believe that the independence and modularity 
among actors, critics, and partial rewards promotes the expansive-
ness and flexibility of inventory learning, making it easily scalable. 
Adding a target to the inventory turns into the simple problem 
of computing its associated reward and summing it up with the 
other partial rewards. The same goes for the removal of a target, 
which translates into elimination of that partial reward from the 

Fig. 6. The light- tailed sum- max model makes testable predictions of dopaminergic neuron tuning in VTA during learning of a syllable inventory. (A) Predicted 

vTA tuning as a function of pitch in the case of a target shifted by two semitones with respect to a song syllable. Green, theoretical (solid line) and simulated (filled circles) 

vTA tuning predicted by a light- tailed reward. dashed lines, theoretical vTA tuning predicted by the heavy- tailed reward (yellow) and normal reward (magenta). (B) Pre-

dicted vTA tuning in the case of two targets and light- tailed reward. (C) Same as (A) for a four- semitone–shifted target. vTA neuron simulations in (A) to (c) are based on 

2000 pitch values drawn from a normal performance distribution (gray shading) with a typical Sd at the onset of learning (σB = 0.35 semitones). Firing rates, averaged in 

bins of size 0.5σB, are in the range 1 to 10 hz, where the higher end corresponds to the on- target, baseline firing rate. The hypothetical neuron emits Poisson spikes at a 

rate that scales linearly with RPe within a 150- ms window, beginning 50 ms after syllable onset. Baseline shows means ± SeM. (D) Predicted vTA tuning when a syllable 

matches a target, but the mean syllable pitch continues to drift slowly around the target due to circadian variations. The simulated vTA tuning (circles) predicted by a 

light- tailed reward is well fitted by a parabola (green line). Absence of pitch drift would result in a flat tuning (gray line). Simulation details as in (A) to (c).
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computation. The flexible goals that this architecture supports may 
be an evolutionary adaptation for coping with changing targets in 
a dynamic environment and could explain the ability of juvenile 
zebra finches to combine syllables from multiple tutors under natural 
breeding conditions (28). Moreover, our findings raise the possibility 

that the similarity between sung syllables and syllables a juvenile 
bird hears from others might be one of the factors that determine 
which tutors a juvenile will learn from. For example, a syllable that 
is dissimilar to any syllable of one tutor (which in our study birds 
tended to perform less or to drop altogether; Fig. 5) might in a 
more natural social environment shift toward a target in another 
tutor’s song.

Computationally, however, a greedy and context- independent 
sum- max reward seems dauntingly complex, especially in compari-
son to previous actor- critic models (2, 3), which assumed that syl-
lables are learned within the sequential context of the song motif 
rather than independently of it [but see (29)]. In principle, com-
pared to the simpler SOD and MOT models, a MARL sum- max 
reward circuit (Fig. 3B) needs to perform all possible pairwise com-
parisons at each time step (Fig. 7, B to D), a total of N × M maxi-
mum operations per song motif, each over a set of N terms (for M 
targets and N syllables/calls). Although this seems like a daunting 
number for large inventories, the computation is quite manageable 
in practice, because, among these N2  ×  M terms, only at most 
2N × M are distinct—the N × M terms comparing the targets with 
now sung syllable instances and the N × M terms comparing the 
targets with the means Sj (and Cj) of the motor programs for sylla-
bles and calls not now sung. Furthermore, because the pairwise 
comparisons are subserved by light- tailed reward distributions, the 
seemingly many terms in the inventory reward computation may 
further boil down to only a few nonzero ones associated with proxi-
mal syllable- target pairs. Thus, light- tailed reward distributions may 
promote efficiency.

In terms of neural architecture, a sum- max reward circuit can be 
implemented by a matrix- like network of N × M pairwise compara-
tor neurons (each neuron corresponding to one pairwise reward 
component; Fig. 3B). These neurons would have light tailed tuning 
curves, meaning that they would be tuned to small mismatches be-
tween a syllable and a target but would be unresponsive to large mis-
matches. Biophysically, each pairwise comparator neuron would 
represent information about a target syllable Ti and the mean of a 
motor program Sj (or Cj) either in terms of its neural activity, the 
synaptic inputs that it receives, or the strength of its synapses. In ad-
dition, comparators would receive auditory input Pj corresponding 
to feedback from a syllable instance just sung, which would replace 
the representation of the syllable’s mean performance Sj. To imple-
ment the sum- max computation, the comparator neurons could be 
arranged in parallel winner- take- all modules, each of which com-
putes a max operation with respect to a target via inhibitory syn-
apses, followed by an output summation to obtain the inventory 
reward R (Fig. 3B). All these computations are feasible with neural 
networks.

