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Abstract
This work develops a machine learned structural design model for continu-
ous beam systems from the inverse problem perspective. After demarcating
between forward, optimisation and inverse machine learned operators, the
investigation proposes a novel methodology based on the recently developed
influence zone concept which represents a fundamental shift in approach com-
pared to traditional structural design methods. The aim of this approach is
to conceptualise a non-iterative structural design model that predicts cross-
section requirements for continuous beam systems of arbitrary system size.
After generating a dataset of known solutions, an appropriate neural network
architecture is identified, trained, and tested against unseen data. The results
show a mean absolute percentage testing error of 1.6% for cross-section prop-
erty predictions, along with a good ability of the neural network to generalise
well to structural systems of variable size. The CBeamXP dataset generated
in this work and an associated python-based neural network training script are
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available at an open-source data repository to allow for the reproducibility of
results and to encourage further investigations.

Keywords: machine learning, structural design models, neural networks,
influence zone, inverse problems.

1. Introduction

It was recently argued that structural design is an inverse problem [1], in which one estim-
ates the model parameters (the causal factors) of possible structural solutions from a set of
structural utilisations (the observations). This inverse problem perspective, highlighted in
figure 1, is underscored by the ill-posed characteristics structural design shares with other
inverse problems [2], which in civil and structural engineering include subject areas such
as structural health monitoring [3, 4], self-sensing smart materials [5, 6] and forensic blast
engineering [7, 8].

Inverse problems are predominantly solved iteratively [9], and unsurprisingly so is struc-
tural design [10], often with the help of structural optimisation such as size [11, 12], shape
[13, 14], topology [15, 16] and layout optimisation [17, 18]. Provided that a clear objective
function exists, these techniques are the state of the art for solving the structural design inverse
problem iteratively.

However, in industry, the uptake of iteration based design approaches face certain barri-
ers, including high computational costs [19], complex outputs that require additional post-
rationalisation [20], and demand a particular expertise from practising design engineers that
can be absent from engineering curriculums [21]. These challenges have encouraged research-
ers to investigate the use of machine learning (ML) methodologies for structural design [22].
This parallels a similar development of using ML within the domain of inverse problems [23],
with exemplary applications in areas such as structural health monitoring [24, 25], that aid or
replace the optimisation problem with learned components.

The earliest application of such machine learned components for structural design occurred
in 1989 [26] with simplified perceptron models. This research was followed in the 1990s
by more advanced feed-forward neural networks for simple reinforced concrete beam depth
estimations [27] as well as cross-sectional area predictions of trusses [28, 29]. Whilst other
machine learning modalities such as support vector machines [30] have also been stud-
ied, neural networks tend to outperform other ML models archetypes in terms of prediction
error [31].

More recently, deep learning techniques have been investigated for structural design. These
include convolutional [32, 33] and generative adversarial networks [34, 35] to accelerate topo-
logy optimisation, and the application of variational auto encoders for structural design space
exploration [36]. A common limitation across such investigations is the inability for the same
machine learned model to generalise to differently sized topologies and structural arrange-
ments. These two challenges, highlighted by design ill-posedness and the inability of previous
machine learning models to generalise to structural arrangements of arbitrary size, have motiv-
ated the work presented here.

This investigation has two objectives. The first objective is to reconcile the relationship
between structural design, inverse problems and machine learning by developing a non-
iterative structural design model for continuous beam systems using a multi-layer neural net-
work. The authors believe that this perspective could serve as a framework to distinguish
between different types of machine learning applications within the field of structural engin-
eering in the future. The second objective is to address the inherent issue of generalisability in
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Figure 1. The inverse problem perspective for structural design, which relies on known
priors such as design brief details of loading and span requirements along with observa-
tions of utilisation ratios that represent structural adequacy to evaluate the model para-
meters of a solution, such as size, shape and topology of a viable structure. Structural
analysis is treated as the forward problem.

respect to system size by taking advantage of a recently developed concept known as a continu-
ous beam’s influence zone [37]. This technique could potentially form the basis to generalise
a design model for continuous structural systems of arbitrary topology, and might comple-
ment other techniques that attempt to address the generalisability issue such as graph neural
networks [38, 39].

The paper is structured as follows: section 2 explores the problem statement from the inverse
problem perspective and provides the rationale for machine learned design models, section 3
explains the methodology employed to develop the generalisable structural design model,
section 4 presents the step-by-step process of the neural network development process, and
section 5 discusses the model’s generalisability and prediction variability, along with sugges-
tions for further research.

2. Problem statement

2.1. A novel perspective

The inverse problem perspective for structural design as shown in figure 1 consists out of two
operations, the forward and inverse problem (shown as the bottom and top ellipses, respect-
ively) and three sets of data: observations, known priors and causal factors (shown as rect-
angles from left to right, respectively). One of the underpinning features of the inverse problem
perspective is the clear demarcation between structural analysis and structural design, a distinc-
tion often re-iterated in engineering philosophy [40, 41], yet never linked to the corresponding
nature of forward and inverse problems, respectively.

Both the forward (structural analysis) and the inverse problem (structural design) rely on
known priors, shown centrally in figure 1, which can be thought of as constraints set by a design
brief such as load and span requirements. During design they inform and regularise the search
space of causal factors (model parameters such as section properties and topologies), and in
analysis they allow the evaluation of observations (utilisation ratios such as ultimate (ULS) and
serviceability limit states [42]). Unlike traditional inverse problems, the observations are not
measured physically, yet are expressed theoretically based on the utilisation ratios that could
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Figure 2. Types of machine learning (ML) components from the inverse problem per-
spective. Shapes in each sub-figure; ellipses: inverse problem (top), forward problem
(bottom); rectangles: observations (left), known priors (middle), causal factors (right).

be measured from a compliant design solution which the set of causal factors correspond with;
inverse problems are not defined by the physicality of the observations.

Within this context, the application of machine learning in structural engineering can be
split into three categories based on the type of operations the machine learned components
replace. These categories help distinguish between fundamentally different types of machine
learning applications that occur within the context of structural engineering and are identifiable
across different decades of the literature:

(a) ML forward operators: machine learned components that aid or accelerate solving the
forward problem (structural analysis) to inform or validate design decisions. Examples
include neural network like models as quick re-analysis tools for optimum design (1991)
[43] and machine learning models to determine the buckling behaviour and model decom-
position of thin-walled members required for structural analysis (2023) [44].

(b) MLoptimisation solvers: machine learned components entirelymotivated by the traditional
iterative solution process to arrive at structural designs. Examples include ‘neural dynamic
models’ developed as an alternative structural design optimisation technique (1995) [45]
and a physics informed neural energy-force network that replaces both the structural design
and analysis steps (2023) [46].

(c) ML inverse operators: machine learned components which solve the inverse problem
(structural design) by mapping a set of structural utilisations and known priors to model
parameters directly. Examples include estimating cross-sectional properties for simple
trusses directly based on known optimum examples using neural networks (1994) [29]
and approximating topological optimised structures in real-time using convolutional neural
networks (2022) [47].

