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Freedom comes at a cost?: An
exploratory study on
affordances’ impact on users’
perception of a social robot

Guanyu Huang* and Roger K. Moore

The Speech and Hearing Research Group (SpandH), Department of Computer Science, University of
Sheffield, Sheffield, United Kingdom

Along with the development of speech and language technologies, the market
for speech-enabled human-robot interactions (HRI) has grown in recent years.
However, it is found that people feel their conversational interactions with such
robots are far from satisfactory. One of the reasons is the habitability gap, where
the usability of a speech-enabled agent drops when its flexibility increases.
For social robots, such flexibility is reflected in the diverse choice of robots’
appearances, sounds and behaviours, which shape a robot’s ‘affordance’. Whilst
designers or users have enjoyed the freedom of constructing a social robot
by integrating off-the-shelf technologies, such freedom comes at a potential
cost: the users’ perceptions and satisfaction. Designing appropriate affordances
is essential for the quality of HRI. It is hypothesised that a social robot with
aligned affordances could create an appropriate perception of the robot and
increase users’ satisfaction when speaking with it. Given that previous studies of
affordance alignment mainly focus on one interface’s characteristics and face-
voice match, we aim to deepen our understanding of affordance alignment
with a robot’s behaviours and use cases. In particular, we investigate how a
robot’s affordances affect users’ perceptions in different types of use cases.
For this purpose, we conducted an exploratory experiment that included three
different affordance settings (adult-like, child-like, and robot-like) and three
use cases (informative, emotional, and hybrid). Participants were invited to
talk to social robots in person. A mixed-methods approach was employed for
quantitative and qualitative analysis of 156 interaction samples. The results show
that static affordance (face and voice) has a statistically significant effect on the
perceived warmth of the first impression; use cases affect people’s perceptions
more on perceived competence and warmth before and after interactions. In
addition, it shows the importance of aligning static affordance with behavioural
affordance. General design principles of behavioural affordances are proposed.
We anticipate that our empirical evidence will provide a clearer guideline for
speech-enabled social robots’ affordance design. It will be a starting point for
more sophisticated design guidelines. For example, personalised affordance
design for individual or group users in different contexts.

KEYWORDS

human-robot interaction (HRI), affordance, anthropomorphism, spoken interaction, use
cases, mixed-method approach
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1 Introduction

In recent years, people have shown great interest in interacting
with speech-enabled artificial agents, such as voice assistants in
smartphones or smart speakers and social robots with embodiment.
Springing from the ‘command and control systems’ of the 1970s,
these agents now can act more actively in social interactions in
the healthcare, education, entertainment and other social industries
(Bartneck et al., 2020, p.163). Given the diversity of the use cases,
there is a need to explore the appropriate designs of social robot
interfaces in different use cases. What should a social robot
look, sound, and behave like in given situations? The design
challenges are several-fold. For example, how to increase an agent’s
social acceptability so people feel comfortable interacting with it
(Dautenhahn, 2007); how to avoid the phenomenon known as the
‘uncanny valley’ (Mori et al., 2012), where a negative emotional
response would be triggered when an artificial agent is very human-
like but not convincingly so; also, how to increase discoverability
(Norman, 2013, p10) to help users figure out how an agent works
and what operations are possible.

In this last regard, we conduct our study within the framework
of the affordance theory. Adopted from Gibsonian psychology
(Gibson, 1977), affordance in the design field refers to the
relationship between a physical object and an interacting agent,
which affects people’s perception of a physical object and determines
how the object could possibly be used (Norman and Love,
2004; Norman, 2008; 2013). According to this theory, perceivable
affordances of a social robot are related to its appearance, sound
and behaviours (e.g., facial expressions and language behaviours).
Previously, many studies of the social robot’s design focused on
the uncanny valley. For example, perceptual mismatches of facial
features (MacDorman and Chattopadhyay, 2016) and face-voice
stimulus (Mitchell et al., 2011) could reduce users’ sense of affinity.
Bearing in mind the importance of aligning face and voice stimulus,
our focus in this study is to examine the alignment of a robot’s static
and behavioural affordances in various use cases. Specifically, our
goal is to examine whether and how a social robot’s affordances
should align with its designated roles in different types of use cases.
Our research interests are about how a robot’s affordances affect
people’s perception of it before and after interactions in different use
cases. For example, would people favour a more robot-like agent
for an informative use case and a more human-like agent for an
emotional use case? If so, how?

To address these questions, we adopted a mixed-method
approach to examine statistical relations and gain insights from
listening to participants’ voices. The quantitative method explores
potential correlative relationships between independent variables
(affordances and use cases) and people’s perceptions of the robot.
The data is collected via questionnaires before and after a participant
interacts with a robot. The qualitative method collects data from
semi-structured interviews after the experiment and generates
thematic analysis.The social robot ‘Furhat’ is used in the experiment
because it can change faces and voices in the same embodiment
(Furhat Robotics, 2023). Two independent variables are examined
in various settings: the robot’s appearance and voice (adult-like,
child-like and robot-like) and use cases (informative, emotional and
hybrid). The results show that use cases have statistical significance
in affecting people’s first impressions of a robot’s competence,

warmth and their motivation to interact with the robot, as well
as post-interaction perceived competence and warmth, especially
between informative and emotional use cases. Static affordances,
such as face and voice, have statistical significance in affecting
people’s first impressions of a robot’s warmth but no statistical
significance on post-interaction perceptions. In addition, it shows
controversial views of aligning static affordance with behavioural
affordance. Some mismatches may cause decreased perceptions
(e.g., a child-like robot behaves rudely). Some mismatches may be
unexpectedly funny (e.g., a robot-like robot says ‘sweet’).

The paper begins by explaining why affordance design matters
in the case of social robots. It then examines evidence and
challenges of multi-modality in affordance design. It moves on
to explain the materials and methods used in the study, with
emphasis given to explaining the design of interactive use cases
and measurements used to collect data. The findings section first
presents the quantitative analysis of the survey results and then
identifies the main themes drawn from the qualitative analysis of
the semi-structured interview.The general discussion reflects on the
main findings, which answer the research questions and limits of
the current work. In the conclusion section, the practical impact
of this study is highlighted. Opportunities for future work are
identified.

2 Background and related work

2.1 Affordance design of social robots

What should a robot look like, sound like and behave like?
One classic principle for robot design is the ‘form-function fit’
(Bartneck et al., 2020). It means that the form of a robot needs to
reflect its function. This principle has been well tested and applied
for robots which provide labour services, such as floor cleaning
robots (Prassler et al., 2000), a feeding robot (Nanavati et al., 2023)
and a navigation robot (Asakawa, 2023). In recent decades,
robots have been used more widely in social domains, such as
education, healthcare, and entertainment (Bartneck et al., 2020,
p.163). What a robot provides progresses from visible, tangible
physical labour value to more abstract information and emotional
value. Social robots go beyond carrying out orders in Command
and Control Systems and providing information in Interactive Voice
Response Systems; they can also provide emotional support in social
domains (Moore, 2017). The appliance of the ‘form-function fit’
principle faces more dynamic and complicated situations, such
as providing socially assistive service in healthcare (Yoon and
Lee, 2018; Scoglio et al., 2019) and language and social behaviour
learning in education (Van den Berghe et al., 2019). As robots
‘evolve’ into humans’ social and conversational partners, what does
it mean for their interface design? How should a social robot’s
appearance, voice and behaviours be designed to accommodate
these changes?

The typical design of social robots incorporates
anthropomorphisation, which means making a robot appear and
behave like a human. For example, to add social presence and
visual features such as eyes, ears or a mouth to a robot, project
human-like faces or voices, or display emotions explicitly via facial
expressions and speech. This design implies that human users can
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interact with a human-like robot socially (Bartneck et al., 2020,
p.174). Many efforts have been devoted to developing human-like
interactive technologies. For example, the market giant Microsoft
developed more natural-sounding voices (Huang, 2018); Google
used an AI system which can control its intonation by incorporating
speech disfluencies (e.g., ‘hmm’s and ‘uh’s) and latency lengths
when making phone calls to human users (Leviathan, 2018); the
social robot company ‘Furhat’ offers a wide range of human-
like customisable appearances, which can display various facial
expressions (Furhat Robotics, 2023).

