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Elasticity of Diametrically Compressed Microfabricated
Woodpile Lattices

Faezeh Shalchy* and Atul Bhaskar*

1. Introduction

Lattice structures and porous solids behave
as materials with apparent continuum
properties, when the length scale of poros-
ity and periodicity is much smaller than the
characteristic overall dimensions of the
structure. Of great current interest is
the apparent elasticity of such structured
solids. The stress–response relationship
depends on the shape and the topology
of the internal architecture and properties
of the parent material (see,[1] for a sum-
mary). Such analytically derived relation-
ships exist for several lattice geometries,
such as hexagonal honeycombs, or the stag-
gered woodpile architecture, when the
dominant mechanism of deformation is
stretch, shear, or bending (see, e.g.,[2–5]).

A commonly encountered lattice archi-
tecture is that of elastic cylinders stacked
orthogonally in alternate layers (see
Figure 1a), we refer to this as woodpile lat-
tice. We will call the horizontally running
rod-like elastic structures as struts, fila-

ments, or beads synonymously. This lattice geometry is of great
current interest due to the ease of its manufacture using 3D
printing, notably for use as biomedical scaffolds, where the word
“beads” is frequently used to refer to extrusion. Several studies
have focused on the understanding mechanics of 3D-printed
structures for biomedical applications, with aim to enhance
their mechanical performance as well cell activity and bone
regeneration.[6–13] They utilized experiments and finite-element
(FE) simulation to analyze the mechanical properties of these lat-
tices. Consequently, there is a deficiency in studying the mechan-
ics comprehensively. A systematic approach to understand the
deformation mechanisms in structured materials is essential
for designing lattices with predictable and tunable mechanical
properties. The key to successfully predict the mechanical behav-
ior of periodic structures is the identification of the dominant cell
wall deformation mechanisms, for example, they could be stretch-
or bending-dominated.[1,14,15] The resulting dependence of the
apparent properties on the density of foams has been studied
for a while (see[16,17] for early works). Studies aimed at under-
standing the mechanical, thermal, and electrical properties of
foams have followed.[18–20]

The apparent elasticity of woodpile lattices along the two main
directions of the filaments is trivial and is given by the rule of
mixtures. For the stacking arrangement with alternate layers stag-
gered, the compressive stiffness in the direction of stacking is
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Modulus–porosity relationships are invaluable to rational material design of

porous and structured solids. When struts in a lattice are compressed diamet-

rically, the mechanics is rather complex. Herein, the problem of modulus–

porosity in the spirit of scaling arguments and analyses based on simple ansatz

followed by variational minimization of the elastic potential energy is addressed.

Using scaling arguments, a simple power law where the apparent modulus of

elasticity scales quadratically with the volume fraction for diametrically com-

pressed elastic lattices is obtained. The modulus–porosity relationship is found to

be consistent with computations and laboratory experiments on additively

manufactured woodpile lattices with various cross-sectional shapes and lattice

spacing. It is also shown that the persistence length of diametrically pinched

elastic rods is small, so that the effect of compressive strain from neighboring

sites can be ignored. The decay behavior is surprisingly accurately captured by

the variational approach and is consistent with computations. Finally, the range

of validity of the quadratic power law presented here, up to relative density ~80%,

is identified. On the apparent modulus–porosity plane, the experimental data

aligns well with the power law for modulus–porosity predicted from simple

analyses and finite element calculations.
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dominated by the flexure of the struts.[2] Bending dominated
mechanics in a staggered woodpile gives rise to a fifth power rela-

tionship of modulus with porosity, that is, E � ρ5.[2] In contrast,
when the filaments in alternate layers are stacked in an aligned
arrangement (see Figure 1a), then loading the lattice remotely in
the stacking direction y leads to diametrical compression. The
apparent elasticity of woodpile lattices is strongly orthotropic
due to the three preferred directions, of which properties along
the two fiber directions are the same but different from those
along the stacking direction.[3,21] Hutmacher et al.[22] reported
the cellular response as well as compressive properties in the
stacking direction of polycaprolactone (PCL) scaffolds fabricated
using fused deposition modelling (FDM), when the alternative
layers are not orthogonal. A study carried out by Ahn et al.[21]

