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Abstract—The proliferation of high-speed rail (HSR) networks
and railway electrification has advanced the integration of the
latest wireless communication networks with railway systems.
Ensuring a reliable bidirectional communication link between
moving trains and base stations is crucial to maintaining the
safety of real-time rail operations. However, the growing complex-
ity of railway systems and increased exposure to electromagnetic
emissions present substantial challenges. In particular, railway
wireless communication networks are vulnerable to various
kinds of electromagnetic interference (EMI) and intentional EMI
(IEMI), which could cause operational disruptions and safety
hazards. This paper proposes a real-time classification method
for EMI and IEMI, using deep learning-based bidirectional
long-short-term memory (BiLSTM) networks. By employing
multivariate time-series characteristics, the method can simul-
taneously learn both time and frequency information at a finer
resolution, offering better performance than existing methods.
The simulation results demonstrate a high accuracy of 93.4%
and adaptability at different speeds and in various scenarios.

Index Terms—Electromagnetic interference (EMI), Intentional
EMI (IEMI), Deep Learning, Railway Wireless Communications

I. INTRODUCTION

The expansion of High-Speed Rail (HSR) networks has

significantly enhanced the mobility for passengers. Establish-

ing a bidirectional connection between moving trains and

base stations (BSs) is imperative to facilitate high uplink and

downlink data rates while maintaining low latency during

railway operations. The Future Railway Mobile Communica-

tion System (FRMCS), initiated by the International Union of

Railways (UIC), signifies the transformation from the existing

Global System for Mobile Communications-Railway (GSM-

R) to the advanced 5G-Railway (5G-R). This evolution aims

to provide automated and digitized services, aligning with

stringent standards and specifications for reliability, avail-

ability, maintenance, and safety (RAMS) [1]. Although 5G

standards have defined scenarios and use cases for Ultra-

Reliable Low Latency Communication (URLLC), the propa-

gation environment in HSR wireless transmission applications

differs significantly from typical URLLC application scenarios

[2]. Further, the complexity of the electrified railway system

has reached unprecedented levels, raising concerns about its

increased susceptibility of wireless transmissions to various

electromagnetic interference (EMI) [3]. Given that the toler-

ance for EMI in HSR wireless communications is significantly

lower than that in the public domain, it is vital to prioritize

the research on EMI detection, ensuring operational safety for

HSR networks.

EMI, unintentional or intentional, poses a critical chal-

lenge on HSR wireless communications relating to operating

safety [4]. Electromagnetic signals, when superimposed on

the communication signals at the receiver side, induce dis-

tortions that make the communication signals indecipherable.

Such disturbances can lead to malfunctions of sensors and

signaling systems, compromise the effectiveness of automatic

train protection (ATP) systems, and cause errors within the

radio module system, resulting in emergency braking events,

congestion delays, and potential accidents. With the increas-

ing accessibility of compact and discreet telecommunication

devices in the public, it has become much easier for critical

systems to be interrupted [3]. Notably, effective anti-jamming

strategies for conventional wireless networks remain limited,

let alone for HSR wireless communications. Additionally,

specific railway environments, such as cuttings, viaducts, and

tunnels, significantly affect the signal propagation characteris-

tics. Consequently, it is imperative to devise a real-time EMI

detection approach.

Current EMI detection methods, such as statistics-based

detection and threshold-based approaches [5], face limitations

when multiple indicators have to be assessed simultaneously.

For the public cellular networks, several detection approaches

are proposed, including binary and multiple classifications

[6], [7]. The paper [8] uses the Bit Error Rate (BER) to

demarcate the types of interference. However, the lack of

evenly distributed data can lead to inaccurate threshold deci-

sions. The latest jamming detection techniques have compared

the performance among machine learning models, such as

random forest (RF), aggregative hierarchical clustering (AHC),

and support vector machine (SVM) [9]–[11]. Although these

machine learning models demonstrate rapid data processing

capabilities, they are restricted to analyzing the spectrum

solely in the frequency domain. In addition, they do not ad-

dress the challenges presented by dynamic HSR scenarios due

to a lack of emphasis on time-series features. These models

do not consider the time-frequency characteristics that are

subject to variations in various dynamic HSR scenarios. This



limitation makes them less suitable for real-time detection.

To our knowledge, few studies have investigated EMI de-

tection and classification for HSR wireless communications.