Where would this putative sum- max reward network, and the 
actors and critics that learn from it, reside in the songbird brain 
(Fig. 8)? The comparator network computing the inventory reward 
R and the critics which compute the expected reward Q for each ac-
tor must reside upstream of VTA where the difference between 
these two signals (the RPE δ) is computed (4). Candidate sites for 
the inventory reward network are the ventral pallidum (VP) and its 
afferents, given that VP input to VTA is of positive valence (30) and 
therefore acts like the inventory reward R on δ [although another 
study found mixed signals in VP (31)]. The critics would be located 
in the ventral intermediate arcopallium (AIV) and its afferents, 
given that AIV input to VTA (32) is of negative valence (30) and so 

Fig. 7. A data- driven computational approach to model inference and testing. 

(A) General workflow of the study. Step 1: Fitting a single- actor Rl model to data of 

birds that learn a single syllable [training data; Fig. 2; part of the data is from (18)]. 

We identify possible shapes and widths of Rij. Step 2: Testing alternative MARl 

models on data of birds that learn two syllables [testing data; Fig. 4, data from (18)]. 

We use the fitted pairwise rewards Rij from step 1 as components of a global inven-

tory reward R without further parameter adjustments. Alternative models differ in 

the computation of R from Rij components. Only the MARl sum- max model with 

light- tailed reward components successfully reproduces pitch trajectories in the 

testing data. Step 3: Testing a prediction of the light- tailed MARl sum- max model 

in a new behavioral experiment (four- semitone data; Fig. 5). The results confirm the 

prediction that birds will exclude a syllable from their song, if it is acoustically dis-

tant from all targets. Step 4: Formulating predictions for future studies of the light- 

tailed MARl sum- max model of the properties of dA neural responses during 

juvenile song learning (Fig.  6). (B to D) Alternative models of syllable inventory 

learning [step 2 in (A)] differ in computational complexity. complexity is measured 

as the number of pairwise acoustic comparisons needed to compute the intrinsic 

reward after an uttered syllable (red; the same applies to uttered calls, which are 

not shown). The SOd model (B) is 0- order, requiring only one comparison per syl-

lable, with the target at the same serial position. The MOT model (c) is linear, requir-

ing comparisons between the uttered syllable and all targets. last, the MARl 

sum- max model (d) is quadratic, requiring all possible comparisons between syl-

lables and targets for each uttered syllable.
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acts like Q on δ. Both the VP and the AIV should in such a case re-
ceive auditory feedback from the syllable or call instance just sung 
Pj, because this input is necessary for the computation of both R and 
Q. This assumption would agree with observations that neurons in 
VP and AIV are highly sensitive to distorted auditory feedback dur-
ing singing (30, 31).

Because the premotor nucleus HVC (proper name) controls the 
learned components of song, the lateral magnocellular nucleus of 
the anterior nidopallium (LMAN) is involved in vocal exploration, 
and both project to the robust nucleus of the arcopallium (RA), we 
suggest that the actors are distributed across HVC, LMAN, and 
RA. HVC would generate S, i.e., stable motor memories of each syl-
lable or call (33). The individual syllable/call instances P performed 
by RA would be the sum of two components: S (or C for calls) plus 
a more variable component η from LMAN (34). This latter signal 
would be relayed as an efference copy to the dopaminergic recipient 
area X where the learning itself could take place, in agreement both 
with a previous hypothesis (34) and corroborating anatomical evi-
dence (35). The update ΔS computed in area X would be consoli-
dated in RA and HVC in a process that we do not explicitly 
model (36).

The experimental paradigm and the model presented here con-
tain some simplifications that could be broadened in future studies: 
First, we studied pitch, mainly because of our ability to selectively 
manipulate this acoustic feature. It remains to be seen how this ap-
proach generalizes to other sound features. Presumably, the pair-
wise reward components, as well as the critics, would need to be 
tuned to acoustic features other than pitch and possibly compute a 
weighted sum across these features. It may also be that the cases of 

oscillating pitch trajectories we observed (fig.  S2A and 4E) stem 
from the integration of acoustic dimensions other than pitch in 
birds’ similarity evaluations. Second, we made the simplifying 
assumption that the reward components and the critics have an 
identically shaped tuning to pitch differences. This convenient sim-
plification may be relaxed in a more powerful version of the model, 
in which critics acquire their tuning curves via function approxima-
tion methods. Third, we now treat syllables as the basic, or smallest, 
units of learning, but zebra finches can selectively adjust individual 
sub- syllabic elements toward increased target match (24). This calls 
for tutoring experiments targeting the process of learning sub- 
syllabic notes, and a corresponding update of an intrinsic reward 
model to include the evaluation of sub- syllabic structure. Fourth, 
despite the maximum operation we used, the greediness our model 
implements is not strict (as in a soft winner- take- all) and two actors 
can in principle converge to the same target when no other target is 
around (for example, Fig. 5H, middle). This possibility in our model 
arises from the stepwise updates ΔS of performance means, when 
two roughly equidistant means are pulled to the same target in an 
alternating manner. Although a light- tailed model makes this sce-
nario rare by limiting the pitch range in which it can occur, such 
violation of greediness remains to be tested in future experiments. 
Last, birdsong learning involves both imitation and creativity (37–
40), which raises the interesting question of the possible contribu-
tion of an intrinsic reward to birds’ creative variations. This question 
needs to be experimentally studied in more complex and naturalis-
tic social environments, where creative variations should be more 
apparent (39, 40) than in our simplified experimental setting.