The technological developments offer progressively more
options for human-like appearance, voice and behaviours. However,
the user experience of spoken interaction has proved unsatisfactory
(Moore et al., 2016). Although some studies show the more
human-like an agent is, the more likeable it is (Brooks, 2002;
Kühne et al., 2020), a causal relationship between a social robot’s
anthropomorphic form and more natural social interaction cannot
be shown (Kanda et al., 2004). The positive experience could be
caused by other factors, such as the novelty effect or multimodal
experience (Mayer and DaPra, 2012; Van den Berghe et al., 2019).
In addition, human-like design has risks of falling into the ‘uncanny
valley’ (Mori et al., 2012), which is proved mathematically by Moore
(2012): the more human-like an object is, the more affinity it gains
until a point where the eerie sensation occurs when the human-like
objects highly yet imperfectly resemble actual human beings. There
are also ethical concerns about deceptive human-like designs which
generate fake sentimentality (Danaher, 2020; Hildt, 2021). Hence, a
need arises to explore people’s perceptions of a social robot’s form
in more depth.

Going beyond the first impression, what a social robot looks like,
sounds like and behaves like would also affect people’s perceived
action possibilities, namely, its ‘affordance’.The term ‘affordance’ was
invented by ecological psychologist Gibson (Gibson, 1977) and has
been brought into the psychological study of human-technology
interactions by Norman. Simply put, affordance is a connection
between what people see, what they think is possible and what they
do with an object in a given situation (Norman and Love, 2004;
Norman, 2008; Matei, 2020). People tend to assume that an agent’s
affordance will be in accordance with its capabilities. In the case
of human-robot interaction (HRI), if people encounter a human-
like robot, they expect it to act like a human; if a robot can talk,
people expect it to be able to hold a conversation in natural language
(Bartneck et al., 2020, p.45). In the interaction, people may feel very
disappointed and fall into the habitability gap when they find out
that the robot cannot perform as it appears to be (Moore, 2017).
Thus, it can be said that a robot’s affordances need to be appropriately
designed to represent explicitly its capabilities and to shape users’
expectations of it (Huang and Moore, 2022).

2.2 The challenges of multi-modality and
use cases

As embodied agents, social robots’ affordance is manifested in
many ways, including their appearances, voices, and verbal and
non-verbal behaviours. These multi-dimensional cues increase the
risk of getting a certain aspect wrong and falling into the uncanny
valley (Moore, 2012). The previous studies of ‘the Uncanny Valley’

mainly focus on robots’ appearances, voices andmovements. Studies
show that perceptual mismatches of facial features, such as artificial
eyes on a fully human-like face, would cause negative affinity
(MacDorman and Chattopadhyay, 2016); mismatched face-voice
stimulus (Mitchell et al., 2011) could also reduce users’ sense of
affinity. This study will extend the exploration of such alignment
to a robot’s verbal and non-verbal behaviours in spoken HRI.
In this study, we refer to a robot’s face and voice as its ‘static
affordance’ because they are relatively stable during interactions. For
example, a child-like robot would keep its child-like face and voice in
interactions. Correspondingly, we refer to a robot’s verbal and non-
verbal behaviours as ‘behavioural affordance’. For example, a robot
can change its facial expressions, gazes, and verbal expressions to
deliver messages in interactions. The question that interests us is
how a robot’s static affordance should be alignedwith its behavioural
affordance. For example, how should a robot wearing a child-like
look and voice behave in a conversation? What about a robot with a
robot-like look and voice?

To investigate this question, we take into account what the robot
is used for. Campa (2016) emphasised that scenario and persona
are two essential aspects to ensure that the robot’s behaviours are
as natural as possible. The study by Wilson and Moore (2017) about
voices found that when robots, aliens, and cartoon characters’ voices
are often changed to match the story, these voice alterations are
connected to specific personae. Thus, when it comes to examining
the alignment of affordances of a social robot, it is worth putting
the robot in different use cases and investigating how the same
static affordance design may be more appropriate for one robot
role but less for another. For example, what kind of affordance is
more appropriate for an informative use case in which a robot only
provides information? What about an emotional use case in which a
robot provides emotional values?

Finally, to capture people’s perceptions of social robots used
in social situations, it is sensible to measure people’s social
perceptionsof them.Twodimensionswidelyusedtomeasurepeople’s
social perceptions are warmth and competence (Cuddy et al., 2008;
He et al., 2019). The former captures the perceived friendliness and
good intentions. The latter captures the perceived ability to deliver
on those intentions. This study employs these two dimensions to
measure what people expect robots to be like in different situational
roles.

3 Research hypothesis and questions

Based on the above review, affordance design is crucial to
social robots used in various social domains. Going beyond
anthropomorphisation and the face-voice match, it is necessary
to examine how behavioural affordance should be aligned with
static affordance to help users form an appropriate and consistent
perception of a social robot in given situations. Hence, this paper
aims to understand further what matters in conversational HRI
from three aspects: a robot’s static affordance (appearance and
voice), behavioural affordance (behaviours) andsituational roles.The
researchhypothesis of this paper suggests that a social robotdesigned
with appropriate and consistent affordances helps users form more
stable perceptions and gain more satisfactory experience in spoken
HRI. The research questions (RQs) are as follows.
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• RQ1: How does static affordance impact participants’
perceptions of a robot before and after interactions?• RQ2: How does the use case impact participants’ perceptions of
a robot before and after interactions?• RQ3: How does behavioural affordance impact participants’
perceptions of a robot during interactions?

4 Research materials and methods

Wedesigned an exploratory experiment that invited participants
to complete a series of tasks. In this section, we firstly introduce
the settings of two independent variables in the experiment: three
static affordances and three behavioural affordances applied in
conversational use cases. Examples of the dialogue transcripts of
each use case are provided. Then, we explain the study design,
focusing on the experiment procedure andmeasurements. Lastly, we
give an overview of the participants’ recruitment and attendance, as
well as data analysis plan.

4.1 Affordance and use cases settings

4.1.1 Affordances
The robot used in this study is ‘Furhat’ (Furhat Robotics,

2023). It is a head-only robot with virtual faces that can be back-
projected onto the semi-translucentmasks.This featuremakes using
various face settings possible. ‘Furhat’ also has various human-like
synthesised voices, including neutral British English. Additional
voice effects can be generated to get a robot-like effect with the
assistance of a plug-in voice changer TC Helicon Perform VE.

Three matched face-voice settings are used in the experiment.
They are ‘adult-like’, ‘child-like’ and ‘robot-like’ affordances. Figure 1
shows what each setting looks like. The detailed specifics are as
follows. The adult setting: mask = ‘adult’, face = ‘Alex’, voice =
NeuralVoice.Brian. The child setting: mask = ‘child’, face = ‘Devan’,
voice = NeuralVoice.Kevin. The robot setting: mask = ‘adult’, face =
‘Titan’, voice =NeuralVoice.Brian.The voice of the robot character is
changed via the voice changer tomake it sound like aDalek, a robotic
character in the British science fiction television programmeDoctor
Who (TC-Helicon, 2017, p.14).

4.1.2 Conversational use cases
According to the transformation of the speech-enabled agents’

use cases as described by Moore (2017), social robots can be used
in the physical, informative and emotional domains. These three are
not mutually exclusive and can overlap in a dialogue scene. Since we
focus on conversational interactions, this study does not consider the
physical domain. We aim to study three conversational interactions:
informative, emotional and hybrid.

In the experiment, the informative interaction is a question-
and-answer interaction. In this use case, a robot plays the role
of a respondent who encourages users to ask science and maths
questions and provides answers. The emotional interaction is based
around jokes. In this use case, a robot tells jokes and then responds to
users’ non-verbal reactions.The hybrid interaction is a quiz scenario
which combines informative and emotional elements. In this use
case, a robot plays a quiz hostwho can askmultiple-choice questions,

repeat questions or options, judge users’ answers, and comment on
users’ responses and engagement.