These three categories can also be differentiated visually as shown in figure 2. It is worth
noting that the field of ML forward operators has likely received the most research attention in
the form of ‘surrogate models’ [48, 49]. In this respect, machine learned optimisation solvers
and inverse operators are less common. Furthermore, the machine learned forward operators
and optimisation solvers identified above typically require some form of iteration to achieve
structural design; machine learned inverse operators on the other hand can be non-iterative
[29, 47]. The ability to provide real-time design feedback is of particular interest to address
the limitations of current iterative structural design approaches. To this end, and in support of
the inverse problem perspective, this paper will focus on developing a non-iterative structural
design model for continuous beam systems.

4
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Figure 3. Design process of a continuous beam system from the inverse problem
perspective.

2.2. Design problem: continuous beam systems

Continuous beam systems arise in structural engineering when rigid connections between
members are required or unavoidable due to design or material considerations. The support
fixity and structural connectivity render the system statically indeterminate. This poses a chal-
lenge from a design perspective, since the compliance of cross-sectional properties cannot be
evaluated without knowledge of their magnitudes; this results in an iterative design process,
especially for complex design scenarios with heterogeneous loading and span conditions [50].

Figure 3 highlights the design problem for continuous beam systems from the inverse prob-
lem perspective. The known priors, which are shown centrally as the design brief, include
the number of members m in the system indexed by i with span length Li from vector
L= [Li]0⩽i<m, subjected to uniformly distributed loads (UDLs)ωi from vectorω = [ωi]0⩽i<m.
These known priors and the utilisation ratios u of the members, shown on the left in figure 3,
are needed to evaluate the causal factors, shown on the right as the cross-section property
vector P= [Pi]0⩽i<m.

The design problem is complicated due to the existence of c potentially critical load arrange-
ments J indexed by j from set J= [Jj]0⩽j<c shown at the bottom of figure 3. The size c of J
was studied in [37]. Each of these load arrangements cause different structural responses such
as bending moments M, and will give rise to a matrix of utilisation ratios ui,j to form matrix
u= [uij]0⩽i<m,0⩽j<c that can be evaluated with structural analysis to check for structural com-
pliance (ui,j ⩽ 1.0). Instead of repeatedly assuming cross-section properties P and conducting
structural analysis calculations until the matrix of utilisation ratios u are compliant, a machine
learned inverse operator relies solely on the known priors and the utilisation ratios u to directly
evaluate the cross-section properties P.

For the purpose of the continuous beam system considered in this work, several assumptions
will be made: members are made out of S355 steel, are considered laterally restrained (and
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hence not susceptible to lateral instability), Timoshenko–Ehrenfest beam theory is used to
model this system and the structure will be analysed elastically yet designed against ULS
plastic cross-section property checks as allowed by Eurocode EN 1993-1-1 5.4.2 (2) [51]. The
cross-sectional properties to be evaluated include the major axis second moment of area I, the
major axis shear area Az and the major axis plastic section modulus Wpl for each member i.
Together they form the member-based cross-sectional property vector Pi:

Pi = [Ii,Az,i,Wpl,i] . (1)

The structural analysis operation in figure 3 is defined by a forward operator:

u= Oforw (m,ω,L,P) (2)

and similarly the structural design operation by an inverse operator:

Oinv (m,ω,L,u) = P (3)

where both Oforw and Oinv rely on the same known priors, the design brief information m, ω
and L that define the structural system and design problem.

2.3. The need for machine learned inverse operators

Defining an explicit non-iterative inverse operator for equation (3) is challenging due to the
difficulty of inverting the forward operator and is directly linked to the ill-posed nature com-
mon across most inverse problems [2]. A quantitative evaluation of the extent of ill-posedness
in structural design is not obvious, however it is possible to describe why the structural design
problem shown in figure 3 is ill-posed, namely due to the infinite number of viable solutions,
and:

(a) The physical limitations introduced by yielding, buckling, serviceability that arise when
combining the forward model with structural codes, resulting in a discontinuous relation-
ship between the observations and causal factors.

(b) The indeterminacy of the continuous beam system which increases with the number of
members of the system.

Furthermore, any structural analysis forward operators themselves are approximations of
the true behaviour of structures, and dealing with this associated uncertainty is a key challenge
in design. For example, engineers need to decide if the assumptions and simplifications of
structural analysis models, such as the material response (e.g. perfectly elastic) and underlying
beam theory (e.g. Euler–Bernoulli theory), are representative of the structure’s true behaviour.

The difficulty of inverting a forward operator can be shown mathematically. Typically, the
Oforw operator contains two steps. The first step, defined by Oforw,1 would evaluate the struc-
tural response of the system when subjected to a set of external forces ω in terms of deflec-
tions and internal forces, and the second step, defined by Oforw,2, would take these structural
response observations to evaluate the utilisation ratios based on design codes. Consider for
example building a Oforw,1 operator using the stiffness matrix method to evaluate the internal
force vector [fp]i for member i defined as:

[ fp]i = [V1,i,M1,i,V2,i,M2,i]
⊺ (4)
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where V, and M represent the internal shear forces and bending moments within member i at
the start (index 1) and end of the member (index 2). Let us also assume, for simplicity, that the
members consist out of steel with E and G for the Youngs and shear modulus, respectively,
with a maximum yield stress of σy. In this case, the internal forces [fp]i for each member
could be evaluated using a simplified Timoshenko–Ehrenfest beam theory for a single load
arrangement by equation (5). To achieve this, [kpq]i is defined as the local stiffness matrix
shown in equation (6), [Kpq] as the global stiffness matrix in equation (7), [dq] as the nodal
displacement vector in equation (8) with Fp([ωi]) as the external force vector, where rows and
columns of all matrices are indexed by p and q, respectively:

[ fp]i = [kpq]i [dq] (5)

[kpq]i =
EIi

L3i (1−φ)




12 6Li −12 6Li
6Li 4L2i −6Li 2L2i
−12 −6Li 12 −6Li
6Li 2L2i −6Li 4L2i


 , φ =

12EIi
AzGL2i

(6)

[Kpq] = [kpq]0 + [kpq]1 + · · ·+ [kpq]m−1 =
m−1∑

i=0

[kpq]i (7)

[dq] = [Kpq]
−1

[Fp ([ωi])] . (8)

These operations can be succinctly written to transform the cross-section vector Pwith help
of the known priors m, ω, L into the internal forces vector for each member i:

Oforw,1,i = [ fp]i = [kpq]i

[
m−1∑

i=0

[kpq]i

]−1

[Fp ([ωi])] . (9)

Inverting this equation to yield Oinv is difficult since it would require separating or decom-
posing the individual cross-section properties Pi out of the stiffness matrices [kpq]i. This can-
not be done without, at minimum, making some assumptions about the relative proportions of
the cross-section properties from one member to another. Inverting the second step of the
forward operator Oforw,2 poses further challenges. Suppose Oforw,2 transforms the internal
member forces [fp]i to evaluate the governing (critical) utilisation ratios indexed by r for
t design checks for a single load arrangement J. For example, using the steel design code
EN 1993-1-1 [51]:

ui = Oforw,2,i (Oforw,1,i) =max
(
[uir]0⩽i<m,0⩽r<t

)
=max(ui,0,ui,1, . . . ,ui,t−1)

where:

ui,0 =
V1,i

Az,iσy/
√
3
, ui,1 =

M1,i

Wpl,iσy

ui,2 =
V2,i

Az,iσy/
√
3
, ui,3 =

M2,i

Wpl,iσy

...

ui,t−1 for other compliance checks.