Compared to the existing literature, this paper investigates

multivariate time series features for classification and leverages

the Long Short-Term Memory (LSTM) deep-learning method,

which is useful for learning long-range dependencies. The

system model is devised for the dynamic HSR scenario, where

an on-board antenna captures downlink signals. The method

demonstrates the effectiveness in detecting typical EMIs and

IEMIs in real-time by learning temporal characteristics of sig-

nals from an extensive training dataset collected from diverse

dynamic scenarios. Furthermore, the implementation of real-

time EMI and IEMI classification will enhance the efficacy

of mitigation strategies and signal resistance techniques. The

main contributions of this paper are summarized below:

• A dynamic HSR scenario and three classes of potential

wireless communication threats are constructed. Multi-

variate features are extracted and analyzed for both the

time and frequency domains, with a finer resolution.

• The system, employing a BiLSTM deep learning algo-

rithm designed for time-series characteristics, facilitates

real-time EMI and IEMI detection and classification.

• The analysis framework can be scaled to a broad range

of electrified transportation modes.

The rest of the paper is organized as follows. Section II gives

an overview of the system model and the feature extraction.

Section III introduces the LSTM and presents the BiLSTM-

based classification algorithm. Simulation results are presented

in Section IV, followed by the conclusion in Section V.

II. SYSTEM MODEL

A. Overview of railway wireless communication networks

Fig. 1. The system model with three classes of EMI and IEMI in HSR
wireless communications

The system model for HSR wireless communication, shown

in Fig. 1, involves a macro BS operating at 1.9 GHz trans-

mitting signals to a train antenna receiver fixed on the train

roof. The chosen frequency band aligns with the 5G NR-

based FRMCS requirements for latency and reliability [12].

In this paper, the total time is divided equally, and at the

beginning of each time slot τ is for detection and classification.

The distance between BS and the railway track is 100m. We

assume that the high-speed train maintains constant speed as it

approaches and moves away from the BS. The varying train-

BS distances necessitate a dynamic and holistic system model

formulation addressing rapid train movement and realistic

signal propagation. This model includes:

• The Rician fading channel model is tailored for wireless

environments featuring a dominant line-of-sight (LOS)

component and multiple scattered paths, rendering it apt

for dynamic scenarios like rural, viaducts, and tunnels.
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Here, Pr denotes the total received signal power, encom-

passing both LOS and Non-Line-of-Sight (NLOS) com-

ponents. The constants A1, K, Pt1, andd1 are associated

with antenna gains and system losses, Rician K factor, BS

transmitted signal power, and distance for the first path,

respectively. The summation term includes NLOS paths

(2 to N ), each characterized by parameters (Ai, Pti, di),

following a Rician distribution.

• The Doppler shift effect, arising from the train’s move-

ment relative to BS, causes a frequency shift in the

received antenna signal, making it a crucial factor in HSR.

fd =
v · fc

c
(2)

Here, fd represents the Doppler shift, v is the veloc-

ity between the BS and the antenna, fc is the carrier

frequency of the transmitted signal from BS, and c is

the speed of light. This equation describes the maximum

shift when the relative direction of the train is parallel

to the transmitted signal, i.e., when the angle θ is 0.

This streamlines the system model without the need for

detailed geometric information or angles.

• The Path loss model considers signal attenuation over

large-scale distances in railway scenarios, employing the

logarithmic distance model to capture changes in signal

strength [13].

PL(d) = PL(d0) + 10n log10

(

d

d0

)

(3)

Here, PL(d) is the path loss at distance d, PL(d0) is the

path loss at the reference distance d0, n is the path loss

exponent, and d is the distance between the BS and the

antenna.

B. Models of EMI and IEMI

a) Transient EMI: Transient EMI refers to short-duration

EM disturbances in the radio frequency spectrum and can be

caused by various sources during train operation, including

pantograph-catenary arcing, electronic equipment on board,

lightning strikes, power surges or other electromagnetic events.

Transient EMI can be effectively modeled using damped

sinusoidal signal characteristics.

Vtrans(t) = A
(

e
−t

trise − e
−t

thold

)

· sin(2πfct) · µ(t) (4)



where A is amplitude, trise is rise time , thold is duration,

and fc is the center frequency of the superimposed useful

signal. Fig. 2 shows the two consecutive transient interferences

sharing similar characteristics but separated by variable time

intervals. The time interval between two consecutive transient

interferences, which refers to the repetition rate, may vary

depending on operating conditions such as train speed, power

supply line, and weather conditions. The unpredictable behav-

ior of the repetition rate is similar to a random jammer device,

alternating between active and idle states [9].