on 3D-printed dog-bone samples with aligned woodpile arrange-
ment demonstrated that the strengths of the samples along the
filaments are five times greater than that in the stacking direc-
tion. This is unsurprising and is due to the poor bonding
between filaments in stacking direction.[21]Naghieh et al.[23] stud-
ied the effect of strut diameter on mechanical response of
3D-printed woodpile lattice numerically and experimentally.
They developed a parametric FE model to assess the effects of
layers’ penetration on interlayer adhesion, which is reflected
on the mechanical properties of bone scaffolds; however, there
is no analytical work to compare the results against. Norato
et al.[24] studied the effect of overlap between layers on the
mechanical response of woodpile structures. An important fea-
ture of the problem of the diametrically pinched long cylinder,

such as those within woodpiles when compressed in the stacking
direction, is that it is neither a case of plane stress nor plane
strain. Although the cylindrical struts are long, as required for
plane strain, the diametrical compression is at a point along
the length and not all along the length as a line load. Likewise,
a thin disc compressed diametrically would be acceptable for
analysis using plane stress approximation, but the long struts
do not allow this approximation to be valid either. Norato
et al.[24] considered deformation of pinched cylinders due to
remote compression as a linear combination of the deformations
due to the two extreme cases of planar elasticity. While they pro-
vide an expression for the apparent stiffness as a function of the
geometrical and material parameters, the relationships are rather
complex and use a combination of plain stress and plain strain.

Woodpile lattices are of particular interest in tissue engineer-
ing. The effect of the relative position of the filament with respect
to adjacent layers on the apparent properties of woodpile scaf-
folds under compression was first studied by Sobral et al.[25]

experimentally. Arrangements that possessed staggered place-
ments of filaments showed superior results for cell growth.
Yeo et al.[26] reported that changing the relative position of the
filaments produces different pore sizes that results in scaffolds
more suitable for bone tissue engineering applications.
Yazdanpanah et al.[13] suggested that they noticed for the first
time that the mechanical properties of aligned and staggered
scaffolds are very different. While certain studies have suggested
that aligned woodpile scaffolds demonstrate superior mechanical
properties, others have found no distinction between aligned and
staggered scaffolds in terms of elastic modulus. Varied correla-
tions between porosity and mechanical properties seem to
account for these discrepancies. Hence, there is an urgent need
to study the mechanical properties of such lattices systematically.
In the longer term, such studies would provide guidelines for
designing and fabricating aligned and staggered scaffolds to rep-
licate the mechanical properties for trabecular bone. While moti-
vation of this work arises from tissue engineering scaffolds, there
are other potential applications where porous solids and solid
foams are used. This study is primarily of mechanical nature
and it is valid regardless of the biomedical properties of matter
such as biocompatibility–which relates to the cellular response to
foreign material, bioresorbability, biodegradability, etc. We
acknowledge that while these may be serious concerns for prac-
tical applications in biomedical engineering, here we restrict our
attention to the mechanical response alone. There are other
potential applications of such elastic lattices in nonbiological con-
texts such as their potential use for elastic or vibroacoustic meta-
materials. The main requirement for the applicability of the
results presented here is the diametrical compression of the
struts as the dominant mechanism of deformation and the valid-
ity of the linear constitutive laws.

Although some aspects of the mechanics of woodpile struc-
tures with cylindrical struts have been investigated in the
past,[27,28] a systematic study on mechanics of aligned arrange-
ment and the effect of strut cross-section shapes on their
mechanical properties is currently missing.

It is sometimes possible to obtain a power law relating the
apparent modulus to the porosity, when such relationships exist,
and when simple analysis is possible. As opposed to cell walls
within a cellular solid undergoing bending or stretch

(a) (b)

(c)

(d) (e)

Figure 1. Schematic of a) isometric view of a woodpile lattice, b) a wood-

pile lattice under compression, c) a single filament loaded and supported

periodically, d) unit cell of a woodpile structure in aligned arrangement

under compressive loading in stacking direction, and e) a diametrically

pinched elastic rod.
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deformations mentioned earlier, the present work is concerned
with a complex situation because the dominant mechanism is
diametrical compression. This is a significantly harder problem
mathematically, yet here we approach the problem in the spirit of
simple analysis–enabled by a scaling argument. Further, the
effect of compression at the neighboring sites is assessed and
found to be negligible for spacing greater than the diameter.
Again, an elegant analysis to estimate the persistence length
of pinching of an elastic cylinder is found to match extremely
well with numerical simulations, thus justifying the approxima-
tion that we can ignore the response arising from compression at
the neighboring lattice sites.

