
M. Khawaja Res. Number Theory          (2024) 10:48 
https://doi.org/10.1007/s40993-024-00533-6

RESEARCH

Torsion primes for elliptic curves over
degree 8 number fields
Maleeha Khawaja

*Correspondence:
mkhawaja2@sheffield.ac.uk
School of Mathematics and
Statistics, University of Sheffield,
Hicks Building, Sheffield S3 7RH,
UK
Data sharing is not applicable to
this article as no datasets were
generated or analysed during
the current study

Abstract

Let d ≥ 1 be an integer and let p be a rational prime. Recall that p is a torsion prime of
degree d if there exists an elliptic curve E over a degree d number field K such that E
has a K -rational point of order p. Derickx et al. (Algebra Number Theory 17(2):267–308,
2023) have computed the torsion primes of degrees 4, 5, 6 and 7. We verify that the
techniques used in Derickx et al. (Algebra Number Theory 17(2):267–308, 2023) can be
extended to determine the torsion primes of degree 8.
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1 Introduction
Let d ≥ 1 be an integer and let p be a rational prime. Recall that p is a torsion prime
of degree d if there is a number field K of degree d and an elliptic curve E over K with
a K -rational point of order p. Let S(d) denote the set of torsion primes of degree d. Let
Primes(x) denote the set of primes less or equal than x. Mazur [10,11] was the first to
completely determine the set S(d) for any integer d. He found that S(1) = Primes(7).
Kamienny [8] and Parent [13,14] determined the torsion primes of degrees 2 and 3,
respectively, finding that S(2) = S(3) = Primes(13). Building on the techniques used in
these works, Derickx et al. [5] proved the following result.

Theorem 1.1 (Derickx, Kamienny, Stein and Stoll) For an integer d ≥ 1, let S(d) be the
set of torsion primes of degree d. Then,

S(4) = Primes(17), S(5) = Primes(19), S(6) = Primes(19) ∪ {37}, and S(7) = Primes(23).

Weuse the techniques and computations of the aforementioned paper to determine the
set of torsion primes of degree 8.

Theorem 1.2 For an integer d ≥ 1, let S(d) be the set defined above. Then,

S(8) = Primes(23).

Although the study of low degree points on curves has received much attention in and
of itself, the precise determination of the set of torsion primes of low degree has also had
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several applications to the explicit resolution of Diophantine equations; see e.g. [1,7,9].
We expect Theorem 1.2 to have Diophantine applications in a similar manner.

The purpose of this note is to provide a proof of Theorem 1.2. We stress that none of
the ideas or techniques used in this note are due to us and we are merely verifying that
the techniques used to prove Theorem 1.1 can be extended to prove Theorem 1.2.

All computations were performed in Magma [2] using Stoll’s code [15]. All supporting
computations can be found at

https://github.com/MaleehaKhawaja/deg8torsionprimes.

After completing our computations we learnt that Maarten Derickx and Michael Stoll
have independently determined the torsion primes of degree 8 in unpublished work, as
well as computing smaller bounds for the sets S(9) and S(10).

The following two results form the theoretical basis of the proof. For the benefit of the
reader, we include the proofs of these results here.

Let d ≥ 1 be an integer over Q. Let X be a curve over Q, and let X (d) denote the dth

symmetric power of X . Recall that points in X (d)(Q) correspond to effective degree d
divisors on X . Let N ≥ 1 be an integer and suppose X = X1(N ). Then C1(N ) denotes the
set of cusps on X1(N ).

Lemma 1.1 (Derickx, Kamienny, Stein and Stoll) Let d ≥ 1 be an integer, and let p be a
prime. Let α be defined by the following composition of maps

α : C1(p)(Q)d → X1(p)(Q)d → X1(p)(d)(Q). (1)

If α is surjective then p /∈ S(d).