Fig. 2. Time representation of the transient EMI model

In the time domain, the signal exhibits a short-duration

characteristic, while in the frequency domain , it possesses a

broad spectrum overlapping the spectrum of the useful signal

around 1.9 GHz frequencies. This makes some mitigation

methods inapplicable, e.g., frequency-hop spread spectrum,

diminishing the impact of specific frequency interference by

sporadically hopping the data modulated carrier from one

frequency to another.

b) In-train and On-ground Sweep IEMI: IEMI, also

called jammers, can be defined as malicious wireless nodes

placed by an adversary to cause intentional interference in

wireless networks. Generally, there are multiple channels and

frequency bands available for 5G railway high-speed wireless

communications. As the low-cost jammer is constrained by

its hardware circuit (e.g., very high ADC sampling rate and

broadband power amplifier) to attack a large number of

channels simultaneously, frequency sweep jamming attacks are

used to circumvent this constraint [4]. This type of jammer

launches an attack by transmitting a continuous high-power

noise sweeping from one channel to another and repeating this

process over time [14]. This type of jammer can be modeled

as a cosine wave with random amplitude A that sweeps over

a frequency band [f1, f2] over a period of time T .

s(t) = Acos

(

2π

(

f2 − f1

2T
× t+ f1

)

× t

)

, 0 < t < T

(5)

In this model, the interference signal sweeps the frequencies

around [1800,2000] MHz within a duration τ of 10 µs. This

type of jamming signal is intentionally designed to disrupt the

1900 MHz frequency band of 5G-R.

Depending on the location of the IEMI, its impacts can vary.

The system model considers two cases: IEMI originating from

a portable device in a passenger’s pocket inside the train or

from a power source placed on the ground between the BSs

[15]. In the first scenario, IEMI is generated inside the train,

featuring consistent coupling conditions between the in-train

jammer and the rooftop antenna. This coupling remains unaf-

fected by train movement, passenger displacements, or local

perturbations. Considering the shielding effectiveness of the

train’s structure in measurements (approximately 20 dB addi-

tional attenuation), the total estimated coupling loss combines

the constant free-space loss and the shielding effectiveness

attenuation. Fig. 3 depicts the time-frequency representation

of the in-train sweep IEMI.

Fig. 3. Time-frequency representation of the in-train sweep IEMI

The second scenario involves placing the IEMI device on

the ground. Given that the antenna is fixed on the roof of the

train, the power received at the antenna is primarily affected

by the movement of the train. To disrupt the useful signal, the

jammer device is strategically placed to minimize obstacles

in transmitting the jammer. This evaluation incorporates the

two-ray LOS propagation model [16]:

Pr = Pt

GtGrh
2
t
h2
r

d4
(6)

Here, Pr is the received power at the antenna, Pt is the

transmitted power, Gt and Gr are the gains of the transmitting

and receiving antenna, ht and hr are the heights of the

transmitting and receiving antenna, and d is the distance

between the jammer and the antenna. The power received by

the antenna exhibits significant variation. As described in [15],

one scenario involves a mere 10 m distance from the jammer

to the train antenna, especially if the device is placed close to

the railway track or by a passenger waiting on a platform. This

proximity results in a sufficiently large impact on the useful

signal. The total estimated coupling loss considers both the

Doppler shift and the two-ray LOS path loss. Fig. 4 depicts

the time-frequency representation of on-ground sweep IEMI,

capturing discernible power degradation that evolves over time

as the train moves away from the jammer location.

Fig. 4. Time-frequency representation of the on-ground sweep IEMI

III. DETECTION AND CLASSIFICATION ALGORITHM

A. Long short-term memory (LSTM) basis

The LSTM network is an improved version of recurrent

neural networks (RNNs) that addresses the vanishing and

exploding gradients issues. It achieves this by introducing

forgotten gates, input gates, and output gates, which enhance



the network’s ability to selectively remember important in-

formation and forget irrelevant information. Detecting signals

in 5G-R can be challenging, especially when the carrier

frequency is 1.9 GHz. To satisfy the Nyquist theory, a practical

sampling frequency of 5 GHz is employed. Consequently,

within the signal detection window duration τ , the LSTM

network is introduced into our algorithm to effectively capture

features based on long time-series data.

B. Multivariate Time-Series Feature Extraction

When interference, characterized by a broad spectrum range

with a short duration or a frequency sweep period, is in-

troduced to the spectra, communication will be significantly

impacted. It is possible to detect interference by monitoring

changes in signal spectra received by the antenna.

