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Autonomy does not subvert existing safety processes, but they 

must be supplemented with methods that address autonomy’s 

challenges, especially where perception and decision-making tasks 

are implemented with machine learning. We present an approach 

to address the safety of autonomous systems, building on and 

complementing established safety engineering methods.

T
raditionally, safety-related systems, like air-

craft, cars, and factory robots, have operated 

under human control or supervision. With auton-

omous systems (ASs), the role of the human is 

lessened—perhaps just to the extent of initiating auton-

omous operation:

  An AS can operate independently of human 

control.

ASs have existed for some time, for example, in rail, 

including the Docklands Light Railway in London.  

Although safety-critical, such systems operate within 

well-defined and, to an extent, controlled environ-

ments; for example, there are physical controls on 

human access to the tracks, and traffic movement is 

controlled through a signaling system. The introduc-

tion of such ASs has been successful, and they have good 

safety records.

By contrast, emerging ASs, such as autonomous vehi-

cles (AVs) on the roads or collaborative robots (called 

cobots) in factories, operate in significantly more challenging 
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environments. We can refine the notion 

of autonomy by considering context 

and purpose:

  ASs operate within complex, 

dynamic, or partially observ-

able contexts.

  ASs are intended to achieve 

objectives that can only be par-

tially, or implicitly, defined.

Humans are generally good at deal-

ing with open-domain and partially 

defined goals, such as driving from 

York to London, and will “fill in” the 

necessary details on the way. In devel-

oping an AS, decisions on such details 

are being transferred from human to 

machine1: computers are used to realize 

capabilities that humans have under-

taken hitherto. Thus, from a safety per-

spective, the most fundamental chal-

lenge in assessing and assuring ASs 

is dealing with decision making by a 

machine that does not have the con-

textual and semantic “understanding” 

of the world that humans have (both 

taught and learned as we grow up).

A secondary, but very important, 

challenge is the use of machine learn-

ing (ML) for key functions of the AS, 

for example, to build situational aware-

ness. With ML, a computer system is 

trained to carry out a task by expos-

ing it to data that provide experience 

of undertaking that task. Thus, the 

objectives are not directly defined. The 

ML-based system can then perform 

the same task on data it has not seen 

before as it encounters new contexts, for 

example, a road segment for an AV or a 

patient for a robotic surgeon.

To summarize, the key safety chal-

lenges for ASs arise from their opera-

tion without human control in complex 

environments with partially or implic-

itly defined objectives, often using ML 

to realize critical system capabilities. 

However, ASs do not subvert estab-

lished safety concepts and principles—

for example, the need to search for and 

eliminate or mitigate single points of 

failure—but existing methods need to 

be complemented or revised to deal with 

these challenges. Thus, the aim of our 

article is to set out a systematic approach 

to dealing with the challenges of ASs 

that complements and supplements 

established safety engineering methods.

The article is organized as follows. 

The next section briefly considers re -

lated work. The sections “Conceptual 

Framework,” “Safety of Autonomy in 

Complex Environments,” and “Assur-

ance of ML for ASs” describe the over-

all approach and assurance frameworks 

for ASs, and their ML elements, within 

a whole system context. The section 

“Discussion” outlines several uses of 

the approach, identifies broader issues 

that need to be addressed, and presents 

our conclusions.

RELATED WORK
Artificial intelligence (AI) safety is cur-

rently receiving a lot of attention, with 

a focus on nonphysical harms, such as 

bias in algorithmic decision making. 

Such issues are important; however, the 

safety of AS and ML, in the sense of phys-

ical harm, has received less attention, 

except by standards bodies. For exam-

ple, Underwriters Laboratories pub-

lished a standard for AS evaluation that 

is intended to be usable cross domain.2 

There are also domain-specific stan-

dards addressing particular problems, 

for example, the safety of the intended 

functionality (SOTIF)3 in the automotive 

sector, which is concerned with show-

ing that nominal behavior is safe and 

addresses some of the challenges of the 

partially or implicitly defined objectives 

identified previously. Generally, these 

standards are goal setting, although 

they do identify assessment “meth-

ods” in broad terms. There are other 

generic frameworks concerned with the 

safety of ASs, such as the Safety Criti-

cal Systems Club guidelines,4 but these 

approaches generally fall short of objec-

tive criteria that could be used as a basis 

for compliance.