Proof This is [5, Lemma 1.5]. Suppose, for a contradiction that p ∈ S(d). Thus there is a
non–cuspidal K–rational point on X1(p). Thus there is a pair (E, P) where E is an elliptic
curve over K and P is a point of order p on K . Taking the sum of the Galois conjugates of
P gives a rational effective degree d divisor on X1(p). This divisor isn’t the sum of rational
cusps - this contradicts the surjectivity of α. ��

For a prime � distinct from p, let red� denote the usual reduction map:

red� : X1(p)(d)(Q) → X1(p)(d)(F�).

Lemma 1.2 (Derickx, Kamienny, Stein and Stoll) Let � be a prime distinct from p. Let
x̄ ∈ X1(p)(d)(F�). Suppose that the following two assumptions are satisfied.

(a) If x̄ is the sumof images of rational cusps under red� then the residue class of x̄ contains
at most one rational point.

(b) If x̄ is not the sum of images of rational cusps under red� then the residue class of x̄
doesn’t contain a rational point.

Then p /∈ S(d).

https://github.com/MaleehaKhawaja/deg8torsionprimes
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Proof This is [5, Lemma 1.7]. We want to show that the map α, as defined in Lemma 1.1,
is surjective. Let x ∈ X1(p)(d)(Q) be a rational point in the residue class of x̄. By taking
the contrapositive of assumption (b), x̄ is the sum of images of rational cusps under red�.
That is

x̄ = x̄1 + ... + x̄d

where x̄i = red�(xi) for rational cusps xi ∈ X1(p)(d)(Q). Let

x′ := x1 + ... + xd ∈ X1(p)(d)(Q).

Since x′ is a rational point in the residue class of x̄, it immediately follows from assump-
tion (a) that x = x′. It follows that x ∈ C1(p)(Q)d since x = x′ is the sum of rational cusps.
By Lemma 1.1 we have p /∈ S(d). ��
Since Primes(23) ⊆ S(8) (see [5, Proposition 1.3]), in order to prove Theorem 1.2, it

remains to prove that the reverse inclusion holds. The smallest general bound for torsion
primes of degree d is due to Oesterlé:

S(d) ⊂ Primes((3d/2 + 1)2);

see [5, Sect. 6] for a proof. In particular we need to verify that both assumptions of
Lemma 1.2 hold for 29 ≤ p < 6724. We say p is a rank zero prime if the Jacobian J1(p) of
the modular curve X1(p) has rank 0 over Q. In Sect. 2, we verify that Lemma 1.2 holds for
all rank zero primes. In Sects. 3 and 4, we verify that assumptions (a) and (b) of Lemma
1.2 hold for all remaining primes.

2 Rank zero primes
We begin our verification at the primes p for which the Jacobian J1(p) of X1(p) has rank
0 over Q. If p is such a prime then we refer to p as a rank zero prime. There are finitely
many rank zero primes, and moreover p is a rank zero prime if and only if

p ≤ 31 or p ∈ {41, 47, 59, 71};

see [3, Proposition 6.2.1].

Let X be a curve defined over Q. Let d ≥ 1 be an integer. Fix x0 ∈ X (d)(Q). Let J be the
Jacobian of X . Recall that the Abel–Jacobi map ι is given by

X (d) → J, x �→ [x − x0].

Recall that the Q-gonality of X is the minimum degree of a map from X to P1 defined
over Q. We break the proof of [5, Corollary 3.5] into smaller parts.

Lemma 2.1 Let d ≥ 1 be an integer. Suppose p is a prime such the Q-gonality of X1(p) is
strictly greater than d. Then the map

ι : X1(p)(d)(Q) → J1(p)(Q)

is injective.
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Proof Suppose there exist x1, x2 ∈ X1(p)(d)(Q) such that ι(x1) = ι(x2). Then

x1 − x2 = D1 − D2 + (f ), D1, D2 ∈ J1(p)(Q), f ∈ L(D1 − D2).

In particular, the degree of f ∈ Q(X1(p)) is less than or equal to d. This contradicts the
assumption on the Q-gonality of X1(p). ��

Lemma 2.2 (Derickx, Kamienny, Stein and Stoll) Let d ≥ 1 be an integer. Suppose p ≥ 3
is a rank zero prime such that the Q-gonality of X1(p) is strictly greater than d. Then
assumption (a) of Lemma 1.2 is satisfied for p with � = 2.