Our findings demonstrate that competition and cooperation be-
tween independent RL actors maximizing a common reward is es-
sential for the learning of a syllable inventory in birdsong. A 
dedicated learning of an action inventory is crucial for combinato-
rial skills that rely on a small set of basic actions to flexibly generate 
diverse sequences. The learning algorithm that we discovered in 
songbirds may therefore have evolved in other learned combinato-
rial behaviors, including the learning of speech sound inventories of 
human languages.

MATERIALS AND METHODS

Experimental design
Animal care and experimental procedures were conducted in ac-
cordance with the guidelines of the US National Institutes of Health 
and have been reviewed and approved by the Institutional Animal 
Care and Use Committee of Hunter College.

Part of the experimental data presented here (all two- semitone 
learning experiments except for two new birds) was previously 
published (18) and used here to infer and test model parame-
ters. Male zebra finches were bred at Hunter College and reared 
in the absence of adult males between days 7 and 30 after hatch. 
Afterward, birds were kept singly in sound attenuation cham-
bers and continuously recorded. From days 33 to 39 until day 
43, birds were passively exposed to 20 playbacks per day of a 
tutor song (source), occurring at random with 0.005 probability 
per second. On day 43, each bird was trained to press a key to 
hear song playbacks, with a daily quota of 20. Once birds 
learned the source song, we switched to playbacks of a different 
tutor song (target). Learning of the source was assessed by 
quantifying the percent similarity [Sound Analysis Pro (41)] 

Fig. 8. Potential mapping of the MARL model for inventory learning onto the 

songbird brain. Signals in our model (S, P, η, R, Q, and δ) are depicted as arrows 

and are labelled by the hypothesized brain areas (bold) where such signals can be 

found (implying the signals are computed in that area or upstream).
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between the bird’s song motifs and the source model motif in 10 
randomly chosen song bouts per day. We considered the source 
song as being learned when the similarity to the model was at 
least 70%. Because the sensitive period for song learning in ze-
bra finches ends around days 90 to 100 after hatch, we included 
only birds that learned the source before day 71 in the experi-
ments. Recording and training were done using Sound Analysis 
Pro (41) and continued until birds reached adulthood (days 99 
to 158 after hatch). At these ages, males are sexually mature and 
perform a crystalized song motif that remains unchanged for 
the remainder of their lives (42). Throughout the experimental 
period, birds did not receive any external stimuli contingent on 
their singing (aside from being able to hear themselves sing). 
Identical experimental conditions were used to generate previ-
ously published data used in this study [see details (18)].

Source and target song models were synthetically composed 
of natural syllables. Harmonic syllables in the source songs 
were pitch- shifted by two or four semitones in the target songs 
using GOLDWAVE (v. 5.68, www.goldwave.com). Each play-
back of a model included two motif renditions. To control for 
model- specific effects, we varied baseline pitch and pitch shift 
direction across experimental birds. Because source and target 
syllables differed by either two or four semitones (less than half 
an octave), birds’ pitch shifting trajectories should not be af-
fected by possible nonlinearities in pitch perception due to oc-
tave equivalence.

Data analysis
We performed song feature calculation and clustering of sylla-
bles and calls using Sound Analysis Pro (41) [see (18)]. All 
other analyses were performed in MATLAB (Mathworks Inc.). 
Unless mentioned otherwise, significance levels were adjusted 
using the Benjamini- Hochberg procedure (43) to correct for 
multiple comparisons.
Calculating median pitch of syllable instances
We used the following procedure to prepare pitch traces for statisti-
cal analysis and model fitting. Following syllable clustering, median 
pitch values of syllable instances P were converted from hertz to 
semitones (st) using the formula

where T0 is the source pitch (i.e., the pitch of the syllable in the 
source song that we manipulated in the target song). The semitone 
scale allows us to express our results in a common reference frame 
in which the source pitch is zero. To minimize biasing effects of clus-
tering errors on model fits, we excluded renditions with pitch more 
than three median absolute deviations from the daily median pitch 
(leading to elimination of less than 0.2% of data points).
Characterizing daily pitch distributions
We first restricted the distribution analysis to stable days: We assessed 
pitch stability across consecutive day pairs (i.e., days with no learning 
or no random drift) by comparing medians of pitch distributions (un-
corrected Mann- Whitney U test; α = 0.001). On the set of stable day 
pairs, we found pitch distribution to be nearly always Gaussian: The 
daily distributions (with more than 10 instances) of stable pitch 
were normally distributed on 730/778 days  =  94% (uncorrected 

Kolmogorov- Smirnov test on standardized distributions; P  >  0.05). 
The same was true when we tested on all days, not just the stable ones, 
after day- wise detrending (uncorrected Kolmogorov- Smirnov test on 
standardized distributions P > 0.05 in 1214 of 1276 days = 95%). This 
justifies our choice of the normal performance distribution for the 
actors in our RL model (see below).

