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Autonomy does not subvert existing safety processes, but they 

must be supplemented with methods that address autonomy’s 

challenges, especially where perception and decision-making tasks 

are implemented with machine learning. We present an approach 

to address the safety of autonomous systems, building on and 

complementing established safety engineering methods.

Traditionally, safety-related systems, like air-
craft, cars, and factory robots, have operated 
under human control or supervision. With auton-
omous systems (ASs), the role of the human is 

lessened—perhaps just to the extent of initiating auton-
omous operation:

  An AS can operate independently of human 
control.

ASs have existed for some time, for example, in rail, 
including the Docklands Light Railway in London.  
Although safety-critical, such systems operate within 
well-defined and, to an extent, controlled environ-
ments; for example, there are physical controls on 
human access to the tracks, and traffic movement is 
controlled through a signaling system. The introduc-
tion of such ASs has been successful, and they have good 
safety records.

By contrast, emerging ASs, such as autonomous vehi-
cles (AVs) on the roads or collaborative robots (called 
cobots) in factories, operate in significantly more challenging 
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environments. We can refine the notion 
of autonomy by considering context 
and purpose:

  ASs operate within complex, 
dynamic, or partially observ-
able contexts.

  ASs are intended to achieve 
objectives that can only be par-
tially, or implicitly, defined.

Humans are generally good at deal-
ing with open-domain and partially 
defined goals, such as driving from 
York to London, and will “fill in” the 
necessary details on the way. In devel-
oping an AS, decisions on such details 
are being transferred from human to 
machine1: computers are used to realize 
capabilities that humans have under-
taken hitherto. Thus, from a safety per-
spective, the most fundamental chal-
lenge in assessing and assuring ASs 
is dealing with decision making by a 
machine that does not have the con-
textual and semantic “understanding” 
of the world that humans have (both 
taught and learned as we grow up).

A secondary, but very important, 
challenge is the use of machine learn-
ing (ML) for key functions of the AS, 
for example, to build situational aware-
ness. With ML, a computer system is 
trained to carry out a task by expos-
ing it to data that provide experience 
of undertaking that task. Thus, the 
objectives are not directly defined. The 
ML-based system can then perform 
the same task on data it has not seen 
before as it encounters new contexts, for 
example, a road segment for an AV or a 
patient for a robotic surgeon.

To summarize, the key safety chal-
lenges for ASs arise from their opera-
tion without human control in complex 
environments with partially or implic-
itly defined objectives, often using ML 

to realize critical system capabilities. 
However, ASs do not subvert estab-
lished safety concepts and principles—
for example, the need to search for and 
eliminate or mitigate single points of 
failure—but existing methods need to 
be complemented or revised to deal with 
these challenges. Thus, the aim of our 
article is to set out a systematic approach 
to dealing with the challenges of ASs 
that complements and supplements 
established safety engineering methods.

The article is organized as follows. 
The next section briefly considers re -
lated work. The sections “Conceptual 
Framework,” “Safety of Autonomy in 
Complex Environments,” and “Assur-
ance of ML for ASs” describe the over-
all approach and assurance frameworks 
for ASs, and their ML elements, within 
a whole system context. The section 
“Discussion” outlines several uses of 
the approach, identifies broader issues 
that need to be addressed, and presents 
our conclusions.

RELATED WORK
Artificial intelligence (AI) safety is cur-
rently receiving a lot of attention, with 
a focus on nonphysical harms, such as 
bias in algorithmic decision making. 
Such issues are important; however, the 
safety of AS and ML, in the sense of phys-
ical harm, has received less attention, 
except by standards bodies. For exam-
ple, Underwriters Laboratories pub-
lished a standard for AS evaluation that 
is intended to be usable cross domain.2 
There are also domain-specific stan-
dards addressing particular problems, 
for example, the safety of the intended 
functionality (SOTIF)3 in the automotive 
sector, which is concerned with show-
ing that nominal behavior is safe and 
addresses some of the challenges of the 
partially or implicitly defined objectives 
identified previously. Generally, these 

standards are goal setting, although 
they do identify assessment “meth-
ods” in broad terms. There are other 
generic frameworks concerned with the 
safety of ASs, such as the Safety Criti-
cal Systems Club guidelines,4 but these 
approaches generally fall short of objec-
tive criteria that could be used as a basis 
for compliance.