These three use cases were programmed modular dialogue
systems adapted from Furhat’s skill library (FurhatRobotics, 2017).
The main adaptations of the dialogue include (1) changing the start
and end status of the robot via the head and the face light settings.
For example, the robot’s face will brighten up to indicate the robot
is activated for a conversation. The robot’s face will be dimmed to
indicate the end of a conversation. (2) addingWizard-of-Oz (WoZ)1

operations to enable the experimenter to end the conversation and
control the experiment time.

The robot can autonomously keep eye contact with participants
by tracking their heads in social conversation. As for the emotional
elements, facial expressions and verbal responses were programmed
beforehand, which would either be triggered by users’ reactions or
coupled with a robot’s response. The informative science role has
limited facial expressions and uses limited sentimental words in
the conversation. It shows limited affection. The joke role creates
an amicable atmosphere by equipping the robot with functions to
detect users’ smiles and then respond by smiling back. Its language
contains positive and humble tones. The emotion range of the quiz
role contains both positive and negative feelings. A summary table
of emotional settings for each role is provided in Table 1.

Tables of the dialogue flow and an example transcript of each use
case are provided in Tables 2–4.

4.2 Study design

A mixed-method approach has been adopted to understand
better the proposed research questions and gain insights from
listening to participants’ feedback and comments.The study uses the
convergent design, which collects quantitative and qualitative data at
similar times (Creswell, 2014; Creswell andClark, 2017). Integration
of mixed methods occurs by explaining quantitative results with
a qualitative approach and merging quantitative and qualitative
results to form conclusions. (Fetters et al., 2013). In the study,
the quantitative method is used to explore potential correlative
relationships between independent variables (affordances and use
cases) and people’s perceptions of the robot. For example, would
different affordance settings affect people’s perceptions of a robot’s
warmth and competence? The qualitative method is used to
understand what factors make people feel differently.

The experiment included an online survey, a face-to-
face interaction session and a post-experiment interview. The
online survey collects participants’ background information,
including their demographics, first languages and accents, and
their experience of interacting with speech-enabled agents. The
Technology-Specific Expectation Scale (TSES) (Alves-Oliveira et al.,
2015) is used to collect and examine how pre-interaction attitudes.
This is used as the baseline so we can compare how people’s
perceptions change after interactions.

1 The WoZ method means the researcher acts like an unseen ‘wizard’ who

operates the robot remotely with a computer system in a human-robot

interaction experiment. In this way, the participants believe a robot to be

autonomous.
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FIGURE 1
Three static affordance settings used in the experiment: adult-like, child-like and robot-like.

TABLE 1 Emotion settings for three situational roles.

Robot Facial expressions Use of language

Informative Science Role

• Gaze away to indicate ‘thinking’ status
Limited use of sentimental words. Only comment on
questions. E.g., ‘Good question’, ‘Great question’,
‘Interesting.’• Raise brow to indicate waiting for questions for a long

time

Emotional Joke Role

• smiling detection: Detect a user’s smiling and take
smile back actions; calculate the number of
milliseconds spent laughing

• Ask how users feel

• 25% of the time, it returns a small smile • React on users’ feelings. E.g., ‘I am sorry to hear that.’,
‘Great to hear.‘, ‘Wow! You really liked this joke!’• 50% of the time, it returns a big smile • Offer to make people happy. E.g., ‘do something to
cheer you up’, ‘increase your happiness a few notches’• After a smile, it waits 5 seconds • Be humble. E.g., ‘I am trying to learn some humours’,
‘Could I test a few jokes on you?’

Hybrid Quiz Role

• Smile when answers are correct • Short comment on right answers. E.g., ‘Great!’• Frown when answers are incorrect • Short comment on wrong answers. E.g., ‘Too bad.’• Raise brows when asked to repeat a question • Short comment on slow responses. E.g., ‘Too slow!’, ‘A
bit too slow amigo.’• Surprise when asked to repeat options • Give an order. E.g., ‘Look at me.’• Big smile when asking users to pay attention

The in-lab interaction session requires participants to have three
face-to-face spoken interactions with a social robot in an HRI lab.
The 3∗3 factorial design of the experiment creates nine conditions.
Participants are assigned to complete interactions in three use cases,
and the robot wears different affordance settings each time. The
order of the interactions is semi-randomised, as shown in Table 5.

Take three participants, for example. One participant interactedwith
an adult-like science robot, a child-like joke robot and a robot-like
quiz robot; the next participant interacted with an adult-like joke
robot, a child-like quiz robot and a robot-like science robot; the
participant after that interactedwith an adult-like quiz robot, a child-
like science robot and a robot-like joke robot. This arrangement
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TABLE 2 Example dialogue transcript: science question and answer.

Dialogue stage Robot Users

Self-introduction Hello! I am a science robot. Rate the first impressions

Opening Hi. I can answer questions about facts. I am by no
means perfect, but I’m OK at science and mathematics.
Don’t get too philosophical.

-

Invite questions Go ahead and ask me about something. What’s 5 plus 7?

Give answers OK. (Gaze away) 5 plus 7 is 12. -

Invite another question Anything else? How many planets are in the solar system?

Give answers Let me think. (Gaze away) The answer is 8. -

Invite another question Do you have another question? No. That’s it. Thank you.

End the conversation Thank you for your questions. Goodbye for now. -

TABLE 3 Example dialogue transcript: playing jokes.

Dialogue stage Robot Users

Self-introduction Hello! I am a joke robot. Rate the first impressions

Greetings Hi there. Hello.

Opening I am wondering, are you happy today? Yeah yeah, I am happy.

Invite users to test jokes Great to hear. Then you are in the right mood! I am
trying to learn some humour, you see. So, could I test a
few jokes on you?

Yeah. OK. Go for it.

Tell a joke Awesome. This one has been a success so far. What do
robots do at lunchtime? (Wait for 2 s)

-

Give the punchline Have a mega-byte. smile

React to users’ responses (Smile back) Yay, I am getting the hang of this. -

Ask if to tell another Would you like another one? Yes.

Tell a joke Sweet! This one has been a success so far. What
happened when they shut down the robot motorway?
(Wait for 2 s)

-

Give the punchline Everyone had to take the R2 detour. smile

React to users’ responses (Smile back) Not bad, right? -

Ask if to tell another Would you like another one? No, that’s OK.

End the conversation Thank you for trying my jokes. Goodbye for now. -

maximises the even distribution of each test condition to reduce the
order effect.

A score sheet records participants’ first impressions of
each robot and post-interaction ratings for each interaction.
Considering the focus of the study is social attributes,
we used the Robotic Social Attributes Scale (RoSAS) to
measure people’s perception of a conversational role’s warmth
and competence (Carpinella et al., 2017). We also used the
Technology-Specific Satisfaction Scale (TSSS) (Alves-Oliveira et al.,

2015) to examine participants’ perceptions of a robot’s
capabilities.

To reduce the impact of the experimenter, the lab was divided
into two parts with a black curtain, where the participant interacted
with the robot in front of the curtain, and the experimenter sat
behind the curtain. In the experiment, the experimenter controlled
Furhat on a laptop. Operations included making a robot introduce
its conversational role, starting the conversation and using WoZ
buttons to end it.
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TABLE 4 Example dialogue transcript: playing quiz questions.

Dialogue stage Robot Users

Self-introduction Hello! I am a quiz robot. Rate the first impressions

Greetings Hi there. Hello.

Opening Do you want to play? Yeah, OK.

Start the game I will ask you 5 multiple-choice questions. And we’ll
see how many points you can get. Alright, here we go.

-

Ask a quiz question What did the Wright Brothers invent in 1902? Car,
airplane, motorbike or fighter jet?

Airplane.

Check the answer (smile) That was correct. You now have a score of 1
After a smile, it waits

-

Ask another quiz question What is the title of the famous novel by George
Orwell? Of Mice and Men, The Great Gatsby, 1984 or
The Lord of the Rings?

silence

Check users’ engagement Too slow! Here comes the next question. -

continue questions and answers … …

Calculate the score That was the last question. You got 4 points.