RL model
Our RL model consists of three components: actors that are re-
sponsible for generating vocalization (syllable and call) instances, 
an intrinsic reward R, and a critic that estimate the expected re-
ward Q of an instance. We first describe the model of a single 
actor- critic pair suitable for learning a single target syllable.
Single- actor model
At time t, the actor generates a syllable/call instance with pitch 
P(t) = S(t) + η(t), where η is drawn from a normal distribution

S(t) is the mean performed pitch, and σB(t) is the (time- dependent) 
SD that sets the extent of behavioral variability. The syllable instance 
is followed by an intrinsically generated reward signal R(t) ≔ R[P(t), 
T] that depends on both the produced pitch P(t) and the target pitch 
T. We assume that R(t) is symmetric around T and is a decreasing 
function of the absolute pitch difference Δ(t) ≔  |P(t)–T|. Because 
the functional form of R(t) is a priori unknown, we introduce a 
family of hypothetical intrinsic reward functions, i.e., we model 
reward as a generalized normal distribution (22)

The parameter β sets the shape of the reward distribution 
around the target: Larger values of β correspond to distribu-
tions with lighter tails with the reward density concentrating 
more around the mean. Special cases of this family of distribu-
tions are normal and Laplace distributions given by β = 2 and 
β = 1, respectively. The positive scale parameter ς controls the 

width of the reward distribution. The reward SD σR depends on 

both β and ς, σR =
√

Γ(3∕β)∕Γ(1∕β)ς.
Learning is driven by the bird’s attempt to maximize reward via 

minimizing the square discrepancy δ2(t) between actual reward R(t) 
and expected reward E[R(t)|P(t)]

The variable δ(t) is also referred to as the RPE, which is com-
monly assumed to be related to the firing rate of dopaminergic 
neurons. To estimate the expected reward E[R(t)|P(t)] associated 
with a vocalization P(t), we introduce a parametric function 
Q(t) ≔ E[R(t)|P(t)], referred to as the critic. We give the critic the 
same functional form as the reward distribution R(t), but we cen-
ter its peak on the average pitch S(t) instead of the target T

where η(t) = P(t) − S(t) as given by Eq. 2. Our assumption that R and 
Q have the same functional form is plausible because presumably both 
R and Q are computed by neural circuits that have co- evolved to 
support song learning.

P[st] = 12log2
P
[

hertz
]

T0
[

hertz
]� (1)

η(t) ∼
[

0, σ2
B
(t)

]

(2)

R
[

P(t),T
]

=
β

2ςΓ(1∕β)
e
−
[

∣P(t)−T ∣

ς

]β

(3)

δ(t)≔ R(t) − E
[

R(t)∣P(t)
]

(4)

Q
[

P(t); S(t), β, ς
]

=
β

2ςΓ(1∕β)
e
−
[

∣η(t)∣

ς

]β

(5)
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We derive the learning rule by minimizing the mean square error 
0.5⟨δ2(t)⟩t using stochastic gradient descent, which is the conven-
tional approach to continuous- action RL (44)

where α > 0 is the learning rate.
Inserting Eq. 5 into Eq. 6 leads to the following Rescorla- Wagner–type 

iterative update rule for the mean pitch S(t)

According to this rule, because η(t) = P(t) − S(t), updates of S(t) 
mostly point in the opposite direction of P(t) (δ is rarely positive) 
and are proportional in magnitude to the RPE δ(t), which biases the 
drift of S toward T. During learning, as the RPE converges toward 
zero, Q approaches R, and the syllable’s mean pitch S(t) approaches 
the target pitch T.

It is important to note that, although, by construction, the goal of 
our model is to minimize the square RPE (δ model), an RPE is not 
needed in principle. Instead, we could have chosen the goal of directly 
maximizing the intrinsic reward [as in policy- gradient learning (45, 
46)]. Such a model would be simpler, as it would not require a critic for 
computing an expected reward, which would free up resources. Simu-
lations of a policy gradient (or R- learning) algorithm that maximizes 
reward directly (rather than minimizing RPE) and that uses no critic 
at all showed equally good fits of the single syllable data and thus pro-
vide comparable behavioral results to our actor- critic model (fig. S3C). 
Under an R- learning model, assuming that dopaminergic responses in 
VTA encode R instead of δ, the experimental predictions would be 
high firing rates in VTA neurons of adult birds with an accomplished 
song (i.e., triggering maximal reward) and light- tailed singing- related 
pitch tuning curves (i.e., response tuning curves with the same shape 
as a light- tailed reward component).