There is also a considerable body of 
work on the safety of specific aspects of 
ASs, such as reliable detection of pedes-
trians for AVs,5 developing methods for 
hazard analysis on ML datasets,6 and 
extending failure mode and effect anal-
yses (FMEAs) to ML, including cyber-
security issues.7 A few projects link 
traditional safety engineering and ML 
(see, for example, Jia et al.8), but there 
is generally a “gap” between the safety 
community and “nonsafety ML prac-
tice.” Our article seeks to bridge this gap 
by setting out a systematic approach to 
bring the two together.

CONCEPTUAL FRAMEWORK
We represent an AS as operating cycli-
cally using a sense–understand–decide–
act (SUDA) model (this is conceptually 
similar to the approach proposed by 
Sifakis9 and broadly equivalent to mod-
els like observe–orient–decide–act and 
monitor–analyze–plan–execute): 

1. A system senses its environment 
to produce a representation of 
properties in the environment, 
which we will refer to as sensed 
properties. For example, a 
barometer can be used to mea-
sure atmospheric pressure.

2. A system understands its 
environment by analysis of the 
sensed properties to produce 
some more abstract represen-
tation of the environment, 
which we will refer to as derived 
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properties. For example, atmo-
spheric pressure can be used to 
derive altitude. (The computa-
tion is nontrivial and typically 
involves compensation for 
meteorological factors, such as 
air temperature and areas of high 
and low pressure.)

The set of sensed and derived proper-
ties form a world model, which, in turn, 
gives the system situational aware-
ness, that is, “knowledge” of its context. 
However, as noted previously, this may 
be complex, dynamic, and only par-
tially observable.

3. A system then decides on a 
course of action to achieve  
its purpose.

4. Finally, a system acts, resulting in 
externally observable behavior, 
that is, a sequence of states  
and actions.

This behavior might include mov-
ing, switching on visible signals, such as 
navigation lights for a vessel, interaction 
with objects in the environment, such 
as picking soft fruit, or a drone broad-
casting its position. These actions can 
change the state of the environment 
(context) as well as the AS itself, which 
is then sensed, leading to an evolu-
tion of behavior to continue to meet 
its purpose, such as picking all of the 
ripe raspberries.

This model of an AS provides the basis 
(“anchor”) for our systematic approach to 
the safety and assurance of ASs, includ-
ing their ML elements. Figure 1 shows 
that the sense–understand and decide–
act elements of the AS can be imple-
mented using conventional components, 
ML, or a combination thereof.

Two of these processes are concerned 
with developing safety cases (that is, 

structured arguments supported by evi-
dence, intended to justify that a system is 
acceptably safe for a specific application 
in a specific operating environment)10:

 › Safety of ASs in complex environ-
ments (SACE)11: concerned with 
the safety of the AS as a whole

 › Assurance of ML component 
within an AS (AMLAS)12: con-
cerned with the safety of the ML 
elements of an AS.

SACE also derives a safe operating 
concept (SOC), which is an abstract view 
of how the AS is intended to ensure safety. 
For example, for an AV this would include 
activities like specifying the SOTIF and 
requiring the AV to give way to emer-
gency services. (However, recent events 
show that this does not always happen: 
https://www.nytimes.com/2023/08/18/
technology/cruise-crash-driverless 
-car-san-francisco.html.) The SOC is 
defined for an operational domain 
model (ODM), which is the context in 
which the AS is developed to work safely 
(but note that the SOC must consider safe 
entry and exit from the ODM). (The term 
ODM is analogous to the term opera-
tional design domain used for AVs, but we 
chose a different term as the approach 
is intended to be more general and not 
restricted to just AVs.) The ODM helps to 
define the context for assuring the ML 
elements (using AMLAS) whether they 
are part of the “understand” or “decide” 
AS functionality.

Two other processes “bridge” between 
SACE and AMLAS:

 › Safety assurance of understand-
ing in ASs (SAUS)13: conducting 
a safety analysis of the sense 
and understand elements of the 
system, seeking to identify how 
errors could arise in the world 

model that could lead to hazard-
ous decision making

 › Safety assurance of decision 
making in ASs (SADA)14: con-
ducting a safety analysis of the 
decision-making (and actuation) 
elements of the system, seeking to 
identify decisions that would be 
undesirable, even given a “perfect” 
world model.

Both of these processes help derive 
safety requirements for the system 
elements (SR_U and SR_D), given the 
AS-level safety requirements. (SR_U are 
safety requirements for understanding; 
SR_D are safety requirements for deci-
sion making, as illustrated in Figure 1.) 
For example, SAUS provides a modified 
form of hazard and operability study, 
which reflects the deviations from intent 
that can occur due to both sensing limita-
tions, including environmental impair-
ments, and the characteristics of the ML 
models used in the perception systems, 
which can lead to errors in the world 
model. SADA includes a decision safety 
analysis method that can be applied to 
the whole system (supporting SACE) and 
as a bridge between SACE and AMLAS.