Here we develop a power law relationship for the apparent
elasticity of such lattices theoretically and verify the same com-
putationally and experimentally. Following this, an ansatz of
decaying elastic response is proposed, in which the unknown
exponent is treated as the generalized coordinate of the problem
that is subsequently determined by variational minimization of
the total potential energy. The persistence length of pinching of
an elastic cylinder turns out to be short enough that enables
ignoring the compression at nearby lattice sites. Results from
FE simulations and laboratory experiments are found to be con-
sistent with the simple power law presented here.

2. Theoretical and Computational Analysis of the
Apparent Stiffness

Theoretical analysis for lattice materials, when possible, may lead
to power law relationships between the apparent stiffness and the
porosity, the results for which are sparse. Here the dominant
mechanism of elastic deformation is the diametrical compres-
sion of cylindrical struts. Such pinched cylinders are analytically
intractable, as the situation is neither of plane stress nor plane
strain. Since we know that the response of such pinched solid
cylinders is localized, with rapidly decaying displacement field,
here we develop a theory for diametrically compressed lattices
by 1) employing a scaling argument in the linear elasticity
regime; and 2) showing that the effect of compression at nearby
lattice sites is negligible. Scaling analysis cannot provide the
value of the constant C mentioned later in this article. FE simu-
lation has been utilized to identify the C constant.

2.1. Modulus–Porosity Relationship: Scaling Argument

A remote compressive stress is applied in the stacking direction
of woodpile lattice with alternative layers aligned (see, Figure 1b).
The deformation in such elastic lattices is due to diametrical
compression. The interaction between these layers is complex.
Localized response would, in principle, follow contact mechan-
ics, which is known to be nonlinear because contact area depends
on loading. Such localized response is out of our consideration
presently. Here we are interested in the apparent Young’s mod-
ulus of such lattices in the stacking direction, an idea necessarily
associated with linear elastic response. Each filament is modeled
as a periodically pinched elastic cylinder (see, Figure 1c). A unit
cell under transverse stress is shown in Figure 1d. The apparent
compressive strain in the loading direction is given by the ratio of
the transverse compression 2δ and the transverse length 4r over

which the compression takes place (see Figure 1d). The unit cell

contains two diameters (one whole and two halves). The diamet-
rical compression for the unit cell is 2δ whereas it is δ per cylin-

der. The apparent remote stress σ∞ can be related to the pinching
force F, as shown in Figure 1e. The apparent stress and strain are

thus respectively given by

σ∞ ¼ F

λ2
and εh i ¼ 2δ

4r
(1)

where λ is the lattice spacing. The apparent modulus of elasticity

is, therefore, given by Eh i ¼ σ∞= εh i. Substituting this into
Equation (1), apparent Young’s modulus is given by

Eh i ¼ 2Fr

δλ2
(2)

An analytical relation between F and δ is required to close the
problem.

The functional form involving geometrical and material

parameters in the F � δ relationship for linear response can

be developed by a simple scaling argument using the well-known
Buckingham Pi theorem.[29,30] For the deformation of a solid rod

under two diametrically opposing point loads, Young’s modulus
of the parent material, Poisson’s ratio, diameter, and the applied

force are the relevant variables. This results in the three nondi-

mensional numbers Π1 ¼ F=Er2, Π2 ¼ δ=r, and Π3 ¼ ν. The
force–displacement relationship can then be expressed as

δ

r
¼ ϕ

F

Er2
, ν

� �

, or
δ

r
¼ F

Er2

� �

m

ðνÞn (3)

where m and n are unknown exponents. For linear response,
δ ∝ F, so the function ϕmust factorize withm= 1. Also, the role

of Poisson’s ratio is often not significant and can be absorbed in

the proportionality constants. Therefore,

δ ∝
F

Er
(4)