There is also a considerable body of 

work on the safety of specific aspects of 

ASs, such as reliable detection of pedes-

trians for AVs,5 developing methods for 

hazard analysis on ML datasets,6 and 

extending failure mode and effect anal-

yses (FMEAs) to ML, including cyber-

security issues.7 A few projects link 

traditional safety engineering and ML 

(see, for example, Jia et al.8), but there 

is generally a “gap” between the safety 

community and “nonsafety ML prac-

tice.” Our article seeks to bridge this gap 

by setting out a systematic approach to 

bring the two together.

CONCEPTUAL FRAMEWORK
We represent an AS as operating cycli-

cally using a sense–understand–decide–

act (SUDA) model (this is conceptually 

similar to the approach proposed by 

Sifakis9 and broadly equivalent to mod-

els like observe–orient–decide–act and 

monitor–analyze–plan–execute): 

1. A system senses its environment 

to produce a representation of 

properties in the environment, 

which we will refer to as sensed 

properties. For example, a 

barometer can be used to mea-

sure atmospheric pressure.

2. A system understands its 

environment by analysis of the 

sensed properties to produce 

some more abstract represen-

tation of the environment, 

which we will refer to as derived 
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properties. For example, atmo-

spheric pressure can be used to 

derive altitude. (The computa-

tion is nontrivial and typically 

involves compensation for 

meteorological factors, such as 

air temperature and areas of high 

and low pressure.)

The set of sensed and derived proper-

ties form a world model, which, in turn, 

gives the system situational aware-

ness, that is, “knowledge” of its context. 

However, as noted previously, this may 

be complex, dynamic, and only par-

tially observable.

3. A system then decides on a 

course of action to achieve  

its purpose.

4. Finally, a system acts, resulting in 

externally observable behavior, 

that is, a sequence of states  

and actions.

This behavior might include mov-

ing, switching on visible signals, such as 

navigation lights for a vessel, interaction 

with objects in the environment, such 

as picking soft fruit, or a drone broad-

casting its position. These actions can 

change the state of the environment 

(context) as well as the AS itself, which 

is then sensed, leading to an evolu-

tion of behavior to continue to meet 

its purpose, such as picking all of the 

ripe raspberries.

This model of an AS provides the basis 

(“anchor”) for our systematic approach to 

the safety and assurance of ASs, includ-

ing their ML elements. Figure 1 shows 

that the sense–understand and decide–

act elements of the AS can be imple-

mented using conventional components, 

ML, or a combination thereof.

Two of these processes are concerned 

with developing safety cases (that is, 

structured arguments supported by evi-

dence, intended to justify that a system is 

acceptably safe for a specific application 

in a specific operating environment)10:

 › Safety of ASs in complex environ-

ments (SACE)11: concerned with 

the safety of the AS as a whole

 › Assurance of ML component 

within an AS (AMLAS)12: con-

cerned with the safety of the ML 

elements of an AS.

SACE also derives a safe operating 

concept (SOC), which is an abstract view 

of how the AS is intended to ensure safety. 

For example, for an AV this would include 

activities like specifying the SOTIF and 

requiring the AV to give way to emer-

gency services. (However, recent events 

show that this does not always happen: 

https://www.nytimes.com/2023/08/18/

technology/cruise-crash-driverless 

-car-san-francisco.html.) The SOC is 

defined for an operational domain 

model (ODM), which is the context in 

which the AS is developed to work safely 

(but note that the SOC must consider safe 

entry and exit from the ODM). (The term 

ODM is analogous to the term opera-

tional design domain used for AVs, but we 

chose a different term as the approach 

is intended to be more general and not 

restricted to just AVs.) The ODM helps to 

define the context for assuring the ML 

elements (using AMLAS) whether they 

are part of the “understand” or “decide” 

AS functionality.

Two other processes “bridge” between 

SACE and AMLAS:

 › Safety assurance of understand-

ing in ASs (SAUS)13: conducting 

a safety analysis of the sense 

and understand elements of the 

system, seeking to identify how 

errors could arise in the world 

model that could lead to hazard-

ous decision making

 › Safety assurance of decision 

making in ASs (SADA)14: con-

ducting a safety analysis of the 

decision-making (and actuation) 

elements of the system, seeking to 

identify decisions that would be 

undesirable, even given a “perfect” 

world model.