In addition, SAUS and SADA provide 
specific verification and validation meth-
ods for the relevant system elements. 
Our focus here is on safety, but, for exam-
ple, formal methods can be used in syn-
thesizing adaptive controllers operating 
under uncertainty15 as part of SADA.

The final process is the following:

 › Social acceptability of ASs 
(SOCA)16: concerned with the 
overall acceptability of an AS in its 
social, not just physical or techni-
cal, context.

SOCA extends the ideas of safety cases 
to deal with ethics assurance. It brings 

https://www.nytimes.com/2023/08/18/technology/cruise-crash-driverless-car-san-francisco.html
https://www.nytimes.com/2023/08/18/technology/cruise-crash-driverless-car-san-francisco.html
https://www.nytimes.com/2023/08/18/technology/cruise-crash-driverless-car-san-francisco.html
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together the assurance case methodol-
ogy with a set of ethical principles cov-
ering benefits, harms, human autonomy 
and fairness, or justice,17 supplemented 
by transparency in response to the opac-
ity of ML. Thus, SOCA provides a frame-
work to reason about the broader ethical 
acceptability of an AS in its intended 
context. As shown in Figure 1, SOCA is 
interfacing to SACE; in this role it influ-
ences the definition of requirements for 
what is deemed acceptably safe. How-
ever, the intent is that SOCA will have a 

broader influence, for example, provid-
ing context for reasoning about bias in 
training data or identifying explainabil-
ity requirements for ML-based tasks.

SAFETY OF AUTONOMY IN 
COMPLEX ENVIRONMENTS
The SACE assurance framework is illus-
trated in Figure 2.

SACE considers the AS holistically, 
starting with a concept definition and 
resulting in AS-specific arguments and 
evidence to complement “traditional” 

safety work, thus forming a complete 
system safety case. The intent is that 
the safety case will be developed to sup-
port a decision about whether to deploy 
the AS, which may involve regulatory 
scrutiny. The process consists of eight 
phases, with iteration over these phases 
as the design evolves, as emphasized by 
the “feedback and iterate” arrow. Not 
all of the phases explicitly use the term 
“assurance,” but the overall intent is to  
provide assurance that the AS can oper-
ate safely, to achieve its purpose, in its 

FIGURE 1. Safety and assurance processes for ASs. SOC: safe operating concept; SOCA: social acceptability of ASs; SACE: safety assur-
ance of ASs in complex environments; ODM: operational domain model; SAUS: safety assurance of understanding in ASs; SADA: safety 
assurance of decision making in ASs; AMLAS: assurance of ML component within an AS.
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context of use. Briefly, the concerns of 
each phase are as follows:

1. Operating context assurance: 
Understanding the context of 
operation for an AS, noting that 
safety is highly context depen-
dent. For example, a humanoid 
robot used for assistive care in a 
retirement home may be phys-
ically the same as one used in a 
factory—but the hazards and mit-
igations are shaped by these differ-
ent contexts. Hence, confidence is 
needed that the operating context 
has been defined appropriately.

2. Identification of AS hazardous 
scenarios: Because of the com-
plexity of the operating context 
for many ASs, it is only real-
istic to identify hazards on a 
scenario-by-scenario basis; one 
of the concerns here is the suffi-
ciency of such scenarios.

3. SOC assurance: The SOC must 
cover nominal behavior and 
off-nominal behavior, including 

challenging situations, such as 
sudden rainstorms for an AV 
or demanding sea states for an 
autonomous vessel. The SOC 
also needs to encompass safe 
responses to failures that may 
occur during the AS operation, 
such as loss of communications; 
see phase 6.

4. AS safety requirements  assurance: 
Specifying and validating sys-
tem-level safety requirements for 
the AS to realize the SOC (some 
of which will flow down to the 
ML elements, potentially refined 
by SAUS and SADA).

5. AS design assurance: Hierarchi-
cal and iterative decomposition, 
leading to the use of AMLAS for 
the ML elements but using con-
ventional processes for the other 
AS elements.

6. Management of hazardous fail-
ures: Phases 1–5 are largely “top 
down,” but this phase is “bottom 
up” and may include classical 
FMEAs while also having to deal 

with the effects of failures of ML 
elements, such as misclassifica-
tions or false negatives in object 
detection. This will influence the 
definition and assurance of the 
SOC; see phase 3.