The constant of proportionality can be established by compu-
tation or physical experiments. The volume fraction is given

by ρ ¼ ðπr=2λÞ. Substituting the F � δ relationship from
Equation (4) into Equation (2), the apparent Young’s modulus

as a function of volume fraction ρ is given by

Eh i ¼ CEρ2 (5)

where C is a nondimensional constant that can be determined by
detailed analysis, computations, or experiments. The simplicity

of the power law with a quadratic exponent is appealing. Indeed,
such power laws, when they exist, provide interesting insight into

the dependence of the behavior in a simple and usable form.
The relationship obtained above is valid for noncylindrical

cross-sectional shapes too, with a characteristic length of the
cross section in the direction of compression, say χ, replacing the

radius. Hence, for lattices with struts of square cross section of
side a or hexagonal cross section with distance between flats b,

we can write

www.advancedsciencenews.com www.aem-journal.com
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δ□ ∝
F

Ea
, or; δ⬡ ∝

F

Eb
(6)

The modulus–porosity relationship for lattices with other

cross-sectional shapes would again be a power law as in
Equation (5), except that the constant of proportionality would

depend on this shape.

2.2. Persistence Length of a Pinched Elastic Rod

The above analysis assumes an infinite cylinder pinched at a sin-

gle diametrical location. In reality, a pinched strut suffers com-
pression that could potentially impact the apparent strain at the

neighboring lattice sites. We will call the decay length scale associ-
ated with the axial response to pinching as the persistence length.

The term persistence is usually associated with the bending stiff-

ness of a polymer, given by its ratio with the Boltzmann constant
kBT . Here we will use the term in the spirit of describing a decay

length associated with localized pinching. Recently such persis-
tence lengths for hollow cylinders[31] and for thin elastic strips[32]

have been studied. In a lattice, the influence of neighboring
points must be accounted for, only if it is significant.

We estimate the persistence length variationally using a sim-

ple ansatz. The approach is deliberately kept simple in order to
estimate the role of local deformation on neighboring sites. The

axial decay is assumed to be exponential, which is consistent with

the well-known Saint-Venant’s principle, which states that the
effect of self-equilibrating system of forces away from their point

of application decays rapidly. Consider an infinitely long elastic
rod, pinched at the origin z= 0, as shown in Figure 2a. The strain

energy in a deformed elastic solid is given by the volume integral

U ¼ 1

2

Z

σijεij dV (7)

where summation is implicit over the repeated indices. Direct

stresses in the x- and z-directions as well as shear in the x� y
plane are negligible when the rod is pinched in the y-direction

(see Figure 2), that is, σxx ¼ σzz ¼ τxy ≈ 0. The displacement

in the z-direction is negligible, that is, w ≈ 0. We further assume
that strain energies due to shear deformation in the x� z plane

are also small, as they are due to Poisson coupling. The validity of

these simplifications will be assessed numerically.

Consider an ansatz vðx, y, zÞ ¼ qye�βz with two undetermined

parameters q and β. The nonzero strain components required to
evaluate the strain energy can be calculated as

εyy ¼
∂v

∂y
¼ qe�βz, γyz ¼

∂v

∂z
þ ∂w

∂y
¼ �βqye�βz (8)

The total strain energy expression now simplifies to

U ¼ 1

2

Z

ðεyyσyy þ τyzγyzÞ dV (9)

Substituting σyy ¼ Eεyy and τyz ¼ Gγyz, the energy associated

with compression and shear can be written as

Ucomp ¼
1

2

Z

Eε2yy dV and Ush ¼ 1

2

Z

Gγ2yz dV (10)

For filaments of constant cross-sectional area A, dV ¼ Adz.
Substituting for strain and integrating over z from zero to infin-

ity, Ucomp and Ush are analytically obtained as

Ucomp ¼
1

2

EAq2

2β

� �

and Ush ¼ 1

2

GAβa2q2

24

� �

(11)

Both expressions are quadratic in the amplitude parameter q.

After using the relationship between shear modulus and the
Young’s modulus, via the Poisson’s ratio, we have

U ¼ q2EA

4

1

β
þ a2β

24ð1þ νÞ

� �

(12)

The dependence of U on β within the two terms is competing
because the strain energy due to diametrical compression is

� β�1, whereas that due to shear is � β. Equilibrium is a result

of the competition between these two energy terms that is
resolved by variationally minimizing U with respect to β.

Using the principle of minimum potential energy, that is,

δU ¼ 0, δ represents the first variation, we assert ∂U= ∂β ¼ 0.