Both of these processes help derive 

safety requirements for the system 

elements (SR_U and SR_D), given the 

AS-level safety requirements. (SR_U are 

safety requirements for understanding; 

SR_D are safety requirements for deci-

sion making, as illustrated in Figure 1.) 

For example, SAUS provides a modified 

form of hazard and operability study, 

which reflects the deviations from intent 

that can occur due to both sensing limita-

tions, including environmental impair-

ments, and the characteristics of the ML 

models used in the perception systems, 

which can lead to errors in the world 

model. SADA includes a decision safety 

analysis method that can be applied to 

the whole system (supporting SACE) and 

as a bridge between SACE and AMLAS.

In addition, SAUS and SADA provide 

specific verification and validation meth-

ods for the relevant system elements. 

Our focus here is on safety, but, for exam-

ple, formal methods can be used in syn-

thesizing adaptive controllers operating 

under uncertainty15 as part of SADA.

The final process is the following:

 › Social acceptability of ASs 

(SOCA)16: concerned with the 

overall acceptability of an AS in its 

social, not just physical or techni-

cal, context.

SOCA extends the ideas of safety cases 

to deal with ethics assurance. It brings 
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together the assurance case methodol-

ogy with a set of ethical principles cov-

ering benefits, harms, human autonomy 

and fairness, or justice,17 supplemented 

by transparency in response to the opac-

ity of ML. Thus, SOCA provides a frame-

work to reason about the broader ethical 

acceptability of an AS in its intended 

context. As shown in Figure 1, SOCA is 

interfacing to SACE; in this role it influ-

ences the definition of requirements for 

what is deemed acceptably safe. How-

ever, the intent is that SOCA will have a 

broader influence, for example, provid-

ing context for reasoning about bias in 

training data or identifying explainabil-

ity requirements for ML-based tasks.

SAFETY OF AUTONOMY IN 
COMPLEX ENVIRONMENTS
The SACE assurance framework is illus-

trated in Figure 2.

SACE considers the AS holistically, 

starting with a concept definition and 

resulting in AS-specific arguments and 

evidence to complement “traditional” 

safety work, thus forming a complete 

system safety case. The intent is that 

the safety case will be developed to sup-

port a decision about whether to deploy 

the AS, which may involve regulatory 

scrutiny. The process consists of eight 

phases, with iteration over these phases 

as the design evolves, as emphasized by 

the “feedback and iterate” arrow. Not 

all of the phases explicitly use the term 

“assurance,” but the overall intent is to  

provide assurance that the AS can oper-

ate safely, to achieve its purpose, in its 

FIGURE 1. Safety and assurance processes for ASs. SOC: safe operating concept; SOCA: social acceptability of ASs; SACE: safety assur-

ance of ASs in complex environments; ODM: operational domain model; SAUS: safety assurance of understanding in ASs; SADA: safety 

assurance of decision making in ASs; AMLAS: assurance of ML component within an AS.
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context of use. Briefly, the concerns of 

each phase are as follows:

1. Operating context assurance: 

Understanding the context of 

operation for an AS, noting that 

safety is highly context depen-

dent. For example, a humanoid 

robot used for assistive care in a 

retirement home may be phys-

ically the same as one used in a 

factory—but the hazards and mit-

igations are shaped by these differ-

ent contexts. Hence, confidence is 

needed that the operating context 

has been defined appropriately.

2. Identification of AS hazardous 

scenarios: Because of the com-

plexity of the operating context 

for many ASs, it is only real-

istic to identify hazards on a 

scenario-by-scenario basis; one 

of the concerns here is the suffi-

ciency of such scenarios.

3. SOC assurance: The SOC must 

cover nominal behavior and 

off-nominal behavior, including 

challenging situations, such as 

sudden rainstorms for an AV 

or demanding sea states for an 

autonomous vessel. The SOC 

also needs to encompass safe 

responses to failures that may 

occur during the AS operation, 

such as loss of communications; 

see phase 6.

4. AS safety requirements  assurance: 

Specifying and validating sys-

tem-level safety requirements for 

the AS to realize the SOC (some 

of which will flow down to the 

ML elements, potentially refined 

by SAUS and SADA).

5. AS design assurance: Hierarchi-

cal and iterative decomposition, 

leading to the use of AMLAS for 

the ML elements but using con-

ventional processes for the other 

AS elements.