7. Out of context operation  assurance: 
It is unrealistic to assume that ASs 
always stay within the intended 
ODM, so this phase must address 
the AS, preserving safety outside 
the ODM where it is impracticable 
or unethical to hand control back 
to a human operator.

8. AS verification and validation: 
As for conventional systems, 
this includes scenario-based 
testing and use of simulation, 
but extended as necessary to deal 
with the characteristics of ML.

Each phase is broken down into a set 
of activities that take inputs, for exam-
ple, the AS concept definition for phase 
1, and produce a range of output arti-
facts, such as operating scenario defini-
tions. This is illustrated in Figure 3 for 

System Safety Process and System Development

Feedback and Iterate

AS Concept
1. Operating

Context
Assurance

2. AS Hazardous
Scenarios

Identification

3. SOC
Assurance

4. AS Safety
Requirements

Assurance

5. AS Design
Assurance

8. AS Verification
Assurance

Safety Case
for AS
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FIGURE 2. The SACE process.
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SACE phase 1. The last step for each phase 
takes a safety case argument pattern 
[defined using the goal structuring nota-
tion (GSN)18] and uses the generated arti-
facts to instantiate that pattern. The arti-
facts provide contextual elements (the 
lozenges) and solutions (the circles) in the 
instantiated safety argument. In Figure 3, 
artifact B (the ODM) is both contextual 
and a solution; artifact C (ODM validation 
report) is a solution only.

The whole of SACE is structured this 
way, with the argument pattern instan-
tiations linking into a complete safety 
case. The SACE manual11 gives guid-
ance and examples on how to carry out 
the analysis and the scope of the out-
put artifacts. SACE produces results 
to extend and complement traditional 
safety work and safety cases. For exam-
ple, where autonomy and ML can con-
tribute to existing hazards, the safety 
case will encompass definition of con-
trols over the hazards/hazard causes 
(mainly phases 3–6 in SACE) and veri-
fication that these controls have been 
implemented (mainly phase 8). Fur-
ther, autonomy may introduce new haz-
ards, so the combined safety case would 
include the autonomy-specific hazards 
as well as more conventional ones. The 
out-of-context assurance is also likely to 
extend a conventional safety case—but 
link to it as, for example, loss of commu-
nication or propulsion for a mobile AS 
(conventional failure modes) may pose 
challenges when there are no humans 
present to manage the failure.

ASSURANCE OF ML FOR ASs
AMLAS12 is structured similarly to SACE, 
and the safety case(s) produced using 
AMLAS can link into the AS-level safety 
case and thus into the wider system 
safety case. AMLAS is based on an exten-
sive survey of the ML literature19 and 
draws together safety processes and key 

ML concepts into a coherent framework. 
It is structured as follows, with phases 
3–5 reflecting a typical ML develop-
ment lifecycle:

1. ML safety assurance scoping: 
Defining context of use of an 
ML element of the AS; this is 
shaped by phase 1 of SACE but 
reflects the specific role of the 
ML element within the system, 
for example, object detection or 
path planning.

2. ML requirements assurance: Deriv-
ing specific performance and 
robustness safety requirements 
for the ML elements; the way this 
informs ML development (and 
assurance) will depend on the type 
of ML model used, for example, 
defining the proper reward func-
tion for reinforcement learning.20

3. Data management assurance: 
Concerned with the relevance, 
completeness, accuracy, and bal-
ance of the data, which depends 
on the purpose of the AS and the 
scope of the ML element; this is 
where concerns about bias would 
be addressed.

4. Model learning assurance: Con-
cerned with showing that the 
learned model meets the safety 
requirements; this might, for 
example, include shaping the 
loss function20 as well as explicit 
requirements-based testing. 

5. Model verification assurance: 
This reflects the established ML 
development practice of “inde-
pendent” testing of the ML model 
with a dataset that was not used 
in model development. Verifica-
tion data particularly focus on 
realistic but challenging data that 
test the generalizability of the 
model within its context of use.

6. Model deployment assurance: 
This phase demonstrates that 
the properties demonstrated 
in the previous phases hold in 
the deployment context, that 
is, on the physical hardware, in 
the AS.

The AMLAS guidance12 supports the 
systematic development of a safety case 
via instantiation of GSN patterns for the 
ML elements of the AS in a similar way 
to SACE.