So, we analytically obtain aβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

24ð1þ νÞ
p

, which shows weak

dependence on the Poisson’s ratio of the order of ν=2. For

ν ¼ 1=3, we have β ¼ 4
ffiffiffi

2
p

=a ≈ 5.66� a�1. Hence, displacement

in y-direction that characterizes axial persistence is given by

vðx, y, zÞ ¼ qye�5.66ðz=aÞ. An upshot of the simple analysis is that

we have an estimate of axial propagation of the pinch to other
nearby locations in a lattice. The pinching action takes place

at a spatially periodic interval. For example, the axial displace-
ment at a distance a away from the location of pinching would

be e�5.66 ¼ 0.35% of what it is where the rod is pinched. So, we
can safely ignore the effect of axial propagation of compression to

nearby locations and the lattice response would be adequately

(a)

(b)

(c)

Figure 2. a) Schematic diagram of pinched rod of square cross section.

b) Three different cross-section al shapes: circular with the radius r, square
of side a, and hexagonal of height b. Symmetry allows modeling only one-

eighth of the structure to be modeled. c) Prescribed displacement field

consistent with constant strain is applied at the facez ¼ 0.
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represented by just the local compression of an infinitely long
pinched filament. The simple analysis is validated against FE
simulations in the following section.

The effect of pinching at sites further away is progressively
less. The simplicity of the analysis gives us an estimate that is
independent of the shape of the cross-section. Of course this
would not be the case in a detailed elasticity solution. However,
we made a deliberate choice of simplifying the energy terms and
estimating if the effect of pinching at neighboring pinched sites
needs to be accounted for. The apparent modulus of elasticity
versus porosity is the main motivation of this work, as the power
law Equation (5) provides a simple and useful relationship for
material design, which a detailed account of a higher-order effect
would compromise. The efficacy of the simplifications in esti-
mating the persistence of diametrical pinching is assessed com-
putationally in the following section.

2.3. Diametrically Pinched Elastic Rods: Computational

Assessment of Persistence

The spatial decay of the elastic response can be computationally
estimated for various geometries. Constant strain in the pinching
direction is applied to sufficiently long rods by imposing the dis-
placement field through the cross section as per vðx, y, 0Þ ¼ qy, as
in the previous analysis. The commercial code ABAQUS/CAE/
Standard 6.18 (Simulia, Dassault Systèmes, Providence, RI,
USA)[33] was used for simulating the pinching deformation.
Three different shapes of the cross section of the rod are consid-
ered. Because of the three planes of symmetry in the problem,
only one octant of the structure needs to bemodeled as shown for
the circular, square, and hexagonal cross sections (Figure 2b).
Boundary conditions are applied respecting these symmetries
so that all the nodes on the left and bottom edge remain in their
plane; see Figure 2c. Displacement vðx, y, 0Þ ¼ qy, consistent with
constant strain over the cross section, that is, εyyðx, y, 0Þ ¼ q, is

applied. The computational model thus set up provides estimates
of persistence due to imposed displacement field. Mesh refine-
ment was carried out to ensure convergence. Here we consider
persistence under extreme situations: 1) plain strain when the
depth in the x-direction is large so that the problem becomes
one of thin layer being squeezed in the thickness direction; 2) plain
stress when the depth in the x-direction is small compared to the
thickness; and 3) when the x � y cross section is square. The
deformation v ¼ v=χ, as a function of z ¼ z=χ, shows very similar
roll-off profiles for the three cases (in Figure 3a). Here χ ¼ 2r, a, or
b is the characteristic length in the y-direction. The persistent
length, the distance at which the response reduces to 1=e of it

its value, is estimated as lp ¼ β�1
≈ 0.18� a for a square section

of side a, as the slope of �5.6 in Figure 3b is close that from the
simple theory. The periodic dips are associated with a change in
sign of v in the oscillatory response obtained from FE simulations,
so that logarithmic response shows sharp dips. A similar oscil-
latory response due to pinching has been reported for hollow
shells in refs. [31,34] and is associated with complex exponents
and potentially two length scales if the real and the imaginary parts
are different. The simple analysis presented here does not bring
out these subtle features, but is adequate for the purpose. Results
from FE simulations of rods with cross section of three different

shapes under constant imposed strain εyy ¼ q are shown in

Figure 3c,d. The persistent length for rods with hexagonal and cir-
cular cross section is estimated to that for a square cross section.