6. Management of hazardous fail-

ures: Phases 1–5 are largely “top 

down,” but this phase is “bottom 

up” and may include classical 

FMEAs while also having to deal 

with the effects of failures of ML 

elements, such as misclassifica-

tions or false negatives in object 

detection. This will influence the 

definition and assurance of the 

SOC; see phase 3.

7. Out of context operation  assurance: 

It is unrealistic to assume that ASs 

always stay within the intended 

ODM, so this phase must address 

the AS, preserving safety outside 

the ODM where it is impracticable 

or unethical to hand control back 

to a human operator.

8. AS verification and validation: 

As for conventional systems, 

this includes scenario-based 

testing and use of simulation, 

but extended as necessary to deal 

with the characteristics of ML.

Each phase is broken down into a set 

of activities that take inputs, for exam-

ple, the AS concept definition for phase 

1, and produce a range of output arti-

facts, such as operating scenario defini-

tions. This is illustrated in Figure 3 for 
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FIGURE 2. The SACE process.
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SACE phase 1. The last step for each phase 

takes a safety case argument pattern 

[defined using the goal structuring nota-

tion (GSN)18] and uses the generated arti-

facts to instantiate that pattern. The arti-

facts provide contextual elements (the 

lozenges) and solutions (the circles) in the 

instantiated safety argument. In Figure 3, 

artifact B (the ODM) is both contextual 

and a solution; artifact C (ODM validation 

report) is a solution only.

The whole of SACE is structured this 

way, with the argument pattern instan-

tiations linking into a complete safety 

case. The SACE manual11 gives guid-

ance and examples on how to carry out 

the analysis and the scope of the out-

put artifacts. SACE produces results 

to extend and complement traditional 

safety work and safety cases. For exam-

ple, where autonomy and ML can con-

tribute to existing hazards, the safety 

case will encompass definition of con-

trols over the hazards/hazard causes 

(mainly phases 3–6 in SACE) and veri-

fication that these controls have been 

implemented (mainly phase 8). Fur-

ther, autonomy may introduce new haz-

ards, so the combined safety case would 

include the autonomy-specific hazards 

as well as more conventional ones. The 

out-of-context assurance is also likely to 

extend a conventional safety case—but 

link to it as, for example, loss of commu-

nication or propulsion for a mobile AS 

(conventional failure modes) may pose 

challenges when there are no humans 

present to manage the failure.

ASSURANCE OF ML FOR ASs
AMLAS12 is structured similarly to SACE, 

and the safety case(s) produced using 

AMLAS can link into the AS-level safety 

case and thus into the wider system 

safety case. AMLAS is based on an exten-

sive survey of the ML literature19 and 

draws together safety processes and key 

ML concepts into a coherent framework. 

It is structured as follows, with phases 

3–5 reflecting a typical ML develop-

ment lifecycle:

1. ML safety assurance scoping: 

Defining context of use of an 

ML element of the AS; this is 

shaped by phase 1 of SACE but 

reflects the specific role of the 

ML element within the system, 

for example, object detection or 

path planning.

2. ML requirements assurance: Deriv-

ing specific performance and 

robustness safety requirements 

for the ML elements; the way this 

informs ML development (and 

assurance) will depend on the type 

of ML model used, for example, 

defining the proper reward func-

tion for reinforcement learning.20

3. Data management assurance: 

Concerned with the relevance, 

completeness, accuracy, and bal-

ance of the data, which depends 

on the purpose of the AS and the 

scope of the ML element; this is 

where concerns about bias would 

be addressed.

4. Model learning assurance: Con-

cerned with showing that the 

learned model meets the safety 

requirements; this might, for 

example, include shaping the 

loss function20 as well as explicit 

requirements-based testing. 

5. Model verification assurance: 

This reflects the established ML 

development practice of “inde-

pendent” testing of the ML model 

with a dataset that was not used 

in model development. Verifica-

tion data particularly focus on 

realistic but challenging data that 

test the generalizability of the 

model within its context of use.

6. Model deployment assurance: 

This phase demonstrates that 

the properties demonstrated 

in the previous phases hold in 

the deployment context, that 

is, on the physical hardware, in 

the AS.

The AMLAS guidance12 supports the 

systematic development of a safety case 

via instantiation of GSN patterns for the 

ML elements of the AS in a similar way 

to SACE.