(10)
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The difficulty here is that the governing utilisation ratio can change according to the known
priors of the problem statement. This means that an individual equation for each possible crit-
ical design checkwould need to be derived. For example different design equations exist for the
same structural check depending on the type of cross-section (Class 1 vs. Class 4) [51] a final
design solution might contain, which is not known ahead of time. Note also that the equations
above do not even consider the serviceability limit state, the multiple load arrangements J
which may be critical, nor the need to sufficiently discretise individual beam members.

It is because of the challenges identified above that machine learned inverse operators are
particularly appealing, since they can approximate a relationship between a set of variables
that may be difficult to encode explicitly [52]. Given a dataset generated by the Oforw operator
that maps a set of cross-section properties P to compliant utilisations ratios u, one can train
a probabilistic machine learning model O†

inv with parameters θ to map the set of bounded
utilisation ratios u back to the cross-sectional properties P with known priors m, ω and L:

O†
inv (θ,m,ω,L,u)≈ P. (11)

By generating a dataset of valid structural designs with the help of existing optimisation
approaches that contain the forward operator, a supervised machine learning model can be
trained to learn the mapping of known priors and utilisations to cross-sectional properties dir-
ectly. This represents a fundamental shift from traditional approaches employed in structural
design that rely on engineering expertise and computationally expensive structural analysis or
optimisation models at the point of design application. Machine learned inverse operators cre-
ate non-iterative structural design models for which there currently exist no explicitly defined
equivalents. Instead of focusing on accelerating forward models, computational resources can
be invested in generating a dataset using physically complex yet realistic modelling assump-
tions. These machine learned structural design models aim to provide significantly greater
generalisability than typical rules of thumb employed in design whilst still providing real-
time feedback, benefit non-expert stakeholders whose own decision making relies on struc-
tural design outcomes and improves design knowledge permanence which can be difficult to
attain due to industry turnover.

3. Methodology

3.1. Choosing an appropriate machine learning model archetype

The aim of the inverse operator O†
inv is to predict the cross-section property vector defined by

equation (1) numerically; therefore O†
inv will be a regression model. This restricts the types

of supervised machine learning models of interest. The complexity and size of the design
space are likely to demand a large dataset size discouraging the use of instance-based models
such as the k-nearest neighbour algorithm that store similarity measurements in memory [53].
Similarly, support and relevance vector machines become impractical for datasets containing
more than 3000 samples [54]. The non-linearity of the design problem voids the applicability of
linear regression models, and decision trees (including the ensembled variants such as random
forests) perform better at classification tasks [55].

These reasons motivated the use of neural networks, in particular multilayer neural net-
works (MLPs), a choice which is supported by evidence that suggests neural networks outper-
form other data-driven approximation algorithms in structural engineering applications [31].
Although various archetypes exist ranging from convolutional (CNNs), recurrent (RNNs) and
graph-based types (GNNs), MLPs are commonly used in literature [28, 29], and the results
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within this work could prove useful as a comparative performance measure for more advanced
deep learning architectures [32, 34, 36] in future studies.

Multilayer neural networks have a fixed-dimensional input vector x0 of size n that map to
the output vector xD of size owithD layers. In this study, a network hasD− 1 hidden layers of
height H each indexed by d and are defined by fd(xd), which contains a (non-linear) activation
function ad with weight matrix wd and bias vector bd. The weight matrices and bias vectors of
each layer form the model’s parameters θ = (w= [wd]0⩽d<D,b= [bd]0⩽d<D). Multiple hid-
den layers give form to the neural network f through a function composition defined as:

f : Rn → R
o

f(x0)→ xD : fD−1 ◦ . . . ◦ f1 ◦ f0 (x0)

fd (xd) = ad (wdxd+ bd) .

(12)

The exact choice of architecture in terms of depth D, height H and activation functions ad
of the network as indicated in equation (12) will require experimentation to achieve acceptable
performance with a good bias-variance trade-off [56]. More importantly though, the features
used for the input vector x0 will require careful consideration to create a generalisable inverse
operator O†

inv as set out in equation (11).

3.2. Selecting appropriate neural network features

Feature selection, the process of choosing appropriate inputs, is essential for a machine learn-
ing model to generalise well to unseen data points. Unnecessary or irrelevant features can
cause a model to learn a relationship with target variables that are not representative of the
physical behaviour of the system, and thereby lead to worse results when interpolating within
or extrapolating beyond the training set.

Previous studies of neural network based designmodels selected features relevant to the sin-
gular topology of the structural system at hand [29, 31]. Such approaches expose the largest
limitation of MLPs: the fixed-dimensionality of the input vector [38]. These models may per-
form well for the particular topology they were trained against, yet the same model tends to
performworse or may not be applicable for differently sized structural systems, which severely
limits their utility.

To address this limitation, this work takes advantage of a recently developed concept known
as the influence zone [37]. The influence zone kmax is a measure of the extent to which sur-
rounding design information is relevant for the utilisation evaluation of members. Whilst kmax

differs for each member within a continuous structural system as shown in figure 4, for well
defined design constraints and error thresholds, the maximum value of kmax within continuous
beam systems converges towards a non-negative integer. The influence zone of member g is
found when the following two conditions are met:

∣∣∣∣1−
ug,cap
ug,true

∣∣∣∣⩽ ϵmax

ug,cap =max

(
kmax∑

i=−kmax

ug,i, j (ω,L,P,J)

)
.

(13)

In equation (13), ϵmax represents themaximum error threshold due to the difference between
ug,cap, the captured utilisation ratio of the design beam g for a given value of kmax, and ug,true,
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Figure 4. A figurative influence zone of kmax = 2 for design beam g= 3 within a m= 7
continuous beam system with ϵmax = 0.02 limit.

the true utilisation ratio of the design beam g if the contribution of all members of the con-
tinuous beam system had been considered. ug,i, j is the utilisation ratio contribution function
towards the design beam g by member i based on the UDLs ω, spans L, structural properties
P and load arrangements J. If the requirement for ϵmax is sufficiently relaxed, the maximum
influence zone kmax can be determined for any potential continuous beam system arising under
the specified design constraints [37]. This is extremely useful to ensure the relevant inputs are
fed to a machine learning model. The influence zone thereby acts as a mechanics-driven fea-
ture selection process, and provides the basis to generalise to a continuous beam system of
arbitrary size m.