DISCUSSION
As explained previously, the five ele-
ments of the framework build on estab-
lished practices; for example, SACE 
reflects the systems and safety lifecycle 
models in Aerospace Recommended 
Practice 4754A.21 Thus, the approach 
outlined complements traditional safety 
processes, especially those in regulatory 
contexts that employ safety cases to sup-
port deployment, as outlined when dis-
cussing SACE.

AMLAS and SACE are complemen-
tary, but there has been wider experience 
in using AMLAS so far. This experience 
spans multiple domains and is summa-
rized next. (See https://www.york.ac.uk/
assuring-autonomy/demonstrators/ for 
an illustration of the range of domains 
we have worked in. Some of this work 
predated AMLAS and SACE and helped 
to develop the concepts.) One example 
is the use of satellite-borne ML for wild-
fire detection, carried out in conjunction 
with Craft Prospect, a U.K.-based special-
ist satellite technology company. Here, 
AMLAS was used on the ML elements 
to demonstrate safety, which includes 
giving accurate predictions of the size 
and locations of wildfires, necessary for 
the safety of those fighting the fires.22 
An example of the independent use of 
AMLAS (involving none of the AMLAS 
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developers) was for the safety assurance 
of an emergency braking system for an 
AV, intended to protect pedestrians.23 
This can be seen as an example of assur-
ing the SOTIF. These two examples are 
both embedded systems—the initial 
target of the framework—but AMLAS 
has also been successfully applied to 
decision support systems, for example, 
in healthcare.24

The work is also progressively influ-
encing standards and regulations, for 
example, working with the British 
Standards Institution on standards in 
the aerospace, automotive, and health-
care sectors, and shaping health-care 
regulations.25

While there have been some initial 
successes in applying the approach, 
there remain limitations and issues of 
maturity. As with the standards, our 
approach is not precise about the level 
of evidence needed for the safety case—
although both the definitions of SACE11 
and AMLAS12 and the examples of 
the use of AMLAS22,23,24 illustrate the 
approach and thus assist in interpreting 
and applying it. But this is work in prog-
ress, and there is more to be done.

Many emerging standards and guide-
lines for ASs introduce the notion of 
“levels” of autonomy, such as the Soci-
ety of Automotive Engineers (SAE) lev-
els for AVs26 and the Grades of Auto-
mation in rail.27 Our work does not yet 
address levels—and indeed it may not. 
Experience with AVs has cast some 
doubt on the utility of the concept,  
and we believe that—in alignment with 
safety engineering practice—it is bet-
ter to focus on risk, rather than trying 
to simplify the approach using “labels.” 
For example, systems of shared control 
(around SAE level 2+/3) may pose higher 
risks than level 4 or 5 because of the chal-
lenges regarding human supervision of 
autonomy and handover. We advocate 

an approach based on the analysis of 
function allocation between human and 
system28 and see this as an enhance-
ment of the SUDA system model. Other 
enhancements are needed; for example, 
it is also necessary for ASs to monitor 
their own health and to use such infor-
mation to inform their decision mak-
ing, such as changing their operational 
mode in the presence of sensor failures 
or impairment.

There are many other issues to be 
considered, including the wider concept 
of dependability, for example, sociotech-
nical29 and availability concepts, not just 
safety. The long-established models of 
fault–error–failure30 need reconsidering 
for AS and ML; there is a need to con-
sider cybersecurity issues and the ability 
to maintain the safety of an AS through 
life. There are also opportunities to use 
ML in the support of safety engineering, 
for example, in automating the genera-
tion of FMEAs.31

A utonomy and the use of ML pose 
challenges for safety and assur-
ance. What we have sought to 

do in this article is to illustrate how these 
challenges can be addressed by building 
on established safety engineering con-
cepts but enhancing them with AS- and 
ML-specific approaches. There is much 
more to be done, but experience to date 
suggests that our systematic approach 
provides a basis on which we—and we 
hope the wider community—can build. 
However, we believe there is an urgent 
need for work to build consensus. In sev-
eral domains, ASs are starting to become 
much more widely deployed (or there is 
pressure to deploy them), and localized 
regulations will lead to cost and com-
plexity for developers and regulators 
alike and will not contribute to responsi-
ble innovation.

Finally, given the growing emphasis 
of “safe AI” on nonphysical harms aris-
ing from stand-alone AI systems, such 
as the mental health of users or dis-
crimination against users, we believe 
that the combination of AMLAS12 and 
our approach to ethics assurance argu-
ments16 might prove of wider value. 
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