Proof This is [5, Corollary 3.5]. We recall that we need to show that the reduction map
red2 : X1(p)(d)(Q) → X1(p)(d)(F2) is injective. It follows from Lemma 2.1 and [5, Propo-
sition 3.4] that the map red2 ◦ ι = ι ◦ red2 is injective. Thus red2 is injective. ��

Let p ∈ {29, 31, 41, 47, 59, 71}. Then it follows from work of Derickx and van Hoeij [6]
that the Q-gonality of X1(p) is strictly greater than 8. Thus assumption (a) of Lemma 1.2
is satisfied with � = 2 by Lemma 2.2. We now verify that assumption (b) holds for these
primes. One way to do this is to show that every x̄ ∈ X1(p)(d)(F�) is the sum of images of
rational cusps.

Lemma 2.3 Let p = 29, 31 or 41. Then p /∈ S(8).

Proof From the remarks above, it remains to demonstrate that assumption (b) of Lemma
1.2 is satisfied. We follow the proof of [5, Lemma 3.7]. Write X = X1(p) and J = J1(p). By
[5, Corollary 3.3], J (Q) is generated by the differences of rational cusps. Thus, if there is a
rational point in the residue class of x̄ ∈ X (8)(F2) then x̄ maps into the subgroup of J (F2)
that is generated by the differences of the images of the rational cusps. We use Stoll’s
code [15] to verify that, under the hypothesis of assumption (b), x̄ doesn’t map into this
subgroup. The supporting computations can be found in the script X129_31_41.m. ��

To verify that assumption (b) holds for the primes 47, 59, and 71, we shall need the
following lemma.

Lemma 2.4 (Derickx) Let d ≥ 1 be an integer, and let p ≥ 3 be a prime. Suppose t ∈ T

kills the rational points on the Jacobian of X1(p) i.e.

t(J1(p)(Q)) = {0},

whereT denotes the endomorphism ring of J1(p). Consider two points x̄0, x̄ ∈ X1(p)(d)(F2)
where x̄0 is a sum of images of rational cusps. If the divisor t(x̄ − x̄0) is not principal then
there is no rational point x ∈ X1(p)(d)(Q) in the residue class of x̄.

Proof This is [5, Lemma 8.6]. Let X = X1(p) and J = J1(p). Suppose there is a rational
point x ∈ X (d)(Q) in the residue class of x̄. Let x0 ∈ X (d)(Q) be a point in the residue class
of x̄0 that is the sum of rational cusps. By assumption, t sends points in J (Q) to zero. Thus
t(x− x0) = 0 i.e. t(x− x0) is principal. In particular, it follows that t(x̄− x̄0) is principal. ��

Lemma 2.5 Let p = 47, 59 or 71. Then p /∈ S(8).
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Proof Let p = 47, 59 or 71. It remains to show that assumption (b) of Lemma 1.2 is
satisfied. Let X = X1(p) and J = J1(p). Let x be a degree 8 point on X = X1(p) and
write x̄ for the corresponding divisor on XF2 . First consider p = 47. Using Stoll’s code,
we checked that there are no elliptic curves over F2d with a point of order p = 47 for
1 ≤ d ≤ 7. Thus x̄ is the sum of eight rational cusps. Recall that assumption (a) of Lemma
1.2 with � = 2 follows directly from Lemma 2.2. Thus x is the sum of eight rational cusps.
This contradicts the assumption that x is a degree 8 point on X = X1(p). Now suppose
p = 59 or 71. Write Tn for the n-th Hecke operator, and 〈a〉 for the diamond operator.
Let t = (〈3〉 − 1)(T3 − 3〈3〉 − 1) ∈ T. We checked using Magma that the positive rank
simple factors of J1(p) already occur in J0(p). Using Stoll’s code, we checked that there
are no elliptic curves over F2d with a point of order p for 1 ≤ d ≤ 6. As before x̄ can
not be the sum of eight rational cusps. The only remaining possibility is that x̄ = D̄ + ȳ
where D̄ is a degree 7 place on XF2 , and ȳ is the reduction of a rational cusp. We note
that t(ȳ) is principal, and t(x̄) is principal. Hence t(D̄) must be principal. Using Stoll’s
code we checked that for all degree 7 places D̄ of XF2 , the divisor t(D̄) is not principal,
giving a contradiction in this case. All supporting computations can be found in the script
rankzeroprimes.m. ��

3 Verifying assumption (a)
Let � and p be distinct primes. Suppose x̄ ∈ X1(p)(d)(F�). We recall assumption (a) of
Lemma 1.2: if x̄ is the sum of images of rational cusps under red� then the residue class of
x̄ contains at most one rational point. Before stating the main strategy used to verify that
this assumption holds, we state an important result that is used in the proof.

Theorem 3.1 [Derickx, Kamienny, Stein and Stoll] Let d ≥ 1 be an integer and let � and
p be distinct primes. Let t : J1(p) → A be a morphism of abelian schemes over Z(l) such
that:

(i) t(J1(p)(Q)) is finite;
(ii) � > 2 or #t(J1(p)(Q)) is odd;
(iii) t ◦ ι is a formal immersion at all x̄ ∈ X1(p)(d)(F�) that are sums of images of rational

cusps on X1(p).

Then assumption (a) of Lemma 1.2 holds.

Proof This is [5, Corollary 4.3]. Suppose x, x′ ∈ X1(p)(d)(Q) are in the residue class of
x̄, where x̄ is the sum of images of rational cusps. We want to show that x = x′. Let
y = (t ◦ ι)(x) and y′ = (t ◦ ι)(x′). We note that y and y′ lie in the same residue class, since x
and x′ do. It then follows from i) and ii) that y = y′. Under the hypothesis of assumption
iii), a result of Parent [12, Lemma 4.13] asserts that the map

t ◦ ι : red�
−1(x̄) → red�

−1((t ◦ ι)(x̄))

is an injection. Thus x = x′. ��

We work with � = 2, and refer the reader to [5, Sect. 5] for the construction of an
appropriate operator t ∈ T. Indeed Derickx, Kamienny, Stein and Stoll [5, Corollary 5.2]
prove that such a t satisfies assumptions (i) and (ii) of Theorem 3.1with � = 2, and one can
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apply Kamienny’s criterion [5, Proposition 5.3] to verify assumption iii). We used Stoll’s
code to test whether Kamienny’s criterion holds, and found that it holds for

137 < p < 6724, p �= 149, 157, 163, 193, 431. (2)

This part of the verification required several parallel computations. The supporting code
can be found in script assumptiona.m.
For the primes excluded by (2) we used Stoll’s code to verify that assumption (a) holds

by replacing X1(p) with an intermediate curve between X1(p) and X0(p), see [5, Corollary
4.4]; this criterion is similar to Theorem 3.1. The supporting code can be found in the
script remainingprimes.m.

4 Verifying assumption (b)
Let p be a prime, and let � be a prime distinct from p. Suppose x̄ ∈ X1(p)(d)(F�). We recall
assumption (b) of Lemma 1.2: if x̄ isn’t the sum of images of rational cusps under red�

then the residue class of x̄ doesn’t contain a rational point. As remarked in [5, p. 272], to
verify this assumption, it suffices to show that

(i) there is no elliptic curve E over F
�d′ , for all d′ ≤ d, such that p | #E(F

�d′ );
(ii) p � �d

′ ± 1 for all d′ ≤ d.

It immediately follows from a result of Waterhouse [16, Theorem 4.1] that

#E(F2d ) ∈ {r ∈ [�(2d/2 − 1)2�, �(2d/2 + 1)2�] : r is even} ∪ {rd}
where

rd =
⎧
⎨

⎩

2d + m2d/2 + 1, m ∈ {−2,−1, 0, 1, 2} if d is even

2d + m2(d+1)/2 + 1, m ∈ {−1, 0, 1} if d is odd.

Thus it remains to show that assumption (b) holds for

p ∈ { 29, 31, 37, 41, 43, 47, 59, 61, 67, 71,
73, 113, 127, 131, 137, 139, 241, 257}.