DISCUSSION
As explained previously, the five ele-

ments of the framework build on estab-

lished practices; for example, SACE 

reflects the systems and safety lifecycle 

models in Aerospace Recommended 

Practice 4754A.21 Thus, the approach 

outlined complements traditional safety 

processes, especially those in regulatory 

contexts that employ safety cases to sup-

port deployment, as outlined when dis-

cussing SACE.

AMLAS and SACE are complemen-

tary, but there has been wider experience 

in using AMLAS so far. This experience 

spans multiple domains and is summa-

rized next. (See https://www.york.ac.uk/

assuring-autonomy/demonstrators/ for 

an illustration of the range of domains 

we have worked in. Some of this work 

predated AMLAS and SACE and helped 

to develop the concepts.) One example 

is the use of satellite-borne ML for wild-

fire detection, carried out in conjunction 

with Craft Prospect, a U.K.-based special-

ist satellite technology company. Here, 

AMLAS was used on the ML elements 

to demonstrate safety, which includes 

giving accurate predictions of the size 

and locations of wildfires, necessary for 

the safety of those fighting the fires.22 

An example of the independent use of 

AMLAS (involving none of the AMLAS 
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developers) was for the safety assurance 

of an emergency braking system for an 

AV, intended to protect pedestrians.23 

This can be seen as an example of assur-

ing the SOTIF. These two examples are 

both embedded systems—the initial 

target of the framework—but AMLAS 

has also been successfully applied to 

decision support systems, for example, 

in healthcare.24

The work is also progressively influ-

encing standards and regulations, for 

example, working with the British 

Standards Institution on standards in 

the aerospace, automotive, and health-

care sectors, and shaping health-care 

regulations.25

While there have been some initial 

successes in applying the approach, 

there remain limitations and issues of 

maturity. As with the standards, our 

approach is not precise about the level 

of evidence needed for the safety case—

although both the definitions of SACE11 

and AMLAS12 and the examples of 

the use of AMLAS22,23,24 illustrate the 

approach and thus assist in interpreting 

and applying it. But this is work in prog-

ress, and there is more to be done.

Many emerging standards and guide-

lines for ASs introduce the notion of 

“levels” of autonomy, such as the Soci-

ety of Automotive Engineers (SAE) lev-

els for AVs26 and the Grades of Auto-

mation in rail.27 Our work does not yet 

address levels—and indeed it may not. 

Experience with AVs has cast some 

doubt on the utility of the concept,  

and we believe that—in alignment with 

safety engineering practice—it is bet-

ter to focus on risk, rather than trying 

to simplify the approach using “labels.” 

For example, systems of shared control 

(around SAE level 2+/3) may pose higher 

risks than level 4 or 5 because of the chal-

lenges regarding human supervision of 

autonomy and handover. We advocate 

an approach based on the analysis of 

function allocation between human and 

system28 and see this as an enhance-

ment of the SUDA system model. Other 

enhancements are needed; for example, 

it is also necessary for ASs to monitor 

their own health and to use such infor-

mation to inform their decision mak-

ing, such as changing their operational 

mode in the presence of sensor failures 

or impairment.

There are many other issues to be 

considered, including the wider concept 

of dependability, for example, sociotech-

nical29 and availability concepts, not just 

safety. The long-established models of 

fault–error–failure30 need reconsidering 

for AS and ML; there is a need to con-

sider cybersecurity issues and the ability 

to maintain the safety of an AS through 

life. There are also opportunities to use 

ML in the support of safety engineering, 

for example, in automating the genera-

tion of FMEAs.31

A
utonomy and the use of ML pose 

challenges for safety and assur-

ance. What we have sought to 

do in this article is to illustrate how these 

challenges can be addressed by building 

on established safety engineering con-

cepts but enhancing them with AS- and 

ML-specific approaches. There is much 

more to be done, but experience to date 

suggests that our systematic approach 

provides a basis on which we—and we 

hope the wider community—can build. 

However, we believe there is an urgent 

need for work to build consensus. In sev-

eral domains, ASs are starting to become 

much more widely deployed (or there is 

pressure to deploy them), and localized 

regulations will lead to cost and com-

plexity for developers and regulators 

alike and will not contribute to responsi-

ble innovation.

Finally, given the growing emphasis 

of “safe AI” on nonphysical harms aris-

ing from stand-alone AI systems, such 

as the mental health of users or dis-

crimination against users, we believe 

that the combination of AMLAS12 and 

our approach to ethics assurance argu-

ments16 might prove of wider value. 
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