The deformation profile decays as per expð�5.6zÞ, where z ¼ z=χ,
depending on the shape of the cross section. The simple theory
presented here provides decay rates close to those previously
reported using very detailed analysis for hollow cylinders special-

ized for solid cross section[35] which gives kb ¼ 2.8, that is,

k ¼ 2.8� b�1, where b is the radius, rather than diameter, which

means a decay rate of �5.6 in our notations. For solid cylinders,
see;[36] the value of decay rate (reported there as �5.586, for
ν ¼ 0.25) is again very close to our estimates. Since the persistence

length is smaller than the cross-sectional characteristic length χ, as
shown in this and the previous subsection, we expect that the

modulus–porosity relationship Eh i ¼ CEρ2 obtained from a diamet-

rically compressed infinitely long strut would be close to one for lat-
tice with finite spacing. This is taken up computationally and
experimentally, and results are presented in the following sections.

2.4. Apparent Modulus for an Elastic Lattice: Computations

The power law (5) is now reconciled against computations. A unit
cell is modeled within the ABAQUS environment. A prescribed
vertical displacement is applied at all the nodes of the top surface

of the unit cell. The nodes on the bottom surface are constrained
in all degrees of freedom, while due to periodicity of the struc-
ture, all the nodes lying on the vertical surfaces are constrained to

remain in their plane, allowing displacements in that plane.
Filaments in lattices are modeled as elastic cylinders and meshed
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5.6

Figure 3. The deformation of compressed rod obtained from FE for dif-

ferent element types (plane stress, plane strain, and 3D elements (ten-

node tetrahedral -C3D10)) and rods with various cross-sectional shape.

a,c) Displacement in y-direction (v) versus the length of filament. b,d)

Log of the absolute value of displacement in y-direction (v) versus the

length of filament.
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using ten-node tetrahedral (C3D10) elements that use quadratic

interpolation. Thematerial properties assigned are Young’s mod-
ulus, E= 2290MPa[28] and Poisson’s ratio, v= 0.36.[37] The

smallest element size in FE mesh is 0.05mm.
The bonding between filaments was modeled by considering

an overlap in the volumes of adjacent cylinders. Unit cells are

modeled considering the woodpile structure with 15% overlap
between layers, similar to the 3D-printed lattices discussed in

the following section. The apparent density (ρ) is calculated both

geometrically and using the mass property calculation tool within
ABAQUS. The diameter of the cylinders was taken as 2r= 0.25,

0.40, 0.60, and 0.80mm. These correspond to the size of com-
mercially available FDM nozzles. Center-to-center separation

between the filaments λ was varied systematically across samples
manufactured for compressive testing, to obtain a range of the

porosity and study its relationship with the apparent properties.
By varying λ, while keeping the filament diameter fixed, porous

lattices of varying relative density, ρ, were simulated under com-

pressive load in the stacking direction.
The contrast between the modulus–porosity relationship for

the aligned versus the staggered stacking is apparent in Figure 4.

While the staggered stacking obeys a fifth-power dependence of
the apparent modulus on relative density ρ, as reported previ-

ously in,[2] the diametrically compressed aligned woodpile shows

a scaling Eh i � ρ2. The deviation for the computationally
obtained modulus–porosity relationship from a fifth-power line

is attributed to shear combined with bending for short overhang
(see, Cuan et al.[2]). Moreover, the validity of the fifth-power law is

restricted to high-porosity region in addition to ignoring shear
and higher-order deformations. On the other hand, numerical

simulations are extremely close to the power scaling for diamet-

rically compressed woodpiles, given by Equation (5). The highest
achievable density for woodpile lattices with noncontacting struts

is when λ ¼ 2r, that is, ρ ¼ π=4 ≈ 78.5%. Thus the quadratic
power law would start significantly deviating from the power

law presented here. We carried out numerical simulations for
the whole range of apparent density. As expected, both graphs

approach Eh i=E ¼ 1 for solid material ðρ ¼ 1Þ, the shaded area

shows the region of inapplicability of the simple power law,
which coincides closely with ρ > π=4.