3.3. Structuring features for arbitrary system size m

Zero-padding, the process of adding zero-valued inputs, arises in the context of convolutional
neural networks to allow trained kernel filters to parse through the edges and corners of an input
space [56]. This technique can also be applied to continuous beam systems to conceptualise
a design model that parses over a structural system to make localised predictions for each
member i. If the design information, here the UDLsω and span L that fall within the influence
zone are provided as inputs to the network, then this would result in an input vector x0 of size
n= 4kmax + 2, as shown in figure 5 for member i= 3 and i= 0. These inputs should, based on
the principle of the influence zone, contain the relevant information to predict the cross-section
properties of member d with an accuracy of up to ϵmax.

It is now conceivable that the same neural network could be used to make a prediction for
any other member using a fixed-dimensional input vector x0 by structuring the inputs relative
to the position of the design beam’s influence zone. This would include end-span beams by
using zero-padding as shown in figure 5 for member i= 0. Zero-padding in this instance is
also logically consistent, since it corresponds with a beam that does not in fact exist; that is
a beam of zero length L and zero UDL load ω. Therefore, instead of structuring the neural
network based on the absolute position of a beam within the entire continuous beam system
(as indexed by i), the inputs are structured relatively to the influence zone of a design beam g
to predict the cross-section properties of that design beam Pg.

Whilst such an approach will require m forward passes (inferences) to predict the cross-
section properties of an m sized system (one prediction per beam), it enables the same neural
network to be applied to continuous beam systems of any size m for which the maximum
influence zone value kmax that determined the size of the input vector x0 applies to. Based on the
principle of influence zones, the neural network will be able to make predictions for continuous
beam systems of size greater than the fixed-dimensional input vector sizem> 2kmax + 1, since

10
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Figure 5. An illustration demonstrating the structuring of the neural network inputs
using influence zones and zero-padding with kmax = 2, leading to n= 4kmax + 2= 10
inputs.

Table 1. Ranges and intervals of know priors used for the influence zone evaluation and
data generation.

Property Min. Interval Max.

ω (kNm−1) 5 5 325
L (m) 0.5 0.5 20.0

any information outside the influence zone should by definition not be relevant (for an assumed
ϵmax). On the other hand, zero-padding allows the same neural network to predict along system
edges as well as continuous beam systems of sizes smaller than the influence zone.

3.4. Generating an appropriate dataset

As explained previously, the maximum influence zone kmax size depends on the design con-
straints and an assumed error threshold ϵmax. These design constraints can be defined by set-
ting minimum and maximum ranges on the known priors, UDLs ω and spans L, as well as the
cross-section properties within vector P= [I,Az,Wpl]:

ωmin < ωi < ωmax

Lmin < Li < Lmax

Imin < Ii < Imax

Az,min < Az,i < Az,max

Wpl,min <Wpl,i <Wpl,max.

(14)

Constraints for each of these variables were chosen generously to cover the entire range
of potential continuous beam systems that arise in structural design (from fixed framed multi-
storey buildings to continuous bridge decks). Table 1 highlights the ranges chosen for the
UDLs and spans, along with the interval at which these inputs were sampled at using a random
uniform distribution.
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Table 2. Cross-section properties comparison between universal Beams (UB) from BS
EN10365:2017 and custom generated I-sections. Note in particular thatmean dimension
ratios (dw/tw etc) are identical for both groups of cross-sections.

Diagram Property

UB BS EN10365 Custom I-sections

Min Mean Max Min Mean Max

tw (mm) 4.0 13.0 36.1 3.0 24.0 45.0
dw (mm) 112 550 928 30.3 243 455
tf (mm) 6.8 21.4 65.0 4.8 38.6 72.4
bf (mm) 76.0 220 421 55.5 444 833

dw/tw 23.9 43.9 59.9 43.9 43.9 43.9
tf/tw 1.19 1.61 1.90 1.61 1.61 1.61
bf/tw 8.7 18.5 27.5 18.5 18.5 18.5

Az (cm2) 4.47 87.9 334 4.1 329.2 922
I (cm4) 473 233× 103 1.25× 106 305 3.34 ×106 15.5 ×106

Wpl (cm
3) 84.2 6110 28.0× 103 49.4 44.9× 103 167× 103

Although arbitrary cross-section property combinations could have been chosen for I, Az
and Wpl, using cross-section properties from an explicitly defined set ensures the predicted
cross-section properties are physically realistic. Initially, the standardised UB cross-sections
from BS EN 10365 [57] were considered. However, the minimum and maximum cross-section
properties from this set were not sufficient for the lightest and heaviest loading conditions
possible under the design constraints set by table 1. For this reason, a set of custom I-sections
were generated and used exclusively for all members.

These custom I-sections were generated by averaging the geometrical ratios between the
web depth dw, flange thickness tf, flange breadth bf and the web thickness tw that arise in BS
EN 10365 [57]. Aside from ensuring that they share commonalities with the UBBS EN 10365,
this process also ensured at minimum Class 2 sections [51] to allow the use of plastic cross-
section properties. 1000 individual cross-sections were generated that ensured equal spacing
across these ratios. The resulting granularity (as opposed to the 91 within BS EN 10365) meant
that the utilisation ratio precision achievable during data-generation was significantly higher.
The custom I-sections and associated cross-section properties are shown in table 2.

Together, these efforts ensure that the dataset on which the neural network is trained on
covers sufficient breadth in terms of the input and output space to generalise for a wide vari-
ety of continuous beam systems. The dataset generated based on the aforementioned design
constraints, the concept of influence zones, and the technique of zero-padding were chosen
with the aim to maximise the generalisability of the inverse operator for any system size m,
UDLs ω and spans L. This leaves only the utilisation ratios u as the remaining input vari-
able in equation (11). Instead of passing utilisation ratios as explicit inputs to the network, it
was decided that the dataset will be generated so that all beams closely correspond to the tar-
get utilisation ratio utarget. The network will therefore implicitly learn the utarget from the data
itself.

The dataset was generated by designing continuous beam systems of size m= 2kmax + 1
with each member having a span L and UDL ω value drawn from a random uniform distri-
bution based on the discretised ranges and intervals specified in table 1. These heterogen-
eous structural systems were modelled and optimised using third-party software (Rhino3D©,
Grasshopper© and Karamba3D© [58]) after having identified the influence zone kmax for the
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Figure 6. Generalised neural network structure with known priors from the influence
zone kmax as the input layer x0 and cross-section properties of the beam as the output
layer xD.

design constraints in tables 1 and 2. The beams were optimised for minimum depth against
ULS cross-section checks from EN 1993-1-1 6.2 [51] using a coupled analysis and design
procedure [50] with a target utilisation ratio of utarget = 0.99.

3.5. Neural network training procedure

The generalised neural network structure developed in this work is shown in figure 6.
Identifying an appropriate architecture in terms of height H, depth D and activation functions
ad requires experimentation. The choice of loss function J to compare predicted targets x̂D
against true targets xD also form part of the experimentation process.