The first group of time series features represents the fre-

quency variations over time shown in Fig. 5. Generally in

signal analysis, the shorter window with better time resolution

can capture rapid changes for real-time detection, while the

longer window with better frequency resolution can distinguish

between different frequency components in the signal. In this

paper, we divide the frequency band into smaller subbands

and perform spectral analysis for each subband with a shorter

window. This time-frequency decomposition approach allows

the analysis of both the time and frequency information with

finer resolution simultaneously. Specifically, the power level is

computed based on 3D time-frequency spectrograms and the

variance of power levels across 801 frequency points ranging

from 1800 to 2000 MHz, with a frequency resolution of

250 KHz. By combining the results from all the subbands,

a comprehensive time-frequency representation of the entire

signal sequence is created to provide detailed insights into

both frequency and time domain characteristics across a wide

frequency range.

Fig. 5. Flowchart of the multivariate time-series feature extraction

The second group of time series features represents the

amplitude variation of the signals received by the antenna. The

third group of time series features is associated with spectral

entropy, a concept derived from the Shannon information

theory that measures the uncertainty and randomness of a

signal power distributed across different frequencies. Overall,

803 distinct time series features are obtained and then into the

deep learning algorithms. Consequently, the network learns

these time series features simultaneously.

C. BiLSTM-based Multiclass Classification Algorithm

The BiLSTM-based multiclass classification algorithm, il-

lustrated in Fig. 7, is trained using temporal features and

corresponding labels. The BiLSTM layer plays a crucial role

by incorporating both forward and backward information flow

within the LSTM layers. The forward LSTM layers receive

input at each specific time step, while the backward LSTM

layers process the input in reverse order. Concatenating the

outputs of these layers creates an encoded representation that

combines both past and future information for each time

step. This representation undergoes further processing in a

fully connected layer for dimension reduction. The softmax

activation function in the final layer transforms raw scores

into a probability distribution across different classes, ensuring

they sum up to 1. This probability distribution, denoted as

Yni, is compared to the true label distribution Tni using the

cross-entropy loss formula [17] presented in Fig. 6. The for-

mula measures the dissimilarity, specifically the negative log-

likelihood, the negative log-likelihood between the predicted

and true class distributions. Here, N is the total number

of classes, and K is an index representing a specific class,

ranging from 1 to N , corresponding to the different classes

such as normal conditions, transient EMI, in-train sweep IEMI,

and on-ground sweep IEMI. During training, the algorithm

iteratively adjusts its parameters (weights and biases) to mini-

mize the cross-entropy loss. This fine-tuning aims to enhance

the model’s ability to produce higher probabilities for the

correct class and lower probabilities for other classes. During

classification, the class with the highest probability in the

output Yni is considered the predicted class. This decision

is guided by the softmax function, which guarantees that the

class with the highest raw score attains the highest probability.

Fig. 6. Flowchart of the BiLSTM-based Classification Algorithm Structure



IV. SIMULATION RESULTS AND ANALYSIS

The HSR wireless communication system model with Ri-

cian fading channel, Doppler shift, path loss, and ambient

noise, provides a realistic platform for evaluating detection

and classification systems under dynamic conditions. Data are

collected as the train approaches and moves away from the

BS with versatile speeds, within the coverage of one BS. The

distance range from the train to the BS spans from 100 to a

maximum of 2500 meters at a maximum speed of 450 km/h,

with a maximum Doppler Shift of 792Hz.

Three types of interference are superimposed on the signals

and collected within intervals containing multivariate time

series features. These data fall into four classes: signals

without interference, transient EMI, in-train sweep IEMI, and

on-ground sweep IEMI. In the simulation, three different train

speeds and three different scenarios (Rician Channel Fading K-

factors and path loss exponents) are considered [18]–[21]. The

simulations are conducted with a detection sampling interval

of 100 µs every 1 second, covering a 20-second duration of

train operation. A dataset comprises a total of 7,200 samples,

and this dataset is divided into a training set of 70%, a

validation set of 10%, and a test set of 20%. This allows

the accuracy to be evaluated and facilitates the assessment

of the adaptability of the performance in various scenarios

and speeds. The parameters of the simulation and analysis are

listed in the TABLE I.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Carrier Frequency 1.9 GHz
Detection Bandwidth 1800 to 2000 MHz
Train Three Different Speed 250, 350, 450 km/h
Three Different Scenarios Rural, Viaduct, and Tunnel
Rician K Factor 6, 3.66, 2.33
Path Loss Exponent 2.53, 3.5, 4
Ambient Noise Model AWGN with SNR 20 dB
BS transmitted signal amplitude 1V
Output power jammer 1 W or +30 dBm
Deep learning optimizer Adam
Initial learning Rate α 0.001
Mini-Batch Size 40