End the conversation I hope you had some fun. Goodbye for now. -

TABLE 5 Example of ordering of experimental conditions.

Participants Interaction 1 Interaction 2 Interaction 3

1 an adult-like science robot a child-like joke robot a robot-like quiz robot

2 an adult-like joke robot a child-like quiz robot a robot-like science robot

3 an adult-like quiz robot a child-like science robot a robot-like joke robot

After the interaction session, participants took a post-
experiment interview to provide more detailed comments based
on their experience in the experiment. Four questions were used as
a springboard to help participants recall different aspects of their
interactions: (1) ‘How would you describe the robot’s language
abilities?,’ (2) ‘How would you describe the robot’s interactive
abilities?,’ (3) ‘How did you feel when you encountered difficult
moments in the interaction?’ and (4) ‘How do you like the robot’s
performance when encountering difficulties?’ Based on participants’
responses, the experimenter could also extend questions or ask for
clarification. A diagram of experimental setup and flow is illustrated
in Figure 2.

4.3 Participants, data collection and
analysis plan

The experiment gained ethics approval from the University
of Sheffield in September 2022 (Application Reference Number:
046753). It was launched on 25 November 2022 and lasted until 02
March 2023. Participants were recruited from the campus, including
university staff and students. 70 participants completed the online

survey. 52 of them attended the lab session, and their data were used
in data analysis. Participants included females (n = 32), males (n =
18), and non-binary (n = 2) across different age groups with various
backgrounds.

Age: Most participants are young adults, with 36.5% for 18–24
years old and 38.5% for 25–34 years old. Participants aged 35–44
years old, 45–54 years old, 55 and above are 11.5%, 7.7% and 5.8%,
respectively.

Nationality and accent:Most participants are British (63.4%) and
use English as their first language (72.8%)2. They report no accent,
or their English accent rarely causes problems when speaking with
others. Chinese participants make up 11% and report their English
accent occasionally or often causes problems when speaking with
others. Other nationalities take up 25.8%. Their first languages are
Arabic, French, Indonesian, Spanish and Tamil. Some of them find

2 If participants hold dual nationalities and one of them is British, they

are categorised as “British” here. If participants consider more than one

language as their first language (L1), and one of the languages is English,

they are categorised as L1-English in this study.
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FIGURE 2
Diagram of the experiment flow of the in-lab session.

their English accent occasionally causes problems when they speak
with others (8.5%).

Experiencewith speech-enabled agents: 89.6% of all participants
have experience with speech-enabled speakers, mostly for asking for
a piece of information or giving it a command to do things. Most of
the participants do not have any interactive experience with a social
robot (52.3%).

156 samples were collected from 52 participants. Among them,
18 samples were collected for these three conditions: an adult-like
quiz robot, a child-like joke robot and a robot-like science robot.
Apart from that, the other six conditions contain 17 samples each.

The approach to analysis was twofold. The quantitative data
are from the closed questions with a Likert scale collected via
questionnaires.Theyweremainly analysed and visualised using IBM
SPSS Statistics (Version 29.0.0.241). This offered an overview of
the quantitative relationships between two independent variables
(affordance settings and use cases) and the participants’ perceptions.
It also allowed us to raise questions about observed changes.
The second round of data analysis was qualitative. 52 semi-
structured interviews were transcribed as 40,851 words. NVivo
(Version 14.23.0) software is used in the iterative process of thematic
analysis, with the main emphasis on factors contributing to people’s
perceptions and providing potential explanations of raised questions
in the quantitative analysis.

5 Results

5.1 Quantitative analysis

In the experiment, there are three static affordance settings
on Furhat: adult-like, child-like and robot-like. Participants were
required to give ratings using a Likert Scale from 1 to 5 for
five items: likeability, trust, competence, warmth and motivation.
These measurements were taken before and after interactions. The
pre-interaction ratings were taken after the robot said, ‘Hello, I
am a (use case) robot. The post-interaction ratings were taken
after participants completed the conversation with the robot.
The purpose of the quantitative analysis is to have an overall
picture of participants’ perceptions and examine the effect of
static affordances and use cases on people’s perceptions. Hence,
we carried out the same analysis of the pre-interaction and post-
interaction rating data, which included providing an overview of
the data distribution on the five aspects via box plots, comparing
means across all tested conditions, and examining the effect
of two independent variables: static affordances and use cases.
In addition, changes in data before and after the interaction
help us identify further questions about ‘why’, which gives us
more perspectives to analyse the interview data by means of
abductive reasoning.
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FIGURE 3
Distribution of likeability scores before and after interactions.

5.1.1 Descriptive analysis
Figure 3 shows the distributions of the perceived likability

ratings. Before interactions, the child-like science robot received the
highest median score of likeability, whilst the adult-like quiz robot
had the lowest. In both cases, many participants had similar views.
The former was left-skewed. The latter was right-skewed. After
interactions, all items shared the same median yet with different
levels of agreement. Participants had somewhat more variability
of the adult-like joke robot. Participants’ opinions on how much
they liked a child-like quiz robot and science robots became more
focused. Participants’ opinions regarding the robot-like joke robots
remained the same, with the same median at a neutral level, the
same variability and normal distribution. The child-like joke and
quiz robots’ perceived likability had a couple of high outliers.

Figure 4 shows the changes in the perceived trust. Before
interactions, the median scores were the same across most
conditions, apart from the robot-like science robot and the child-
like and robot-like quiz robots. Distributions of perceived trust
were relatively focused across most cases, apart from the robot-like
science robot that had more variability. Participants’ ratings towards
perceived trust of child-like and robot-like quiz robots were right-
skewed. The child-like science robot had several far-out outliers.
After interactions, the same individuals had more diverse opinions
about how much they trusted robots in different scenarios and with
different looks. The child-like science robot received the highest
median score of perceived trust, with a left-skewed distribution.
There was increased trust in both robot-like science and quiz robots.

The shifted opinions were also reflected in perceived
competence, warmth and motivation to interact. According to
Figure 5, the distribution of perceived competence of robot-like
roles was concentrated in the middle and high ranges. The robot-
like science robot had the highest median of perceived competence.
The distributions of perceived competence of the child-like quiz
and joke roles were left-skewed. After interactions, opinions on the
perceived competence of robot-like roles became more scattered,
and opinions on the level of competence of child-like science and
quiz roles increased relatively. In contrast, the perceived warmth of
child-like roles was rated from high to low, as shown in Figure 6.
In addition, the robot-like science role received the lowest median

point before interactions. The median points of all robot-like roles
were the same or higher after interactions. It is interesting to notice
the very small variability of the perceived warmth of the adult-like
science robot.

The motivation to interact is shown in Figure 7. Based on the
median points before interactions, participants felt most motivated
to talk to the adult-like science role, the child-like science and joke
roles, and the robot-like joke roles. How much participants would
like to talk to the robot-like science role had the widest variability.
After interactions, participants would like to talk to an adult-like
science robot again the most, according to the median point and the
relatively narrower variability.

We also calculated themean scores of eachmeasured item under
combinations of two variables, as shown in Table 6. To visualise
the changes, we produced Figure 8. Overall, the average score
of participants’ perceptions of robots decreased after interactions,
apart from a robot-like science role and a robot-like quiz role.
Specifically, before interactions, a child-like robot received the best
first impressions in all three use cases, with M = 3.29 for the joke
role, M = 3.28 for the science role and M = 2.95 for the quiz role.
After interactions, child-like science and joke roles were still rated as
the top one on average. However, among the three static affordance
settings, participants’ perceptions of the child-like roles changed the
most (−0.25 on average across use cases).This ismostly caused by the
greatly declined ratings for ‘warmth’ and ‘motivation’ of child-like
roles. In contrast to this, participants’ perceptions of the robot-like
roles changed the least (0.02 on average across use cases). A robot-
like science role gained higher post-interaction perception scores on
likeability, trust and warmth.