3.5.1. Loss functions and performance metrics. In this study, four different loss functions
were investigated as shown in table 3. These include the mean absolute error (MAE) and mean
square error (MSE) loss functions that are commonly used for regression models. One limita-
tion associated with both is that their derivates (in respect to predicted targets) back-propagate
the model parameters θ with no regards what the relative size of the error is in relation to the
magnitude of the output variables I, Az and Wpl.

This is problematic given the orders of magnitude difference between the largest and smal-
lest section properties of the custom I-sections as shown in table 2. An error of 100cm4 for
I would cause the same back propagation adjustment using MAE or MSE regardless if the
true second moment of area value target is 305cm4 or 305× 105 cm4. As a consequence, both
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Table 3. Loss functions to be tested with p predicted targets x̂D, p true targets xD and
small ϵ to avoid division by zero errors.

Name Formula Derivative

Mean absolute error JMAE =
1
p

p∑

i=1

|x̂D,i− xD,i| JMAE
′ =

1
p

p∑

i=1

{
−1, x̂D,i < xD,i
1, x̂D,i > xD,i

Mean squared error JMSE =
1
2p

p∑

i=1

(x̂D,i− xD,i)
2 JMSE

′ =
1
p

p∑

i=1

x̂D,i− xD,i

Mean absolute percentage error JMAPE =
1
p

p∑

i=1

∣∣∣∣
x̂D,i− xD,i
xD,i+ ϵ

∣∣∣∣ JMAPE
′ =

1
p

p∑

i=1

{
−1

|xD,i+ϵ|
, x̂D,i < xD,i

1
|xD,i+ϵ|

, x̂D,i > xD,i

Mean squared percentage error JMSPE =
1
2p

p∑

i=1

(x̂D,i− xD,i)2

|xD,i+ ϵ|
JMSPE

′ =
1
p

p∑

i=1

x̂D,i− xD,i
|xD,i+ ϵ|

MAE and MSE would prioritise minimising the absolute error, which mathematically favours
target values of large magnitudes at the expense of smaller ones.

To address the above mentioned issue, percentage-based versions of both MAE and MSE
were tested, defined in table 3 as the mean absolute percentage error (MAPE) and the mean
squared percentage error (MSPE). Whilst MAPE is commonly used, MSPE is not tested in
practice. Both MAPE and MSPE ensure that during back-propagation, the optimiser updates
model parameters in proportion to the relative deviation between predicted x̂D and true out-
puts xD, which should be a better performance criterion to address the orders of magnitude
difference in the output space that arise in these particular continuous beam systems.

Regardless of the choice of loss function, MAPE will be used as a comparison metric
between different networks. However to study the dispersion of prediction errors, an accuracy
metricM will also be evaluated with minimum, 0.5%, 2.5%, 50% (median), 97.5%, 99.5% and
maximum percentile values. This will allow the evaluation of the 95% and 99% confidence
intervals (CI) and help identify the range of over and under prediction of outputs, which is
important in the context of safe structural design:

M(x̂D,xD) =
1
p

p∑

i=1

x̂D,i
xD,i

=
1
3

(
Î
I
+
Âz
Az

+
Ŵpl

Wpl

)
. (15)

3.5.2. Activation functions. The activation functions tested in this work are listed in table 4,
and includes the commonly used rectified linear unit (ReLU) function amongst others [56]. A
distinction is drawn between the inner activation functions ain within the hidden layers, and the
outer activation function aout, that evaluate the target values xD. All inputs and outputs were
scaled between 0 and 1 by dividing the values by the maximum magnitude of the features and
targets within the training and validation set, respectively. Therefore, it is important to choose
only output activation functions compatible with the scaled values of the targets as reflected
by the range of aout functions listed in table 4.

3.5.3. Height and depth analysis. The appropriate size of a neural network in terms of height
H and depth D was found by finding a suitable trade-off between under and over fitting the
model parameter space. The design complexity of continuous beam systems will likely be

14



Inverse Problems 40 (2024) 055011 A Gallet et al

Table 4. Table of inner ain and outer aout activation functions to be tested with weight
vector w, bias vector b and layer vector x.

Name Formula ain aout

Rectified linear unit (ReLU) aReLU =max(wx+ b,0) ✓ ✓

Sigmoid asigm = 1/(1+ ewx+b) ✓ ✓

Hyperbolic tangent atanh = tanh(wx+ b) ✓

Exponential aexp = ewx+b
✓

Table 5. Options and/or ranges of neural network learning parameters and hyperpara-
meters tested, along with selected parameters for all training runs presented in results.

Neural network training aspect Options/range considered Selected

Optimiser SGD, RMSprop, Adam, Nadam Nadam
Learning rate α= [0.0001,1.0000] α = 0.0005
Initialiser Gaussian with µ= 0, σ = [0.00,1.00] σ= 0.05
Batch-size [128,8192] 1024

reflected in deeper and wider neural networks than those considered in previous literature [31]
due to the large number of load arrangements that may be critical, the numerous design criteria
that govern the design, and the variety of viable cross-sections. For this reason, a wide range
of heights and depths were tested. The size of the networks were denoted by a simple syntax
based on the architecture of the hidden layers. For example, ‘50–50–50’ refers to a neural
network with three hidden layers with 50 nodes each.

3.5.4. Other neural network parameters and hyperparameters. Given the large dataset size
and computational resources required for training, a simple hold-out strategy was deemed
appropriate as opposed to other validation strategies [59], and hence the final dataset was
randomised and split into training, validation and testing sets using a 70%, 15%, 15% split,
respectively. The testing set was only used once after an appropriate neural network architec-
ture was found experimentally. A robustness check with various initialiser seeds was carried
out on the final architecture. Other neural network training aspects, such as optimisers, types of
initialisers, learning rates and batch-sizes were chosen empirically based on MAPE perform-
ance and qualitative comparison of learning behaviour. The options/ranges for each of these
are summarised in table 5. All stochastic elements were controlled through explicit initialiser
seeds.

3.6. Summary of methodology

The following procedure was adopted to develop the machine learned inverse operator:

1. Evaluate the maximum influence zone kmax for the continuous beam system using the pro-
cedure from [37] based on the design constraints specified in tables 1 and 2.

2. Design continuous beam systems of sizem= 2kmax + 1 using a coupled analysis and design
approach [50] with a target utilisation ratio utarget = 0.99. Each beam within the continuous
beam system will correspond with one data point, with zero-padding for edge or near-edge
beams as shown in figure 5. Finally, split and normalise the data into a training, validation
and testing set as explained in section 3.5.4.
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Figure 7. Influence zone results for a m= 17 system with ϵmax = 0.02 based on the
design constraints established by tables 1 and 2 using the methodology from [37].

3. Develop the neural network model using the following steps:
3.1. Assume a standard 50–50 architecture and test out the various combinations of loss and

activation functions as identified tables 3 and 4, respectively, based on 100k training
data points.