A. Performance Evaluation

a) Confusion Matrix: a table that summarizes the per-

formance of a classification algorithm by comparing its pre-

dictions with the actual class labels in a data set. Based on

the matrix shown in Fig. 7, the performance of our multi-

classification model shows the test data set containing 1440

samples with a high accuracy over 93.4%. The errors primarily

originate from undetected transient EMI. This implies that

either no disturbance occurs within the 100 µs interval, or

the pulse duration is too brief to be detected. Although the

analysis process sets a high-resolution frequency up to GHz

to capture the time characteristics for real-time detection, the

minimal impact of transient EMI on the spectrogram remains a

challenge to distinguish from normal conditions. Additionally,

the in-train sweep IEMI can be erroneously identified as on-

ground IEMI due to the similar sweep characteristics and

variation in power level. Overall, the high accuracy across the

four classes at different speeds and scenarios underscores the

adaptability of our proposed algorithm,demonstrating robust-

ness across varying HSR conditions.

Fig. 7. Confusion matrix of the multi-classification model on test set

b) Analysis and Comparison of Classification Accuracy:

To further validate the effectiveness of the proposed method,

we compared it with state-of-the-art methods, including RF,

AHC, and SVM. Table II presents the performance comparison

of all the methods in terms of classification accuracy. The

observation reveals that deep learning-based models achieve

superior performance compared to both traditional machine

learning methods, such as RF (84.48%) and AHC (80.85%),

and conventional data-driven models like SVM (84.4%). This

underscores the significance of modeling the BiLSTM deep

network structure to encode temporal information over se-

quences of data. Previous research based on SVM collected

power level data from 801 frequency points within each

spectrum [22]. However, it focused solely on the frequency

domain, neglecting to consider frequency variance over time.

Consequently, its performance may deteriorate with different

train movement speeds and diverse scenarios, potentially pos-

ing safety concerns.

TABLE II
CLASSIFICATION ACCURACY ACHIEVED BY THE COMPARED METHODS

Transient In-train On-ground Average

Method Normal EMI Sweep Sweep Accuracy

IEMI IEMI

BiLSTM 100% 81.7% 100% 91.9% 93.4%

SVM 97.6% 80.94% 97.38% 86.67% 88.4%

RF 95.6% 74.25% 88.52% 79.56% 84.48%

AHC 91.24% 70.47% 86.06% 75.67% 80.85%

c) Receiver Operating Characteristic (ROC) Curve :

ROC curve shows the true positive rate against the false

positive rate at various classification thresholds, providing a

visual representation of the trade-off between sensitivity and

specificity of the model across different threshold values. A



higher ROC curve, closer to the top-left corner, with a larger

area under the curve (AUC), indicates superior performance.

Since the ROC curve originates from binary classification,

in this simulation, we employ the one-vs-all strategy. Each

class is treated as the positive class, while the rest are treated

as the negative class. This process is reiterated for each class,

resulting in multiple ROC curves. The comparison with typical

multi-classification methods, such as RF, AHC, and SVM,

is illustrated in Fig. 8. As expected, the AUC value of the

proposed BiLSTM-based algorithm is the highest at 0.9752

among the four algorithms, indicating superior capability in

detection and classification. SVM acquires the second-highest

AUC value, followed by RF and AHC. Overall, our proposed

BiLSTM-based deep learning method addresses time-series

data by analyzing both time and frequency characteristics

simultaneously, achieving higher detection accuracy and adap-

tivity in varying attenuation scenarios, thereby proving more

effective, especially when real-time detection and classification

are crucial.

Fig. 8. ROC curves of multiclass-classification method comparison

V. CONCLUSION

In this paper, we develop a wireless communication model

for a dynamic 5G-R HSR system. The model incorporates

the dynamic channel propagation model, Doppler Shift, and

large-scale path loss. Three classes of potential threats, namely

transient EMI, in-train sweep IEMI, and on-ground sweep

IEMI, are considered, and multivariate features are extracted

for simultaneous analysis of both time and frequency do-

mains. The BiLSTM-based deep learning algorithm effectively

captures signals with time-series features, enabling real-time

detection and classification. Simulations demonstrate that the

model achieves a high detection accuracy of 93.4%, surpassing

existing methods. Furthermore, the proposed method will

facilitate the design of effective mitigation strategies and can

be scaled to a broad range of electrified transportation modes.
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