However, the rather low average song- related firing rate (13 Hz) 
of area X–projecting VTA (VTAX) neurons observed in adults (47) 
does not strongly support this view, suggesting instead that dopami-
nergic neurons encode a difference signal, as predicted by a δ model. 
Neither is the tendency of VTA neurons to display inverted- U tun-
ing curves centered on a single auditory feature (21) in unequivo-
cally strong support for the R- learning model; we found a similar 
behavior under the δ model when we let the mean pitch of an actor 
slowly drifts around its target, which also led to inverted- U tuning 
(Fig. 6D). In summary, it is now not possible to unequivocally arbi-
trate between the δ and R- learning models, the R- learning model 
may be simpler but the δ model may map better onto known firing 
properties.
Multiple- actor model
Next, we consider the case of many actors that learn to produce a 
multisyllable inventory. We introduce an independent actor for each 
of the juvenile’s vocalization types. Actor j (j = 1, …, N) randomly 
produces vocalizations (a syllable or a call) drawn from a normal 
distribution with mean pitch Sj and SD σB,j(t). The N actors compete 
to fill M targets of pitch Ti (i = 1, …, M). The actors learn from a 
common scalar inventory reward R, which agrees with RPE being 

signaled by a single neuromodulator, i.e., dopamine [see the “Moti-
vation for greedy (order- independent) learning of a syllable inven-
tory” section].

Our model must reflect the observation that birds make the min-
imal changes necessary to match the target inventory, i.e., vocaliza-
tion assignments are greedy and independent of sequential context. 
To satisfy the latter constraint of independence, we write the inven-
tory reward R as a sum (which is insensitive to permutations) of 
partial rewards

The partial reward Ri(t) associated with target i must reflect 
the maximum across individual actor- target pairwise compari-
sons. Naively, to implement a competition between actors over 
a target, we could choose a simple maximum operation across 
all actors, because only one actor can score the partial reward 
associated with a given target, namely, the one that produced 
the acoustically closest instance among all vocalization types in 
the inventory [we could define Ri(t) = maxj Rij(tj), where Rij(tj) 
is the partial reward associated with target Ti and tj ≤ t is the last 
time at which actor j produced a vocalization]. However, to ac-
count for the prioritization of syllables over calls illustrated in 
Fig. 2H and fig. S5B, we define the partial reward Ri for target 
i as the syllable- specific partial reward

if the latter is positive (i.e., larger than some infinitesimal value ϵ), 
else we define it as the call- specific partial reward

as follows

where ϵ = max(Rij)/1000 is a small number (see fig. S4A). According 
to this definition of partial reward, a distant syllable within the re-
ward range of a target will win over a closer call, replicating the find-
ing in Fig. 2H and fig. S5B. Note that the infinitesimal parameter ϵ is 
too small to affect the actual reward range, regardless of its shape.

We are left with needing to define Rij(t), the pairwise reward 
components, and relate them to the estimated reward density 
R(P; T) of the single- actor model from the previous section. The 
bottleneck to consider is that we can compute the maximum 
operations in Eq. 9 only after all arguments are known. To avoid 
the need of having to wait until all calls and syllables in the in-
ventory have been produced, e.g., at the end of a song motif, we 
formulate a model in which rewards and error signals are com-
puted upon production of every syllable and call instance with 
minimal requirement on short- term memory (see the “Motiva-
tion for instantaneous reward” section).

We assume that the reward components Rij(t) associated with the 
ith target and the jth actor depend on the vocalization instance Pj(t) 
just performed and the syllable motor means Sj(t) [Cj(t) for calls] of 
non- performed vocalizations

S(t+1)←S(t)−α
�

�S(t)
⟨δ2(t)⟩t

←S(t)−αδ(t)
�δ(t)

�S(t)

←S(t)+αδ(t)
�Q(t)

�S(t)

(6)

S(t+1)←S(t)+
αβ

ςβ
δ(t)Q(t)η(t)∣η(t)∣β−2 (7)

R(t)≔
1

M

∑M

i=1
R
i
(t) (8)

RS
i
(t)≔ max

j∈ Sylls
Rij(t)

RC
i
(t)≔ max

j∈Calls
Rij(t)

Ri(t)≔

{

R
S

i
(t) ; if RS

i
(t)> ϵ

R
C

i
(t) ; otherwise

(9)
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Only syllables and calls that were recently performed contribute 
to R, which is encapsulated by the time window τ = 1 min, corre-
sponding roughly to the average duration of a singing- and- calling 
period (see the distributions of call- song intervals in figs.  S4C 
and S6E).