3.2. Test various height H and depth D variations as explained in section 3.5.3 based on
100k training data points.

3.3. For the best architecture (height, depth and activation function), test the performance
against different training set sizes.

4. Evaluate the performance of the final neural network against the testing dataset and conduct
a robustness test using various initialiser seeds for the weights and biases.

4. Model development and results

4.1. Influence zone size estimation

The maximum influence zone kmax of continuous beam systems subject to design constraints
specified by tables 1 and 2 was established. Using the procedure from [37], 25 random UDL
and span distributions were generated for a m= 17 sized system and designed against ULS
checks fromEN1993-1-1 [51] using the custom I-sections specified in table 2with a target util-
isation ratio utarget = 0.99. This led to the creation of 10 625 continuous beams (25× 25× 17).
Each beam’s influence zone value was evaluated using an error threshold of ϵmax = 0.02. This
threshold was selected based on the expected MAPE performance achievable with the multi-
layered neural network, with the results shown in figure 7. The results indicate that the average
and maximum influence zone size is kmax = 1.75 and kmax = 5, respectively. This suggests the
system size required for the dataset generation is m= 2kmax + 1= 11, and the required input
layer size is 4kmax + 2= 22. This influence zone evaluation took 5 hours of computation time.

4.2. Data generation, visualisation and pre-processing

Drawing from uniform distributions for spans and UDL values identified in table 1, two data-
sets were created. The first consists out of 266 unique UDL ω and span L permutations
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Figure 8. Sub-selection of data points from the initial 1471 327 dataset based on a ULS
utilisation ratio u range of 0.97–1.00. The 1000k CBeamXP dataset was drawn from the
green sets.

of m= 11 sized continuous beam systems, and the second out of 251 unique permutations.
A coupled analysis and design optimisation approach [50] with a target utilisation ratio
utarget = 0.99 based on ULS cross-section checks [51] and all critical load arrangements [37]
was implemented to find the appropriate custom I-section from table 2 for each beam within
the system. This process resulted in 1471 327 individual data-points (11× (2662 + 2512)) that
took 3.5 days to generate.

The distribution of utilisation ratios achieved for the specified target utilisation ratio utarget =
0.99 are shown in figure 8(a). Since the design space is limited to discretized cross-section
properties the utilisation target ratio utarget = 0.99 was rarely met exactly. Therefore, a sub-
selection of this dataset took place, discarding all of the beams that fell outside of utilisation
ratio range 0.97⩽ u< 1.00.

Although only 54 322 data-points belonged to the discarded set, the dataset was further
stripped of all data points which had beam members within their system that belonged to the
discarded set, even if those beams themselves fell within the selected utilisation ratio range.
These data points are defined as the ‘Imperfect set’ in figure 8(a). This process removed another
415 038 data-points. This left 1001 957 data points (1471 327–415 038–54 322), each repres-
enting a beam within a m= 11 member system and the surrounding design information from
the influence zone of valid structural designs under ULS conditions. This set was randomised,
further stripped of another 1957 data points, to yield a dataset size of exactly 1million (1000k).

This 1000k dataset was named CBeamXP: continuous beam cross-section predictors [60]
and represents ULS compliant beam systems of system size m= 11 with utilisation ratios
between 0.97⩽ u< 1.00. The CBeamXP dataset was split into a training, validation and test-
ing set using a 70%, 15%, 15% split as shown in figure 8(b). Histograms of the spans, UDLs,
utilisation ratios and cross-section indices (corresponding to one of the 1000 custom I-sections
in ascending stiffness order) are shown in figure 9. For pre-processing, all inputs and outputs
were divided by the maximum value within the training and validation set.

17



Inverse Problems 40 (2024) 055011 A Gallet et al

Figure 9. Frequency distributions for various descriptor variables of the CBeamXP
dataset. Spans and UDL values are uniformly distributed, whilst the selected cross-
section indices of the optimised beam systems follow a normal distribution.

Table 6. Validation MAPE metrics at epoch 1000 for different combinations of loss J,
inner ain and outer aout activation functions for a 50–50 architecture using 100k training
and 150k validation data points. MAPE values of less than 0.100 (10%) are in bold.

JMAE JMSE

aout,ReLU aout,sigm aout,exp aout,ReLU aout,sigm aout,exp

ain,ReLU 0.105 0.164 0.143 0.116 0.168 0.146
ain,sigm 0.558 0.158 0.168 0.568 0.250 0.243
ain,tanh 0.205 0.143 0.133 0.274 0.160 0.147

JMAPE JMSPE

aout,ReLU aout,sigm aout,exp aout,ReLU aout,sigm aout,exp

ain,ReLU 0.072 0.090 0.091 0.089 0.093 0.089
ain,sigm 0.707 0.129 0.124 0.707 0.147 0.137
ain,tanh 0.205 0.083 0.083 0.235 0.082 0.087

4.3. Network architecture development results

4.3.1. Loss and activation function variations. The neural network development began by
evaluating the MAPE performance of 50–50 architectures for different loss functions J, inner
ain and outer aout activation functions. These networks were trained for 1000 epochs using
100k datapoints from the training set, yet validated against the entire 150k validation set. The
total training time was 5 h with results shown in table 6.

The results clearly indicate that the percentage-based loss functions JMAPE and JMSPE typic-
ally outperform their non-percentage-based counter-parts. Performance between either JMAPE

and JMSPE was relatively similar, with all MAPE values of less than 10% (0.100) bolded. JMAPE

was chosen as the loss function for this investigation due to it being more commonly used. The
five best inner and outer activation function combinations in table 6 under JMAPE (bolded val-
ues) were subsequently qualitatively analysed.
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Figure 10. Loss and accuracy profiles for ain,ReLU and aout,exp networks at epoch 1000
with JMAPE with two hidden layers of equal height. Training set size of 100k and valid-
ation set size of 150k.

This qualitative analysis highlighted that using ReLU as an outer activation function allows
the prediction of null cross-section properties. This is an invalid prediction since the model
operates on the basis that a beam with some minimum cross-section properties must exist in
the context of this structural system. A similar limitation applied for the sigmoid activation
function which asymptotically approaches the value of one at positive infinity. This limits
the network’s ability of predicting cross-sections larger than those found within the training
and validation dataset. For these reasons, the aout,exp function was selected for this particular
network architecture since aout,exp does not result in zero-valued cross-section properties and
also does not impose an upper limit on the outputs. From the remaining viable networks, the
ain,ReLU and aout,exp architecture converged the quickest and was therefore chosen for further
development in this study.