5.1.2 Correlational analysis
A two-way analysis of variance (ANOVA) was performed to

determine if static affordances (adult-like, child-like, robot-like) and
use cases (science, joke, quiz) had a significant effect on perceived
likeability, trust, competence, warmth and motivation.

Perceived likeability: Before interactions, there was no
statistically significant interaction effect (p = 0.44) between static
affordances and use cases, no main effect of static affordances
(p = 0.09) or use cases (p = 0.17). Regarding the post-interaction
perceived likeability, no statistically significant interaction effect
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FIGURE 4
Distribution of trust scores before and after interactions.

FIGURE 5
Distribution of competence scores before and after interactions.

(p = 0.91) or main effects (p = 0.10 for the static affordances effect,
p = 0.61 for the use case effect) were found.

Perceived trust: It was the same case for before and after
interactions. For the pre-interaction perceived trust, the p values
of the interaction effect, static affordances effect and the use case
effect are p = 0.68, p = 0.23 and p = 0.64, respectively. For the post-
interaction perceived trust, these values are p = 0.08, p = 0.93 and
p = 0.77, respectively.

Perceived competence: The analysis results of pre-interaction
ratings revealed that use cases had a statistically significant main
effect (F (2,147) = 4.17, p = 0.02). The effect size is small (partial
eta squared = 0.054). Further, the post-doc test (Tukey’s test) for
multiple comparisons found that science roles (M = 3.42, SE = 0.94)
were rated significantly (p = 0.01) more competent than joke roles
(M = 2.88, SE = 0.98). However, there was no significant interaction
effect of static affordances and use cases or significant main effect of
the static affordances. In addition, the statistically significant impact
of the use cases was also reflected in the post-interaction ratings of
the perceived competence (F (2,147) = 2.97, p = 0.05). The effect
size remains small (partial eta squared = 0.04). The post-doc test
(Tukey’s test) for multiple comparisons found the same result, that

is, the science roles (M = 3.36, SE = 1.02) were considered more
competent than the joke roles (M = 2.89, SE = 0.92); the difference
was statistically significant (p = 0.05). The plot of the two-way
ANOVA of perceived competence is shown in Figure 9.

Perceived warmth: Before interactions, static affordances (F
(2,147) = 16.75, p < 0.001) and use cases (F (2,147) = 3.42, p =
0.04) both had a statistically significant effect. The effect sizes are
small (partial eta squared = 0.19 for the static affordance, partial
eta squared = 0.04 for the use cases). According to the post-
hoc test results, the child-like robots were considered statically
significantly warmer than the adult-like robots with p = 0.002; the
adult-like robots were considered statically significantly warmer
than the robot-like robots, with p = 0.05; the child-like robots
were considered statically significantly warmer than the robot-
like robots with p < 0.001. The means and standard deviation of
each affordance setting are ordered as follows: the warmest child-
like robots (M = 3.37, SE = 1.24), the warmer adult-like robots
(M = 2.60, SE = 1.14) and the least warm robot-like robot (M =
2.06, SE = 1.09). In addition, the joke roles (M = 2.98, SE = 1.18)
were rated warmer than the science roles (M = 2.37, SE = 1.34).
The difference was statistically significant (p = 0.02). There was no
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FIGURE 6
Distribution of warmth scores before and after interactions.

FIGURE 7
Distribution of motivation scores before and after interactions.

statistically significant interaction effect between static affordances
and use cases.

After interactions, the static affordance was not identified as the
main effect of the perceivedwarmth.Theuse case, on the other hand,
maintained its statistically significant effect (F (2, 147) = 7.34, p <
0.001). The effect size is small (partial eta squared = 0.09). Further,
the post-hoc test found two statistically significant differences. The
joke roles (M = 2.64, SE = 0.92) were considered warmer than the
science roles (M = 2.08, SE = 0.93) and the quiz roles (M = 2.01,
SE = 0.91), with p = 0.006 and p = 0.002, respectively. The plot of the
two-way ANOVA of perceived warmth is shown in Figure 10.

Motivations: Before interactions, the use case was found to
have the main statistically significant effect (F (2,147) = 4.00, p =
0.02). The effect size is small (partial eta squared = 0.05). The post-
hoc test shows that participants were more motivated to interact
with the joke roles (M = 3.75, p = 1.05) than the quiz roles (M =
3.12, p = 1.20). The difference is statistically significant (p = 0.02).
After interactions, there was no statistically significant interaction
effect (p = 0.29) or main effect of static affordance (p = 0.57) or
use case (p = 0.75).

To further understand participants’ satisfaction with a robot’s
performance, especially their perception of a robot’s competence, we

examined the Technology-Specific Expectation Scale (TSES) and the
Technology-Specific Satisfaction Scale (TSSS). Both scales contain
two dimensions: fictional views and capabilities. Each dimension
contains 5 items. The results in Table 7 show that the fictional
views that people hold about robots were dispelled, especially
the robot’s ability to perceive what participants would do before
they do it (−43.7%) and its ability to understand their emotions
(−30.9%). As for the perceived capabilities, participants felt more
positive about the robot’s ability to recognise their gaze movements
and to understand them, with 4% and 11.4% increases in rating,
respectively. However, their confidence in interacting with the robot
decreased by 10.5%.

We performed two-way ANOVA to determine the effect of
static affordances and use cases on perceived capabilities. For the
average score, it was found that the assumption of homogeneity
of variance was violated when we ran Levene’s Test for Equality
of Variances: the p values were greater than 0.05. Based on this,
we raised the significance threshold from p = 0.05 to p = 0.01.
There was no statistically significant interaction effect or main effect
of either independent variable by applying this threshold (p =
0.54 for interaction effect, p = 0.89 for static affordance, p = 0.03
for use cases).
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TABLE 6 Means of perceptions before and after interaction.

Condition Interaction Likeability Trust Competence Warmth Motivation Average

adult-science
pre- 3.00 2.76 3.47 2.24 3.76 3.05

post- 3.12 2.76 3.33 1.71 3.41 2.87

adult-quiz
pre- 2.61 2.67 3.28 2.78 3.17 2.90

post- 2.89 3.06 2.99 2.10 2.61 2.73

adult-joke
pre- 3.00 2.59 2.71 2.76 3.41 2.89

post- 2.94 2.59 2.82 2.71 2.65 2.74

child-science
pre- 3.29 3.12 3.18 3.29 3.53 3.28

post- 3.24 3.29 3.48 2.54 3.29 3.17

child-quiz
pre- 3.00 2.53 2.82 3.12 3.29 2.95

post- 2.82 2.29 3.29 1.91 3.24 2.71

child-joke
pre- 3.33 2.78 2.94 3.67 3.72 3.29

post- 2.94 3.06 2.85 2.69 2.89 2.89

robot-science
pre- 2.33 2.39 3.61 1.61 2.83 2.55

post- 2.94 2.72 3.26 2.01 2.56 2.70

robot-quiz
pre- 2.71 2.53 3.35 2.12 2.88 2.72

post- 2.82 3.06 3.38 2.02 2.94 2.84

robot-joke
pre- 3.18 2.47 3.00 2.47 4.12 3.05

post- 2.94 2.65 3.00 2.52 3.12 2.85

FIGURE 8
Changes of perceptions after interactions: bars going upwards above 0 mean the means of post-interaction ratings were higher than pre-interaction
ratings; bars going downwards below 0 mean the means of post-interaction ratings were lower than pre-interaction ratings.
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FIGURE 9
Two-way ANOVA plot of perceived competence. Statistically speaking, the science roles were significantly more competent in participants’ opinions
before and after interactions.

FIGURE 10
Two-way ANOVA plot of perceived warmth. Before interactions, both static affordance (child-like adult-like robot-like) and use case (joke science)
played statistically significant roles in perceived warmth. After interactions, statistical significance was found between joke and science roles, as well as
joke and quiz roles.