Note that context- independent inventory learning as we propose 
it here is also offered in the model of Troyer and Doupe (48), where 
song performance is evaluated in parallel modules, one for each tar-
get syllable; however, these modules are combined via rich synaptic 
weights and so the overall evaluation in their model is far from be-
ing scalar in nature as the dopamine signal that we model.
Critics
For each actor j, we introduce a critic that tracks the expected re-
ward Qj(t) ≔ E[R(t)|Pj(t)] associated with each syllable/call instance 
performed by that actor. The quality function Qj (t) = Q[Pj (t); Sj (t), 
β, ς] of the critic takes the same form as in Eq. 5. The parameters β 
and ς are common to all critics, but each critic has a distinct mean 
pitch parameter Sj(t) [Cj(t) for calls] that it inherits from the actor it 
is paired with. When actor j produces a vocalization, only critic j 
produces a nonzero expected reward. All other critics produce an 
output of zero: Qk≠j (t) = 0. It follows that the total expected reward 
Q(t) of a vocalization is simply the summed output of all critics, 
Q(t) = ∑k Qk(t).
Gradient descent learning rule
Given the intrinsic reward R(t) in Eq. 8 and the expected reward 
Q(t) as above, we define the RPE again as δ(t) = R(t) − Q(t) and 
minimize the mean square of that error, 0.5⟨δ2(t)⟩t, in a stepwise 
manner using stochastic gradient descent. We obtain an iterative 
update for the mean Sj of an actor that is analogous to Eq. 7

Because of the term Qj(t), we see that only the mean of the actor 
that generated a vocalization is updated, whereas all other actors are 
left unchanged.

Equation 11 is in essence a Hebbian- like learning rule that 
multiplicatively combines three terms: an RPE δ that is com-
mon to all actors and evaluates whether the performance is bet-
ter or worse than expected, a critic Qj that restricts the update 
to the actor responsible for producing the vocalization, and an 
efference copy ηj  =  Pj  −  Sj that provides information about 
whether the pitch of the current vocal instance was above or 
below its mean.

Such a triplet learning rule as in Eq. 11 has been predicted to ex-
ist in the basal ganglia of songbirds, and recent data provide ana-
tomical support for its existence (35). According to this line of work, 
there is convergence of three types of signals onto medium spiny 
neurons in area X of the songbird basal ganglia: an error signal (like 
δ) that stems from VTA, a timing signal (like Qj) from HVC that 
restricts learning to the right time in the song, and an efference copy 
signal (like ηj) from LMAN that provides information about the 
current exploration (see Fig. 8). These signals emerge naturally from 

our multi- actor model trained to minimize square RPE, providing 
anatomical support for our approach.
Illustration of dynamic assignment
The competitive- cooperative reward computation in Eqs. 8 and 9 
entails dynamic assignments between vocalizations and targets, 
which we illustrate with a specific example. When multiple syl-
lables are in the “reward range” of more than one target (fig. S4B, 
top), syllable- target assignments may initially vary from instance 
to instance, sometimes leading to an update of a motor program’s 
mean toward one target and sometimes toward another. Howev-
er, even small asymmetries in the reward magnitudes across dif-
ferent syllable- target pairings will lead to cooperative convergence 
of assignments that maximize inventory reward (fig.  S4B, mid-
dle) and eventually to all targets being matched (fig.  S4B, bot-
tom). This dynamic process is reminiscent of a musical chairs 
game, in which pairings between players and chairs are not pre-
determined but are resolved in a competitive- cooperative manner, 
eventually resulting in each chair being occupied by a single player.

Model inference and evaluation
We infer model parameters from experimental birds induced to 
shift the pitch of a syllable toward a target that differs by two semi-
tones upward or downward (Fig.  2 and Eq.  7). We included ex-
perimental birds that were trained to shift the pitch of two different 
syllables toward two different targets separated by at least six semi-
tones (birds shifted each of the source syllables to match a target 
without competitive interactions among the syllables). Overall, the 
data included 13 syllables from eight birds. We excluded 3 of the 
13 syllables that showed transient switching back to the source 
pitch after crossing the midpoint between source and target (see 
fig. S2A). Because were specifically interested in the part of a tra-
jectory containing the learned shift toward the target, we extracted 
from each experimental dataset the learning subset of pitch values 
PL = {P(1), P(2), …, P(t), …, P(L)} from D days. These days con-
tain the shift (identified from the day at which the pitch crossed 
the midpoint between source and target syllable), in addition to (at 
most) three consecutive days of stable pitch immediately before 
and after the shift (we worked with pitch data from fewer than 
three consecutive days either when the bird started shifting on day 
2 after switch or when the experiment was stopped early such 
that stable pitch data was not available for three full days after 
the switch).

Model parameters are estimated from PL as follows. Juvenile 
birds in artificial tutoring experiments often show small devia-
tions from a perfect imitation of the target song in addition to 
random daily fluctuations in pitch. Therefore, the mean pitch 
S(t) of a syllable (Eq. 7) does not necessarily begin at T0 on t = 1 
and end at T on t = L, leading us to add the start and end pitch 
values T0′ and T′ as free model parameters. Data analysis also 
shows that pitch variance σB(t) changes over days but is stable 
within a day (fig.  S3G). We thus include an additional set of 
parameters σB = {σB,1, …, σB,D}, where D is the number of ex-
perimental days over which the dataset PL was collected, as de-
scribed above.