By Lemma 2.3 and Lemma 2.5, we have 29, 31, 41, 47, 59, 71 /∈ S(8). Thus, it remains to
verify that assumption (b) holds for

p ∈ {37, 43, 61, 67, 73, 113, 127, 131, 137, 139, 241, 257}.

We fix some notation for the remainder of the paper. Let X = X1(p) and J = J1(p).
Write Tn for the n-th Hecke operator, and 〈a〉 for the diamond operator. Let t = (〈3〉 −
1)(T3 − 3〈3〉 − 1) ∈ T. As shown in [5, pg. 303], the operator T3 − 3〈3〉 − 1 kills rational
torsion. For the relevant primes p, we verify that the operator 〈3〉 − 1 maps J into an
abelian subvariety of rank zero. Thus for such p the operator t kills J (Q).

Lemma 4.1 Let p ∈ {43, 61, 67, 73}. Then p /∈ S(8).

Proof Suppose x is a degree 8 point on X = X1(p) and denote by x̄ the corresponding
divisor on XF2 . If p = 61, 67 or 73 then the operator 〈3〉−1 maps J = J1(p) into an abelian
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subvariety of rank zero by the proof of [5, Lemma 8.7]. If p = 43, we checked using Magma
that that the positive-rank simple factors of J1(43) all occur in J0(43).
First suppose p = 43, 61 or 67. Using Stoll’s code, we checked that there are no elliptic

curves over F2d with a point of order p for 1 ≤ d ≤ 6. Thus all places on XF2 of those
degrees d must be cuspidal. We proved that assumption (a) of Lemma 1.2 holds in Sect.
3. Then x̄ = D̄ + ȳ where D̄ is a degree 7 place on XF2 , and ȳ is the reduction of a
rational cusp. Since t(x̄) and t(ȳ) are principal, it must be that t(D̄) is principal. Using
Stoll’s code, we checked that t(D̄) is not principal for all degree 7 places D̄ on XF2 . This
gives a contradiction.
Now suppose p = 73. Using Stoll’s code, we checked that there are no elliptic curves

over F2d with a point of order p for 1 ≤ d ≤ 5. In each possible case, the support of x̄
must contain a degree d place D̄ such that t(D̄) is principal where d = 6, 7 or 8. Again,
we checked that t(D̄) is not principal for all degree d places D̄ on XF2 . The supporting
computations can be found in the script smallprimes.m. ��

Lemma 4.2 Let p ∈ {113, 127, 131, 137, 139, 241, 257}. Then p /∈ S(8).

Proof Let p be a prime as above. We follow the proof of [5, Corollary 7.2]. We checked
using Magma that the positive rank simple factors of J1(p) already occur in J0(p). In order to
apply [5, Proposition 7.1], it suffices to find a primitive root amodulo p. For p �= 131, 241
we choose a = 3; for p = 131 we choose a = 2; for p = 241 we choose a = 7. Let ord(a)
denote the order of a in (Z/pZ)×/{±1}. For each p we have ord(a) = (p − 1)/2 > 3 · 8.
We let n = 7 if p �= 131, 241 and n = 8 otherwise. In all cases we check that the inequality

8 <
325
216

· p
2 − 1
n

holds. Thus [5, Proposition 7.1] asserts that p /∈ S(8). The supporting Magma computa-
tions can be found in the script largeprimes.m. ��

In order to complete the proof of Theorem 1.2, it remains to show that assumption (b)
of Lemma 1.2 holds for p = 37.

Lemma 4.3 37 /∈ S(8).