4.3.2. Height and depth variations. The architecture of the hidden layers (height H and
depth D) needs to be sufficiently expressive to reflect the design complexity of continuous
beam systems, and need to avoid under- and over-fitting the model. Therefore, comparison
between training and validation performance is needed. The 100k training and 150k validation
sets from section 4.3.1 were re-used for this purpose. Figure 10 compares the performance of
various networks containing two hidden layers of varying heights at epoch 1000. The combined
training time of these networks was 22 h. The 600–600 network was identified as the point at
which the performance transitioned from under-fitting to slight over-fitting. Figures 10(b) and
(c) further indicate the accuracy profiles for both training and validation, respectively. Note that
the maximum validation accuracy values greatly exceed the value of at least 19 (1900%) for
all networks, regardless of height, meaning the network predicted cross-sectional properties
19 times larger than the target value.

The ‘optimal’ number of hidden layers for height 600 was investigated, with results shown
in figure 11. This resulted in a combined training time of 12 h. Networks with more than three
hidden layers showed no major improvements in either training or validation performance
except in minimum training accuracy. However, this was not associated with an improvement
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Figure 11. Loss and accuracy profiles for ain,ReLU and aout,exp networks at epoch 1000
with JMAPE with hidden layers of height H= 600. Training set size of 100k and valida-
tion set size of 150k.

Figure 12. Loss and accuracy profiles for 600–600–600 ain,ReLU and aout,exp network at
epoch 1000 with JMAPE for various training dataset sizes, with a validation set size of
150k.

in minimum validation accuracy as shown in figure 11(c). For these reasons, a depth of three
hidden layers was deemed appropriate.

4.3.3. Dataset size variations. Figure 12 shows the change in performance as a function of
the training dataset size, from 25k to 700k data points, with the same 150k validation dataset as
in the previous sections. The combined training time was 1.5 d. Except for slight variations in
the minimum and maximum accuracy values, the performance of the neural network naturally
improved with a larger training set.
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Figure 13. Loss and accuracy profiles for 600–600–600 ain,ReLU and aout,exp network at
epoch 1000 with JMAPE, 700k training and 150k validation sets. Note use of logarithmic
y-axis to show the full range of maximum validation accuracies.

Table 7. Loss and accuracy profiles for 600–600–600 ain,ReLU and aout,exp network at
epoch 1000 with JMAPE, 700k training, 150k validation sets and 150k testing set.

Dataset Data type MAPE

Accuracy percentiles

Min 0.5% 2.5% Median 97.5% 99.5% Max

Training
Results 0.009 0.802 0.980 0.990 1.007 1.030 1.048 1.272
σinitialiser 0.000 0.161 0.013 0.010 0.007 0.010 0.014 0.138

Validation
Results 0.016 0.275 0.920 0.968 1.006 1.058 1.133 26.811
σinitialiser 0.001 0.058 0.014 0.010 0.007 0.012 0.018 4.977

Testing
Results 0.016 0.313 0.917 0.967 1.006 1.058 1.138 12.282
σinitialiser 0.001 0.070 0.012 0.010 0.007 0.012 0.018 2.189

4.4. Model performance: testing and robustness

The final neural network model consists of a 600–600–600 architecture with ain,ReLU and
aout,exp activation functions trained using the JMAPE loss function based on a training and val-
idation dataset size of 700k and 150k data points, respectively, with learning graphs shown in
figure 13. The neural network at epoch 1000 was also evaluated against the testing set created
in figure 8, and checked for robustness by re-training the same network a further 9 times using
different kernel initialiser seeds, which took 4.5 d. The general model performance results and
standard deviations σinitialiser due to these different initialiser seeds is summarised in table 7.

The similar performance between the testing and validation set in table 7 strongly suggests
that the model is likely to generalise well to new data-points. The impact of changing initialiser
seed is minimal except for the minimum and maximum accuracy values.
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Figure 14. Generalisability performance of the final 600–600–600 neural network in
terms of MAPE and accuracy for unseen structures of varying system size m.

5. Discussion

5.1. Model generalisability

One of the fundamental objectives of this work was to develop a machine learned structural
design model capable of generalising beyond the system size m= 11 it was trained on. To
achieve this, the influence zone concept was leveraged with zero-padding to theoretically allow
the neural network to make localised predictions for continuous beams of arbitrary system
size m. To test this, over 1000 additional testing data-points were generated using the same
methodology as described in section 3.4 and sub-selection process as shown in section 4.2 for
each system size 1⩽ m⩽ 20 (including m= 11). The MAPE and accuracy performance are
shown in figure 14.

Figure 14 indicates that the machine learned inverse operator demonstrates strong gener-
alisation capability for continuous beam system sizes m⩾ 5 with MAPE≈ 2%. System sizes
m< 5 saw a slightly deteriorating MAPE values of 5%–6%. These are encouraging results
given that the neural network was never trained on system sizes less or greater than m= 11.
The greatest variations in performance were typically in the maximum and minimum accuracy
values; in fact the model performed often better in terms of maximum performance for system
size other than m= 11.

These results provide merit to the novel implementation of the influence zone concept [37]
as a mechanics driven feature selector and using zero-padding to build machine learned inverse
operators capable of generalising to differently sized continuous structural systems. This opens
the possibility of investigating the applicability of this methodology for two or three dimen-
sional frames. Furthermore, these results also provide a solution to the limitation of fixed-
dimensional input vectors of multi-layer neural networks [38].

In recent years, other researchers have investigated the development of generalisable
machine learning models; most of these efforts have focused on machine learned forward
operators [38, 39, 61].Within the realm of structural design inverse operators, researchers have
noted that the question of generalisability remains typically under-investigated [32]. Whilst
previous works studied the ability of neural networks to generalise under different bound-
ary conditions [33, 34], this work distinguishes itself on generalising across differently sized
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Figure 15. Custom box plots of accuracies vs. variables in binned deciles. Total load (f)
correlates with the greatest dispersion σ(σDeciles) = 0.045, which can also be identified
visually.

systems. Combining the underlying techniques behind these studies may allow one to train a
generalisable model of arbitrary size and arbitrary boundary conditions.

5.2. Performance variability

This investigation also differentiated itself from previous works by measuring the variability
of predictions in terms of accuracies. Notably, this allowed one to identify the range of over-
and under-predictions, which are not captured by average loss function metrics such as MAE
or MAPE. Despite gradual improvement within the 95% and 99% confidence intervals, the
final performance graph in figure 13 indicates that the confidence intervals of the validation
set lag those of the training set. The same can also be said for the testing set, especially for
maximum and minimum accuracies as shown in table 7.

To identify potential causes of this divergence in performance between the training and
testing set, custom box plots of testing accuracies were generated for a number of variables
that describe the dataset, ordered based on ascending deciles (D0–D10). By evaluating the
standard deviation of each decile’s accuracy values, and taking the standard deviation of those
standard deviationsσ(σDeciles), one can quantify numericallywhich variable causes the greatest
dispersion of the accuracy values. These results are shown in figure 15.