Birds display a variable latency between the switch to target song 
playback and the onset of pitch modification. In our model, this cor-
responds to a step change in the mean of the reward distribution 
from T0′ (where δ  =  0) toward T′ (where δ ≠  0), initiating pitch 
modification. We therefore add an integer parameter c that defines 

Rij(t)=

⎧
⎪⎨⎪⎩

R
�
Pj(t);Ti

�

R
�
Sj(t);Ti

�

0

; if syllable jwas performed at time t

; if syllable jwas performed at time∈ [t−τ, t)

; otherwise

(10)

Sj(t+1)←Sj(t)+
αβ

ςβ
δ(t)Qj(t)ηj(t)∣ηj(t)∣

β−2
(11)
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the step- change index at which the pitch target in the model changes 
from T0′ to T′.

We infer all model parameters θ = {α, β, c, σB, σR, T0′, T′} including the 
shape β and SD σR (or a subset of those parameters; see below) using MLE

where �
(P

L
) defines the log- likelihood that θ generates data PL, 

and S(t; θ) is the motor mean as a function of θ (see Eq. 7). The 
log- likelihood is maximized through nonlinear constrained opti-
mization using MATLAB’s active set algorithm (fmincon). Pa-
rameters {α, β, σB, σR} are constrained within the interval [0, +∞), 
while T0′ and T′ are constrained to within 0.5 semitones from the 
true source and target pitch, T0 and T, respectively. The step- 
change index 1 ≤ c ≤ L is rounded to the closest integer after pa-
rameter inference. To avoid convergence to a local maximum, we 
start the maximization routine from different initial points along 
a grid in parameter space (except σB that was initialized from day- 
wise detrended data; see above). Note that σR is estimated from 
syllables only. Determining the SD of the reward distribution of 
calls remains an outstanding problem.

We considered multiple model variants. We refer to the model 
containing the complete set of parameters θ as the full model. We 
also inferred the parameters of two constrained models where either 
the reward shape β alone or both β and the learning rate α were fixed 
(i.e., we infer θ = {α, c, σB, σR, T0′, T′} or θ = {c, σB, σR, T0′, T′}, re-
spectively). In the latter case, we set α to 0.975, the median estimated 
value in the full model. When fixing β, we used a range of values 
corresponding to heavy- tailed (β = 1), normal (β = 2), and light- 
tailed (β = 4, 6, and 8).

Assessing the goodness of fit using the BIC (49) showed compara-
ble results across different model variants (figs. S3, A and D, and 2D).

We further evaluated the models’ goodness of fit by simulating 
500 pitch trajectories given the inferred model parameters and com-
puting the RMSE between simulated and real data. This resulted in 
a distribution of RMSEs, DRMSE, per syllable that allows us to assess 
a model’s ability to generalize. To do so, we summarized the central 
tendencies of those distributions using Tukey’s trimean (TM)

and compared model performance across different parameter set-
tings over the entire set of syllables used for inferring parameters.

We found that the simplest model where both α and β were 
fixed significantly outperformed the more complex models (see 
fig. S3E), suggesting that BIC does not capture well the model’s 
ability to generalize. We therefore used the simplest model and its 
inferred reward SD parameters (10 σR values, corresponding to 
the 10 syllables in the training set in Fig. 2) in all testing simula-
tions (Figs. 4 and 5; two- semitone shift toward two potential tar-
gets and four- semitone shift toward one target; 100 simulations 
per σR value, amounting to 1000 simulations per bird in total). In 
these simulations, we specified other model parameters from the 
data directly, using the procedures described above. In case a syl-
lable did not shift toward a target (e.g., Figs. 4E and 5D), c was set 
to the time at which another vocalization in the bird’s repertoire 
(usually a call) started shifting toward the target. In the one case 
where no vocalization in the bird’s repertoire shifted toward the 
target (see Fig. 5D, bird 4), c was set to its median value over the rest 
of the experimental dataset. After simulations, we used Tukey’s 

trimean described above (Eq. 13) to compare model performance 
for different reward shapes across each experimental dataset 
(Figs. 2F, 4D, left, and 5I).

Motivation for instantaneous reward
In a naive MARL version where all reward components are based on 
produced pitch, Rij = R(Pj; Ti), inventory reward can only be com-
puted after all syllables and calls have been produced, e.g., at the end 
of a song motif. Such a model would thus require birds to maintain 
recent syllable and call instances in short- term memory. However, it 
is unclear whether the brain would choose such a cumulative strat-
egy of computing reward rather than making an instantaneous esti-
mate available after each syllable and call instance. A fine temporal 
signaling of inventory reward agrees with highly phasic dopaminer-
gic responses, which can occur in the middle of a motif right after an 
aversive external stimulus or after the omission of a stimulus (4). In 
addition, dopaminergic activity fluctuations within motifs are cor-
related with fluctuations in syllable performance (21), and there are 
no reports of its accumulation at motif endings, further suggesting a 
tight temporal correspondence between syllables and intrinsic re-
wards. Instantaneous reward signaling is also supported by studies 
involving experimental interference with birds’ auditory feedback in 
a manner contingent on syllable pitch, showing that interference 
must be closely time- locked (<100 ms) to syllable performance to 
drive behavioral changes (50).