Further, we examined each item related to the perceived
capabilities. As shown inTable 8, therewas no statistically significant
interaction effect or main effect of either independent variable in
most cases, apart from the following two cases. Statistically speaking,
the use case had a significant effect on perceived capabilities
to understand emotions and have a sense of humour. The joke
roles (M = 2.37, SE = 1.43) were considered more capable of
understanding participants’ emotions than the science roles (M =
1.62, SE = 1.05) and the quiz roles (M = 1.60, SE = 1.07).The p values
were 0.005 and 0.004, respectively. Participants also considered the
joke roles (M = 2.79, SE = 1.39) to have more sense of humour than
the science roles (M = 1.50, SE = 0.78) and the quiz roles (M = 1.87,
SE = 1.34), with p < 0.001 for both differences.

5.1.3 Summary of quantitative analysis results
These findings suggest that, overall, participants’ perceptions of a

robot varied across all three static affordances (adult-like, child-like
and robot-like) and all three use cases (informative, emotional and
hybrid). From the perspective of static affordances (face and voice), a

child-like affordance won the best first impressions by a statistically
significant margin due to its highly perceived warmth. However,
such perception dropped greatly in interactions. This makes a child-
like face and voice the affordance with the greatest perceptive change
from pre-interaction to post-interaction. The affordance effect on
perceived warmth was also reflected in robot-like roles. As opposed
to child-like roles, robot-like roles were perceived as the least warm
ones, especially the robot-science role. However, robot-like roles had
the smallest perception gaps. Actually, robot-like science and quiz
roles were the only two roles that had positive perception changes
(on average).

As discussed above, the static affordance’s effect is related to
pre-interaction warmth. The use case factor, including behavioural
affordances during interactions, has a statistically significant effect
not only on perceived competence, warmth and motivation to
interact before interactions but also on perceived warmth in
interactions. An informative use case, such as the science robot
in this study, was perceived as more competent and less warm.
On the opposite side, an emotional role, such as the joke robot
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TABLE 7 Pre-interaction expectations of robots and post-interaction satisfaction level, shown on two dimensions: fictional views and capabilities, and
five items under each dimension.

Before interactions—TSES
(mean)

After interactions—TSSS
(mean)

Differences (%)

Fictional Views Dimension 2.6 1.7 −18.0

The robot has superhuman capacities 3.17 1.63 −30.9

The robot is more than a machine 2.15 1.60 −11.2

The robot is able to perceive what I am
going to do before I do it

3.62 1.43 −43.7

The robot is similar to the robots I see
in movies

2.58 2.60 +0.5

The robot is able to read my thoughts 1.52 1.33 −3.7

Capabilities Dimension 2.7 2.5 −4.0

I am able to interact with the robot 3.65 3.13 −10.5

The robot can understand my emotions 2.73 1.86 −17.4

The robot is able to recognise when I
look at it or when I shift my gaze to
something else

2.56 2.76 +4.0

The robot has a sense of humour 2.29 2.05 −4.7

The robot is able to understand me 2.10 2.67 +11.4

TABLE 8 Two-way ANOVA result of perceived capabilities in TSSS rating. The use case was identified as the main effect for perceived capabilities to
understand emotions and have a sense of humour.

Item Interaction effect Main effect - affordance Main effect - use case

C1 I am able to interact with the robot p = 0.83 p = 0.89 p = 0.17

C2 The robot can understand my
emotions

p = 0.60 p = 0.97 p = 0.001, F (2.147) = 6.82, partial eta
squared = 0.09

C3 The robot is able to recognise my
gaze

p = 0.64 p = 0.74 p = 0.22

C4 The robot has a sense of humour p = 0.11 p = 0.43 p = < 0.001, F (2,147) = 16.14, partial
eta squared = 0.18

C5 The robot is able to understand me p = 0.56 p = 0.99 p = 0.19

in this study, was perceived as less competent and warmer. Such
statistically significant differences remained the same before
and after interactions. Additionally, the behavioural affordances
associated with the emotional joke role increased participants’
perception of emotion-related capabilities, such as perceiving
emotions and having a sense of humour.

Questions that need to be investigated further include what
factors contributed to the drop in perceived warmth, especially
for child-like robots, and what factors contributed to the small
perception gaps of a robot-like robot. Additionally, it is interesting to
note that participants did not feel confident interacting with robots
after interactions. These questions will be discussed in the abductive
reasoning part of the qualitative analysis.

5.2 Qualitative analysis

The process of qualitative analysis is shown in Figure 11. Both
deductive and inductive methods are used in the coding process
to allow the data to speak so the experimenter can identify topics,
patterns, and themes that are connected to research questions
in the theoretical framework (Vanover et al., 2021). The coding
process is an iterative process. The presentation of findings will
start with summative statements about what worked and what
did not for each affordance aspect, including static affordances
(face, voice) and behavioural affordances (facial expressions and
language behaviours). Then, the analysis moves on to the emerging
themes to discuss how affordances affect people’s perceptions of
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FIGURE 11
The process of qualitative analysis.

a robot in given use cases. Lastly, to answer questions raised
from the quantitative analysis and unexpected replies in the
interview, abductive reasoning is used to draw potential answers
from the interview content. For example, what makes a child-
like robot so likeable and what makes its perceived warmth drop
significantly? Why do participants feel awkward when talking
with a robot?

5.2.1 Summative results: What works and what
not

Generally, participants found the embodied face highly
stimulating to look at. Facial expressions and eye movements made
the robot more present, like someone who can think and interact.
Participants reported that these movements of a robot, such as
moving its head to keep eye contact, blinking and raising eyebrows,
delivered a sense of engagement. Participants felt they were listened
to and, therefore, had a sense of engagement. They even had a sense
of connection when a robot returned a smile in response to their
smiles and laughed at the right time. In this way, interacting with
such a robot seems more natural. A few comments mentioned that
a robot’s eye movement was bad or the smile was more like a ‘smirk’.
But they thought it was better than nothing.

This sense of engagement was weakened when participants
found the facial expressions repetitive. In other words, the
movement was not based on a user’s input and did not reflect
perceptions of users’ input. In this case, participants felt that
an embodied face did not really contribute to interactions with
a robot. Another type of social failure was that participants
perceived unwanted mocking expressions or too much attention via
eye contact.

“I enjoyed the way that (it looked at me). Yes, it felt like it was
paying attention to me, but it could be a little much[…]Yeah,
so that felt a little unnatural.”

“Really good at eye contact, almost to an uncomfortable level
where it felt like I was in a staring contest.”

In addition to social failures, participants also pointed out
technical failures. They include miscalibration of eye contact or
failing to track users’ head movement. The design issues include
off-putting robotic eyes, weird eye-moving tracks and flawless skin

(mask) that makes facial expressions less easy to interpret. A few
participants did not notice the function of head movement, eye
movement or facial expressions at all. As explained by participants,
it was partly because of their interaction habits in human-human
interaction, partly because they did not move in the experimental
interactions. When participants happened to be naive users of the
social robot, they waved to the robot and found that the robot’s
head movement only tracked their heads, or their hands, which
was confusing.

Specifically, what did participants comment on various
affordances and use cases?

The robot-like face was perceived as completely machine-like
and less emotional. This perception made participants feel that the
robot-like robot fit more naturally in a science role. Its robot-like
voice was not popular. When it came to telling jokes and saying
slang words such as ‘sweet’ and ‘awesome’, participants found it
unexpected and funny.

In contrast, a child-like robot looked younger and cuter to
participants. A few participants found it not amicable when it came
to playing a science role. Participants also did not expect to receive
judging comments from a child-like robot. ‘I do not like when
the kids tell me it is too bad.’, one participant said. A couple of
participants mentioned that the child-like face and voice did not
match well, with a more child-like sound but less child-like look.
There was little comment on an adult-like robot.

As for use cases, participants found quizzes and jokes more
engaging. The quiz robot was found to be more interactive,
competent and sociable. Participants noticed its richer range of facial
expressions. They also found it was easy to interact with a quiz
robot because it was straightforward. It would be more likeable
if it could provide answers. The joke robot’s emotion detection
and reaction function was well-received. Participants considered
it a more human-like manner. Although the interpretation is
not always right or clear, participants felt the robot is more
interactive.