By studying figure 15 in detail, it was identified that the total load variable ω0 × L0 caused
the greatest σ(σDeciles) dispersion as seen in figure 15(f). Figure 15(f) also showed the most
identifiable demarcation between low and high accuracy results. The prediction variability of
cross-section properties of a beam is the worst when the combined product of both the UDL
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Figure 16. Total load heatmaps which evaluates the (a) average MAPE and (b) max-
imum MAPE values for all UDL ω0 and span L0 combinations. Notice how maximum
MAPE errors occur at low total load combinations (ω0 × L0) within the first decile up
to D1.

load ω0 and span L0 fell in the lowest Decile (<D1). This pattern can also be identified by
studying heat-maps of the average and maximumMAPE performance which occurred at each
ω0 and span L0 combination within the dataset as shown in figure 16.

Using structural engineering intuition, one infers that the design of short and lightly loaded
spans is more likely to be influenced by the UDLs of the surrounding members within a con-
tinuous system. Whilst the influence zone concept ensures the pertinent design information is
contained within the inputs, providing that information solely in the form of an input vector
may not be sufficient to make accurate predictions under all circumstances. The fact that there
were also wide prediction variabilities for the smallest deciles for both the second-moment of
area and stiffness values as shown in figures 15(b) and (c) suggests that exposing the machine
learning model to additional physics knowledge (other than influence zones) of the structural
system may lead to further improvements.

In one of the early studies, Berke et al [28] noted that despite achieving relatively low
prediction errors on average, neural network predictions can occasionally vary significantly.
In more recent works, the presence of large error predictions (over >40%) were noted and
manually removed from the final reported average prediction error metric [33]. The results
from this study highlight that this variability issue needs to be further addressed. So far, the
authors have identified only a single study that investigated error variability when evaluating
machine learning performance for civil and structural engineering applications [31]. The use of
the accuracy metric along with its minumum, maximum, 95% and 99% metrics could provide
a framework to study error variability in more detail.

5.3. Other neural network performance observations

Despite using a simple multi-layer neural network for the structural design inverse operator
O†

inv, the development procedure successfully lowered the validation error from MAPE values
of≈10% in table 6 to 1.6% in table 7, a performance that was matched by the testing dataset as
well. This was attributable to numerous factors, a notable one being the use of the percentage
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based loss function, which as anticipated in section 3.5.1, was more suitable for the dataset
given the orders of magnitude differences in the targets. The use of the exponential output
activation function aexp may also have positively contributed to dealing with target values that
vary greatly in magnitude.

The lack of literature on machine learned structural design models for continuous beam
systems means that a direct comparison of the 1.6% MAPE performance is not possible at
present. However, one can compare this performance with performance metrics of structural
design models developed for different applications. For example, the network developed in
this work outperformed previous multi-layer neural network regression models; an early con-
crete beam prediction model achieved a MAPE value of 10.17% [27], whilst a cross-section
predictor of aerospace components averaged out at a MAPE value of 5% [28]. The network
presented in this study also performed well when compared to more advanced network archi-
tectures such as convolutional neural networks for topologically optimised truss structures
that achieved voxel value errors of 5.63% [33]. Comparison with further works that developed
machine learned structural design models was not possible for studies which reported per-
formance with non-percentage based metrics such as MAE [29] or MSE [31, 32, 47].

This study also differentiates itself by the quantity of data it was trained on (up to 700 000
data-points), which based on figure 12 helped improve validation performance. Early works
from the 1990s had training set sizes smaller than 100 data-points [27–29], and even more
recent literature only trained using 600 [31], 12 000 [32] 28 000 [33] or just under 40 000 [34]
data-points. Whilst large datasets significantly increase computational cost, the combination
of big data and more advanced neural network architectures may improve performance further,
both in terms of average error and prediction variability.

5.4. Limitations and scope for future works

There are multiple limitations that restrict practical use of the proposed design model. The first
is the fact that the structural systems within the dataset were designed against ULS constraints
only, and made other assumptions on the nature of the design problem listed in section 2.2. The
generalisability of the model, specifically for system sizes m< 5 also requires further work,
and the issue of prediction variabilitywill also require additional investigation in terms of either
model architectures or generating larger datasets. Furthermore, there likely exist a wide range
of mathematical techniques from inverse problems that could aid in developing and assessing
operators for structural design problems, by for example estimating the Lipschitz coefficient
of the mapping. These limitations provide a clear basis for further works in the future.

On another note, table 8 summarises the total computation time required for the entirety of
the results section. Whilst the computation time could have been accelerated through parallel-
isation, improved computation resources and simplification of metric evaluations algorithms,
the purpose of table 8 is to indicate the relative proportion of time spent at each stage. Greater
computational resources may allow investigations using alternative validation strategies such
as k-fold cross-validation [59] and automated hyperparameter selection procedures [62] that
could result in improved performance. A significant portion of the computation effort was spent
simply generating the data-points for training, validation and testing. In light of encouraging
reproducibility studies [63] and to encourage research that improves the predictive capability
of the machine learned structural design model presented here, the CBeamXP dataset along
with an associated python-based neural network training script are made available at an open-
source data repository [60].

25



Inverse Problems 40 (2024) 055011 A Gallet et al

Table 8. Computation time for each neural network development stage.

section Stage

Computation time

Proportion [%]In hours (h) In days (D)

Section 4.1 Influence zone evaluation 5 0.2
33

Section 4.2 Data generation and pre-processing 84 3.5

Section 4.3.1 Loss and activation function study 5 0.2
27Section 4.3.2 Height and depth study 34 1.4

Section 4.3.3 Dataset size study 36 1.5

Section 4.4 Testing and robustness study 108 4.5 40

Total computation time: 272 11.3 100

6. Conclusions

This work developed a new neural network based structural design model to predict cross-
section property requirements of continuous beam systems non-iteratively. The major contri-
butions of this investigation include:

• Framing structural design as an inverse problem, and using this novel perspective to identify
three distinct types of machine learning applications. One of these types, machine learned
inverse operators, were investigated in this work to develop a non-iterative structural design
model. This presents a fundamental shift from traditional design approaches.

• Developing a non-iterative structural design model for continuous beam systems of arbitrary
member size through the novel use of influence zones [37] to provide a mechanics-driven
feature selection process that enhanced the model’s generalisability.

• Achieving a mean absolute percentage error of 1.6% which was lower than machine learned
structural design models from comparative literature. This performance was attributable to
the careful consideration of the network architecture in terms of height and depth of the
hidden layers, the selection of loss and activation functions that were appropriate to address
the challenges posed by continuous beam system, and a dataset size of 700 000 data points.

• Identifying the importance of measuring and reducing prediction error variability. In this
study the 99% confidence interval for testing accuracy was between 91.7% and 113.8%.
Reducing prediction variability is a significant knowledge gap in literature, especially in
regards to machine learning applications within safety critical systems such as structural
design.

The CBeamXP dataset generated in this work containing one million data-points along with
an associated python-based neural network training script were published at an open-source
data repository [60]. Aside from allowing results to be reproduced, sharing this data will hope-
fully encourage future research towardsmachine learned structural designmodels that improve
the mean absolute percentage error, generalisability, or prediction variability achieved in this
investigation.
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