Motivation for greedy (order- independent) learning of a 
syllable inventory
Although zebra finches typically imitate both the syllable structure 
and the syllable order of their tutor’s song, a recent study (18) has 
shown that the two hierarchical levels are learned independently of 
each other. Juvenile zebra finches use a greedy strategy of modifying 
each syllable that they sing to match the target that it resembles 
most, an efficient way for a fast acquisition of a syllable inventory. 
Juveniles use this greedy strategy even when it initially reduces the 
similarity with their tutor song at the motif level and even when a 
slightly less greedy strategy could have increased the match with the 
target at both syllable and motif levels [see figure 4 of (18)]. More-
over, when juveniles are experimentally presented with two equally 
greedy alternative ways to modify a syllable in their song, either to-
ward a target at the “correct” position in the motif or toward a target 
at the “wrong” position, they choose one of the alternatives at ran-
dom [see figures 3 and 5 of (18)]. Birds later attempt to correct se-
quencing errors resulting from their greedy strategy by rearranging 
syllable order. However, the fact that birds initially can choose to 
make consistent vocal changes that increase the match with the tar-
get syllable inventory but reduce the match with the target sequence 
indicates that syllable learning is order- independent, i.e., that learn-
ing a syllable inventory is not contingent on the similarity between 
the bird’s and the target motifs but only on the similarity between 
the bird’s and the target’s individual syllables. Note that the assump-
tion of order- independent learning is restricted to the level of song 
syllables, and it is now unknown whether it applies to other levels of 
the song hierarchy (e.g., sub- syllabic notes).

Null models
As null hypotheses, we first adapted the model proposed by Fiete 
and colleagues (3), where each actor j is assigned to the target Tj in a 
SOD manner [i.e., where vocalization Pj(t) is temporally aligned to 

�̂= argmax
�


�
(PL)= argmax

�

L
∑

t=1

logp
[

P(t)∣S(t; �)
]

(12)

TM(DRMSE) =
Q1 + 2Q2 + Q3

4
(13)
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Tj in the target song; see Fig. 4D, right]. In the SOD null model, 
reward at each vocalization instance is a function of the similarity 
between that instance and the temporally aligned target only, 
R = Rjj = R(Pj, Tj). Reward in one instantiation (SOD 1) is binarized 
as in the original model (3), where R = 1 when the absolute error 
|Pj − Tj| is below a similarity threshold. The similarity threshold is 
adaptive (using an exponential moving average of reward history) to 
assure that the actor is rewarded half the time. We give the critic the 
same functional form as the actor (Eq. 2), to assure that Qj(t) is 
centered at the mean Sj(t) and is a differentiable function of the 
mean, enabling the derivation of a learning rule with stochastic gra-
dient descent (as in Eq. 6). A second instantiation (SOD 2) uses 
the same light- tailed reward distributions as in the MARL model 
(Fig. 4D, right).

Another MARL model (MOT model) consists of multiple actors 
as in the sum- max model, but rather than actors competing over a 
target, targets compete over an actor by defining each partial reward 
associated with actor j as a maximum across pairwise comparisons 
between actor j and all the targets (see fig. S5C, right).

Alternative MARL sum- max model variants
Our findings based on the inventory reward model in Eqs. 9 and 10 
are robust to changes in model variant and model parameters. A 
priori, many models can signal inventory reward after every pro-
duced syllable. In another model variant that we simulated, the par-
tial reward Rij(t) associated with target Ti did not depend on the 
motor means Sj(t), but, instead, it depended on the instance memo-
ries Pj(t) of syllables and calls that were last performed within τ. 
Results were qualitatively unchanged under this instance- memory 
model, for both shorter and longer windows (from τ =  2 s to 
τ = 2 hours). We also simulated a model variant that assumes a non- 
instantaneous intrinsic reward delivered at the end of a motif in-
stead of after each syllable (fig. S5E) and again found that this change 
had no significant effect on model performance. A similar model 
that assumes the reward is delivered at the end of the bout also 
showed comparable results (fig. S5E). The robustness of our model 
to the variants described above means that our findings do not pro-
vide a definitive answer on whether an intrinsic reward is based on 
instance memories or on motor memories and on the precise tem-
poral contingency of an intrinsic reward. Last, to verify that the pa-
rameter ϵ introduced to enforce a hierarchy between syllables and 
calls (Eq. 9) does not generate a bias toward light- tiled reward distri-
butions, we performed simulations that treated calls and syllables 
equally by not including this parameter, which yielded comparable 
results (also favoring light- tailed reward distributions).
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