Proof We follow closely the proofs of Lemmas 8.8 and 8.9 of [5]. We work with � = 2.
Using Stoll’s code, we checked that there are no elliptic curves over F2d with a point of
order 37 for d = 1, 2, 3, 4, 5, 8. Thus all places on XF2 of those degrees d must be cuspidal.
The curve X = X1(37) has 18 rational cusps, and 18 irrational cusps; the latter are defined
over Q(ζ37)+. As 2 is inert in Q(ζ37)+, the irrational cusps yield a single place on XF2 of
degree 18. Let x be a degree 8 point on X = X1(37), and write x̄ for the corresponding
divisor on XF2 . There are only three possible cases.
Case (I). x̄ is the sum of eight rational cusps. We proved that assumption (a) of Lemma
1.2 holds in Sect. 3. Thus x is the sum of eight rational cusps giving a contradiction.
Case (II). x̄ = D̄+ ȳwhere D̄ is a degree 7 place onXF2 , and ȳ is the reduction of a rational
cusp. We note that t(ȳ) is principal, and t(x̄) is principal. Hence t(D̄) must be principal.
Using Stoll’s code we checked that for all degree 7 places D̄ of XF2 , the divisor t(D̄) is not
principal, giving a contradiction in this case.
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Case (III). x̄ = D̄ + ȳ + z̄ where D̄ is a place of degree 6 on XF2 and ȳ, z̄ are reductions
of rational cusps, that may be distinct or equal. Again t(x̄), t(ȳ) and t(z) are principal,
therefore t(D̄) must be principal. We checked using the same code that there is precisely
one degree 6 place on XF2 (up to the action of the diamond operators) such that t(D̄) is
principal. As noted in [5], the divisor D̄ is the reduction of a degree 6 point D on X . To
obtain a contradiction, it is enough to show that D+ y+ z is the unique rational point on
X (8) in the residue disk of D̄ + ȳ + z̄.
Continuing in the footsteps of [5, Lemma 8.8] we consider the projection T17 : J → A,

where A is a 36 dimensional abelian variety of rank 0, rational torsion subgroup of odd
order; moreover the eigenvalues of T17 acting on the eigenforms coming from A are all
odd. To show that D + y + z is the unique rational point in the residue disk of D̄ + ȳ + z̄
it is enough to verify that the relevant ‘Derickx matrix’ (see [4, Proposition 3.7]) has
rank 8. Using a basis for S2(�1(37)), which has dimension 40, Stoll’s code constructs a
canonical embedding for X ⊂ P39. Thus regular differentials on X may be identified
with linear combinations of the coordinates on P39. With this identification, Stoll’s code
determines the differentials ω1, . . . ,ω36 coming from the rank zero quotient A. If the two
cusps y, z are distinct, then the divisor D̄ + ȳ+ z̄ is the sum of eight geometric points, say
D̄+ ȳ+ z̄ = p̄1 + · · · + p̄8. In this case, the Derickx matrix has a particularly simple form,
M = (ωi(pj)), and the formal immersion criterion is satisfied if this matrix has rank 8 (see
[4, Proposition 3.7]). We do not know the degree 6 place D̄ on this particular model, but
we checked, for all distinct pairs of rational cusps y, z, and all degree 6 places D̄′ on XF2

that the matrixM for D̄′ + ȳ + z̄ has rank 8 as required.
It remains to consider the case where y = z. Note that the action of the diamond

operators on the rational cusps is transitive, and one of these rational cusps is the∞ cusp.
Thus it is enough to show that the Derickx matrix for D̄′ + 2∞ has rank 8 for all degree
6 places on XF2 . Write D̄′ = p1 + · · · + p6 where the pi are geometric points. Then the
Derickx matrix is

M =

⎛

⎜
⎜
⎝

ω1(p1) ω1(p2) · · · ω1(p6) a1(ω1) a2(ω1)
...

...
...

...
...

ω36(p1) ω36(p2) · · · ω36(p6) a1(ω36) a2(ω36)

⎞

⎟
⎟
⎠ ;

here a1(ω) and a2(ω) are the first two coefficients in the expansion of ω in terms of any
uniformizer at ∞. Our differentials ω1, . . . ,ω36 come from cusp expansions around ∞,
with the cusp expansion f = a1q + a2q2 + · · · giving the differential ω = f (q)dq/q =
(a1 + a2q + · · ·)dq. As q is a uniformizer for the ∞-cusp we may use these coefficients
a1, a2 in the Derickx matrix. We computed all the possible matricesM and checked that
they indeed have rank 8. This completes the proof. The supporting computations can be
found in the script X137.m. ��
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