It is sometimes possible to obtain simple relationships using
scaling arguments (see e.g., Gibson and Ashby,[1] Warner and
Edwards[14] in the context of solid foams). Planar honeycombs

and open cell 3D foams show Eh i � ρ3 and Eh i � ρ2 scaling

respectively, because bending mechanics entails � t3 and � t4

scaling for flexural stiffness whereas the volume fraction scales

as ρ � t and ρ � t2 for the two cases respectively, t being the cell
wall thickness. Similarly stretch dominated planar honeycombs,
for example, triangular lattice of struts, the modulus–porosity
scaling is Eh i � ρ, because stretch stiffness and volume fraction
both scale as ρ � t. Staggered woodpiles are again bending dom-
inated, if the lattice separation is large, compared to the diameter.

The bending stiffness scales as per r4=λ3, remote stress as per

σ∞ � λ�2, apparent strain as per εh i � r�1, whereas the volume

fraction follows ρ � λ=r, giving rise to Eh i � ρ5. Such power laws
are based on simple mechanics of slender rods. The mechanism
of diametrical pinching, by contrast, is rather complex and hence
not amenable to simple analysis. Our scaling argument pre-

sented here shows a quadratic power law Eh i � ρ2 for aligned
woodpile lattices under diametrical compression, the basis of
which is Equation (1)–(5).

2.5. Modulus–Porosity Relationship: Laboratory Experiments

Additive manufacturing affords the possibility of tailoring the
porosity of woodpile lattices by controlling the spacing of the
struts as well as using different diameters for the nozzle used
for dispensing the material. This was achieved by a bespoke
sequence of machine instructions as G-code used to control
the movement of print tool. Ultimaker2 Extendedþ is used to
fabricate the specimens by FDM 3D printing method. All speci-
mens were fabricated at 205 °C with speed of 1000mmmin�1

and fan speed of 80%. Nozzle with square bore manufactured[38]

as well as the available standard nozzles are used to fabricate
woodpile lattices. Scanning electron micrscopy (SEM) micro-
graphs of cross section of woodpile structures printed with cir-
cular nozzle of 0.4 mm radius and square nozzle of 0.53mm side
length are shown in Figure 5. There is a deviation of the diameter
of the extruded filaments from the nominal nozzle diameter,
which is estimated to be less than 9%. As expected, there is flat-
tening of the extrusion so that the diameter is slightly wider hor-
izontally and slightly shorter vertically, resulting in ellipticity of a
small degree. Our measurements for printed samples using
0.4mm nozzles show horizontal and vertical diameter of the fab-
ricated extrusions as ð410� 16Þ and ð379� 13Þ μm, respectively.
These measurements for the square nozzle of 0.53mm nominal
side length are ð567� 17Þ and ð500� 11Þ μm, respectively. The
variance is due to inevitable variability in the fabrication process,
whereas difference in the mean vertical dimensions versus that
in the horizontal direction is due to flattening of the molten
material during solidification, which is a systematic deviation
from the intended geometry. The relative densities of specimens
are calculated using the total weight, the material density, and the
total external volume of the printed cubic samples. The length
and width of compression test specimens are chosen according
to the ASTM standard D1621 to be 50mm� 50mm and their

Figure 4. Comparison between the apparent modulus of aligned and stag-

gered woodpile lattices, theory, and FE simulations. The shaded area

shows the limit of applicability when struts start contacting at ρ ¼ π=4.
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height is ≈25mm. Instron 5569 was used to perform the uniaxial

compression tests with strain rate of 3� 10�4 s�1. Dino-lite
microscope is used to capture images during the tests.

3. Results and Discussion

The apparent Young’s modulus is the ratio of the remote stress
and the apparent lattice strain. The applied remote stress σ∞ is
obtained from computations by dividing the total reaction force

by the area of the unit cell, A ¼ λ2, whereas the applied vertical
displacement is divided by the original height of the unit cell in
the loading direction, that is, ≈ 4r, to obtain the apparent strain
in the lattice εh i. Apparent Young’s moduli thus calculated from
simulations is plotted as a function of relative density for circular
and square strut cross sections in Figure 6. The apparent Young’s

modulus scales as Eh i ∝ ðρÞ2 for both arrangements, as predicted
by our analysis; see Equation (5). For ρ ¼ 1, which is when the
lattice turns to a solid block, the apparent Young’s modulus will

reach to value of Eh i
E ¼ 1. A parabolic asymptote is fitted to the FE

simulation results for the small densities using data points at low
ρ values of the data from FE calculations. The exponent of the
fitted power law is strikingly close to the predicted value of 2.
The constant of proportionality from the two shapes of the cross
section are different—a steeper parabola for the lattice with
square cross-section struts, whereas a shallower one for that with
circular cross section. In both cases, FE simulation results depart
from the power law for values of the relative density greater than
≈0.8. For lattices with square cross-section struts, FE calculations
show a falling slope at the denser end of the plot, whereas in the
trend for structures with circular cross section, a rising slope is
observed.