The science robot, unfortunately, seemed to bring ‘the most
stressful’ interaction. Participants complained about the mismatch
between the role it claimed to play and its true capabilities. ‘It told
me it was a science robot. And it could not answer a lot of questions.’
one participant said. This mismatch increased uncertainty in
interactions. Apart from that, the lack of emotionwithin the scenario
made participants feel the science robot did not care.
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5.2.2 Emerging themes
Manner Matters More: Participants seemed to enjoy the

interactions more when they felt engaged and connected. Rather
than a human-like look or voice, the sense of engagement came
more from human-like interactive manners. For example, pay
attention and show interest. This comes from active listening and
responsiveness. The summative results in the previous sub-session
show that the robot used in this study appears to be listening.
But its responses sometimes show a disconnection between what it
listens to and how it reacts. Thus, it causes decreased motivation for
interactions, as quoted below.

It was listening but not interacting.

Interactive manners were also reflected in taking and reacting
to participants’ input and producing variable responses. Otherwise,
the interaction seemed more like a programmed process. The
repetition of expressions also enhanced this feeling. The repetitive
emotional expressions, such as ‘Better luck next time, amigo!’, could
be considered as ‘not genuine’.

The one with the quiz one…that did not seem that interactive
because it was just the robot talking to me, and it was
not taking much input from me. The child was…So, it had
everything to be like a humanbeing, let’s say. But it did not feel
like a human being because the language was quite repetitive.

The interactive manners also connect to a robot’s appearance,
voice and behaviours. For example, participants perceived a better
match between a robot-like look and a science role.When there were
mismatches between what a robot looked and sounded like and its
behaviours, participants had different reactions.They found a robot-
like robot telling jokes funny but found a child-like robot saying ‘too
bad’ rude.

User Feelings of Uncertainty: One of the main feelings around
interacting with robots revealed by the interviews was uncertainty.
For example, there were a lot of comments reflecting frustration
because of the lack of clarity on the robot’s competence. This could
be caused by the mismatch between the situational role and its true
capabilities, as demonstrated by the science robot.

I did not know what to ask it or what it might know. And so
it sort of limited what I felt I could talk to it about…I did ask
the 5 plus 5, but then I felt a bit stupid because I was like,
obviously know what that is.

For those who cannot come up with any questions to ask, the
setting puts them under pressure. It worsened when participants
felt ‘completely blank about anything to do with science or maths’
(quoted). From this perspective, the quiz robot did better by leading
a structured conversation. Participants then felt more relaxed as
followers in interactions.

Another uncertainty created by the lack of clue for the cause of
interaction failures or clues for how to move on. For example, the
robot kept saying ‘I did not get it’ without providing more useful
information. This made participants wonder: ‘Did it just fail to look
up the information, or did it not understand what I was asking?’
After a few attempts to repair but not succeed, participants felt
powerless: ‘There was nothing I could say there.’ These uncertainties

put forward the challenge of balancing free-style speech within the
robot’s capabilities. As one comment puts it, the experimental robots
only work ‘if you know that’s what you’re doing.’.

5.2.3 Abductive reasoning
5.2.3.1 What makes a child-like robot less likeable after
interactions?

In the quantitative analysis part, it was found that a child-like
robot was perceived to be less likeable and warm after interactions.
Why so?The qualitative analysis confirmed that the static affordance
design of the child-like robot was well received. ‘Friendly’ is the
keyword associated with its face and voice. However, this means
the alignment of multimodal cues for a child-like robot would be
expected to be higher. For example,

The voice did not change; it had no inflection. (It) made the
use of slang or like specific words a bit awkward […] It was
a kid saying ‘sweet’, and, uh, usually when people say ‘sweet’,
like, the voice goes higher, like, an exclamation. But it stayed
the same kind of…

In addition, it was found that people had particular expectations
for the child-like robot’s facial expressions and language behaviours,
such as a relatively high level of expressiveness, enthusiasm, and
politeness. So, when a child-like robot plays an informative science
role which does not have many emotional behaviours, the mismatch
could cause disappointment; when a child robot says ‘too bad’ if a
participant misses a quiz question, it makes participants feel like
they are being judged by a child. When such mismatches between
the expectations and actions happen, the originally perceived
friendliness cannot last and change to a new perception: ‘not
amicable’.

5.2.3.2 Why did participants have less confidence in having a
conversation with a robot after interactions?

It may be natural to blame the conversation’s failure on a robot’s
technological limits. For example, it cannot accurately recognise
people’s speech or let participants talk over it. However, that is not
the full picture. In fact, participants provided more specific words
for their ‘less confident’ status: ‘awkward’ and ‘powerless’.

One explanation for the awkwardness might be that the robot
was perceived as a social actor instead of a machine. Thus, making
mistakes in front of a social actor was considered as a social failure
that makes them feel awkward.

When it is just me looking at a screen, there’s not a face and
a voice looking back at me, so if I do something wrong, I
think, oh well, nobody saw that. Okay. But with the voice and
the face, actually, it makes it slightly feel more like a social
interaction, if that makes sense.

Another explanation lies in the robot’s capabilities to collaborate.
Most participants did not feel that the robot recognised it when
things went wrong. It ‘just moved on’. There were some strategies
in the experimental use cases, which can be categorised as follows.
Type 1: asking users to repeat or use specific expressions (e.g.,
‘yes/no’). Type 2: indicating users to do something different in
an implicit way, either by waiting in silence or repeating ‘I did
not get it.’.
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From the participants’ perspective, Type 1 is more explicit.
It shows the robot’s limits, yet it is clear how to move on.
Type 2 is too implicit and lacks clarity, which leaves room for
participants’ own interpretations. It could be risky for interlocutors
who cannot identify shared knowledge and experience. Participants
tried rationalising a robot’s failures based on their understanding
or experience with other speaking agents. They raised their
voices, spoke slower, used simpler words or changed topics.
But there is no more guarantee for success than when we
try to communicate with people who do not speak our own
language. While some participants took a robot as a developing
tool and became more understanding, others felt very frustrated
and annoyed.

Explicit strategies may work better. This also carries potential
issues. When the robot asked participants to choose between ‘yes
or no’ after it failed to understand their replies in the first place,
there were a lot of negative comments. It was helpful but ‘too formal’,
‘not interacting’ and even ‘demanding’ and ‘threatening’. For more
self-reflective participants, this expression made them feel they did
something wrong and feel anxious.

What made things worse was the robot’s repetition after
the participants’ repair efforts did not work. For example, after
participants hear ‘I’m sorry, I did not understand you, can you say
that again?’ a few times, they would know it did not understand
them. Participants felt there was no need to hear the full expression
again. The repetitive signal indicating not understanding did not
provide further help but built up frustration. Participants feel ‘It does
not care.’

These comments juxtaposed real andperceived evidence to show
the invisible need for collaboration in a conversation. As human
interlocutors, participants felt they had to put more effort into
such collaboration without enough clues. Participants would like to
see the robot’s engagement through its connection, listening status
and reactions, which should correspond with what they actually
say or do. For instance, a face with patterned expressions is less
likely to be considered interactive. In addition, it shows the need to
reduce cognitive barriers. For example, the robot needs to have a
clear capabilities boundary to reduce participants’ effort to explore;
it needs to adjust its behaviours so as not to make individuals
uncomfortable. The failure of collaboration makes the robot ‘just be
there’ instead of actually ‘being there’.

6 Findings and discussion

We separate this discussion into three parts: exploratory
analysis of the effects of affordances and use cases on participants’
perceptions, implications and limits.

6.1 Effects of affordances and use cases on
perceptions

From the overview of pre-interaction data distribution, it can be
said that people have a preconceived stereotype of different looks
and voices. For example, child-like robots are not so competent but
friendly; a robot with a machine-like face and voice is more capable
but not very friendly. Statistically speaking, the static affordances of a

robot (face and voice) significantly affect people’s perception of how
warm a robot appears to be at first glance across all static affordance
settings (adult-like, child-like and robot-like), but they do not affect
perceived likability, trust, competence or motivation to engage with
the robot.

A child-like robot was considered friendly and warm, which
made a very good first impression. The popularity of a child-like
robot coincides with the positive perception and attitude towards
the young-looking face (Bartneck et al., 2020, p.181). However,
such a good impression could be a double-edged sword. This
is because what a robot looks and sounds like shapes people’s
expectations of their behaviours, such as how expressive or polite
they need to be. These expectations then affect people’s perceptions
of how fit a robot is for the given roles. In the case of a child-
like robot, high demands are placed on aligning its behavioural
affordance with its childlike look and voice, such as its tone of
voice, and how expressive and enthusiastic it needs to appear
and the choice of words when giving comments. If the child-
like robot’s behaviours are not up to such expectations, it would
create mismatched perceptual cues. It then causes the gap, which
is similar to the ‘uncanny valley’. Thus, the findings of perceptions
of a child-like robot in this study confirm the importance of
aligning multimodal cues for social robots. As opposed to the
previous study, which shows users would have lower expectations
and more tolerance toward an infant-like robot, the current study
shows that the perceived warmth declined greatly when a child-
like robot’s behaviours did not match its perceived warmth at
first glance.

The robot-like look and voice create an opposite impression.
Its artificial, machine-like look was not highly regarded. It started
with lower expectations and progressively gained more likability,
trust, and warmth via its human-like manner, such as showing
attention and interest by gazing and smiling back functions. It gained
the smallest gaps between first impressions and post-interaction
perceptions.

In comparison with face and voice, the use case factor matters
more in the way that they significantly affect people’s perception of
a robot’s competence and warmth before and after interactions. An
informative use case, such as a science role, is statistically expected
to be more competent than an emotional role, such as a joke role.
The other way around, the emotional joke role is expected to be
warmer than the informative science role. In the study, people are
statistically more motivated to interact with a joke role than a quiz
role. Here, wewould like to clarify the relationship between use cases
and behavioural affordances again in this study. The use case is just
a term, such as ‘science’, ‘quiz’ or ‘joke’; behavioural affordances are
more related to actions. Before the interaction begins, a use case’s
impact on perception may be influenced by stereotypes related to
the term; after the interaction, the impact on perceptions is more in
terms of behavioural affordances. Based on the results of the analysis,
it is safe to say that behavioural affordances matter more to manage
the perception gaps.

According to the qualitative analysis, there are two types
of behavioural affordances. One type is role-specific, which is
associated with a robot’s static affordance. One good example is
the joke robot, which has a certain capability to recognise users’
emotions and some sense of humour. Another good example is
the child-like robot in this study, as explained above. The other

Frontiers in Robotics and AI 17 frontiersin.org



Huang and Moore 10.3389/frobt.2024.1288818

type is generic, which can be applied to all social robots. It
includes interactive and social behaviours that make people feel
more engaged, such as keeping eye contact and smiling back. More
importantly, these behaviours need to be responsive to users’ input
with varieties. A robot’s responses need to be meaningful. This
echoes the ‘Cooperative Principle’ proposed by Grice (1975). These
principles describe what meaningful information should be like,
which are maxims of quantity, quality, relation and manner. The
maxim of quantity: informative but not too much. The message
sender needs to deliver the information in a way that the receiver
can understand and not get overwhelmed. This is based on the
sender’s assumption of what the receiver may already know. From
this perspective, meaningful messages are not only the ones that
bring new information but also those that help to reduce the other
party’s cognitive uncertainty or burden in the conversation. The
concerns raised in the qualitative analysis show that a robot needs
to be more informative when indicating its failure in interactions.
Additionally, this requires signals to be true, as stated in the maxim
of quality, not just perform repetitive programmed behaviours; be
relevant according to the maxim of relation in the sense of building
common ground and coordinating communication efforts; also be
clear and organised according to the maxim of manner to reduce
uncertainty.

Further, there is another question to answer: is there a direct
link to indicate which affordance fits better with which type of use
cases? Unfortunately, no direct link is identified. Given that static
affordance and use case both have statistically significant effects on
perceived warmth, it is natural to think a robot with warm static
affordances would match a use case that requires warmth. Actually,
the child-like joke robot was rated highest before interactions. But it
was the bottom one among three child-like roles after interactions.
If its behavioural affordances could fit better, it may be another
story. Interestingly, the robot-like robot, which was considered not
so warm, had a joke role that was better perceived than its quiz and
science roles. Mismatches may not always cause trouble. Some cause
decreased perceptions (e.g., a child-like robot behaves rudely). Some
mismatches may be unexpectedly funny (e.g., a robot-like robot
saying ‘sweet’).

6.2 Implication

This exploratory study identifies the effect of affordances and
use cases on people’s perceptions of a robot. Simply put, if one is
looking for a robot that leaves a good first impression, a child-like
robot is better than an adult-like robot or a robot-like robot. If
one cares more about narrowing the perception gap, a robot-like
robot would performwell. Additionally, it highlights the importance
of behavioural affordances, including designing generic behaviours
to keep users engaged and aligning the role-specific behavioural
affordance with a robot’s static affordance. What’s more, the design
and use of social robots require a further understanding of use
cases, which play a statistically significant role in determining the
need for competence and warmth. These findings could be applied
to the affordance design field and used by social robot designers,
engineers and users.

6.3 Limitation

The shortcomings of this study include the following aspects.
The study was performed on a specific robot (‘Furhat’) with
three affordance settings and three use cases. So, extending it
to different sorts of robotic settings would be useful to validate
the findings. The adult-like, child-like and robot-like settings
were chosen by the experimenter. It would benefit from double-
checking participants’ perceptions. The data collection was
performed with the robot present closely to the participants.
This might have inhibited the expression of negative comments.
The pre-interaction ratings of ‘warmth’ and ‘competence’ were
collected by two questions. The post-interaction ratings of
these two items were collected via the RoSAS. This weakened
the reliability of changes between pre- and post-interaction
perceptions. In addition, the study was designed and started
before the launch of ChatGPT. In the later stage of the
experiment, participants may have experience of interacting with
ChatGPT. This may affect their expectations and experience
of social robots used in this study. What’s more, participants
came to the experiment as volunteers, not for personal use.
Hence, their motivations to interact with robots may differ
from those of real-life users. Most of the participants were
from a university campus. It would be useful to test finding
with participants from a more diverse background. Further,
the experimenter’s personal interests and knowledge of social
robots may steer the coding of the qualitative data and theme
generation.

7 Conclusion and future works

What a robot should look, sound and behave like is essential
to designing an effective conversational social robot. In this study,
we examine how static affordances (face and voice) and behavioural
affordances (verbal and non-verbal behaviours) affect people’s
perceptions of a robot in informative, emotional and hybrid use
cases (science, joke and quiz roles). The results show that static
affordances have a statistically significant effect on people’s first
impressions of a robot’s warmth. A child-like robot would be
perceived as the warmest role. Comparatively, a robot-like robot
would have the lowest perception of warmth. It is also found
that use cases have a statistically significant effect on people’s first
impressions of a robot’s competence, warmth and their motivation
to interact, as well as post-interaction perceived competence and
warmth. An informative role would be considered more competent
yet less warm than an emotional role. In addition, it shows
the importance of aligning static affordance with behavioural
affordance to avoid a big drop in perceived warmth. In general,
behavioural affordances should be genuinely responsive to users’
input and provide more information to collaborate with users in
interactions. These findings prove that freedom comes at a cost.
Taking off-the-shelf technologies and assembling a social robot with
whom to communicate could lead to ineffectual HRI. A social
robot with appropriate and consistent affordances built into its
design should be seen as fundamental to effective communication
and usability.
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The directions to explore in future include many potentials. For
example, how to further understand types of use cases from the
perspectives of warmth and competence, how to design behavioural
affordance to improve a robot’s abilities to collaborate when things
go wrong, how to personalise affordance design by taking into count
users’ perspective and why some mismatches between a robot role
and its use case aremore tolerated than other. Going beyond human-
like appearance and voice, it is important to adopt behavioural
characteristics that are appropriate to their physical makeup and
cognitive capabilities.
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