For lattices with struts of circular cross section, the results fit

to a power law Eh i=E ¼ CðρÞ2 in which C ≈ 0.67 for 15% overlap
in FE simulations. The power law coefficient weakly depends on
the layer overlap. This effect is not studied here but it has been
studied theoretically and numerically by Norato et al.[24] For lat-
tices with struts of square cross section, the results fit a power law

of Eh i=E ¼ BðρÞ2 with B ≈ 1.16.
The compressive response of lattices were studied experimen-

tally next. The power law dependence, as presented earlier in
Figure 6, is brought out best on a logarithmic scale, where the
trend should be linear with a slope 2. Predictions from scaling
argument based on power law and well as FE results (in Figure 6)
are compared with experimental values of the modulus (derived
from tests such as those in Figure 7) an are now overlaid on a
single graph in Figure 8. Samples with different filament diam-
eters, spacing between filaments, and a fixed layer overlap of
≈15% were 3D printed and tested. Two typical stress–strain
curves obtained experimentally are presented in Figure 7. The
stress–strain curve of these samples starts with a linear elastic
part, followed by a plateau due to yielding of the material, leading
eventually to material densification. At least three identical speci-
mens are tested for each combination of lattice spacing and strut
diameter. Similar trends are observed in specimens with square
cross-sectioned filaments. However, due to the high contact area,
the stiffnesses of these specimens are higher than specimens
with circular cross-sectioned rods. Young’s modulus was
obtained for each sample from stress–strain curves such as those
in Figure 7. A dot on Figure 8, with error bars showing variability
in measurement, represent the apparent modulus value thus
obtained for each lattice with a chosen spacing and strut

Figure 5. SEM micrograph of FDM-fabricated aligned woodpile structures with a) square nozzle with the side length of 0.53mm and b) circular nozzle

with diameter of 0.4 mm nozzles. The deviation in the diameter of the extruded filaments from the nominal nozzle diameter is less than 9%.

Figure 6. Apparent modulus versus apparent density of a woodpile struc-

ture with struts of cylindrical and square cross sections. The shaded area

refers to ρ > π=4, when struts start contacting each other.
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diameter. The two trend lines in this figure show a linear depen-
dence with slope 2, confirming the anticipated quadratic power
law, consistent with the scaling argued earlier.

A comparison between experimental results for the apparent
Young’s modulus with those from FE simulations as well as the
simple theory (Section 2) for woodpile structures with struts of
circular and square cross sections is presented in Figure 8.
Results from FE calculations are shown using circular and
square markers with a dashed line. Trends from the simple
theory are presented using solid lines that overlap with FE cal-
culations for much of the lower range of porosity, and the depar-
ture is only at the very high end of porosity within the shaded
band at the right end, as expected. Nozzles of two different diam-
eter and a bespoke nozzle with square outlet were used to print
woodpile lattices with various center-to-center spacing in order
to obtain lattice structures of a range of porosity values. The
apparent modulus for each layer-wise additively manufactured
structure is presented on the modulus–porosity plane using dots

with experimental error bars. The apparent Young’s

modulus scales as Eh i ∝ ðρÞ2, as predicted by our analysis; see
Equation (5). The trend is along straight lines, with slope 2, on
a double-log graph on the modulus–porosity plane. Straight lines
with slope 2 on a log–log plot in Figure 8, as obtained from FE
calculations, confirm this. The apparent modulus of specimens
with square cross section is higher than that for specimens with
circular struts for a given porosity. This effect is more pro-
nounced in FE calculation. Note that the simple theory enunci-
ated via Equation (5) here provides the quadratic dependence on
volume fraction and linear scaling with the Young’s modulus,
but the constant C, which depends on the cross-sectional shape,
has to be obtained from another analysis or experimentation,
here we have used the power law fit (Figure 6) with FE to deter-
mine this cross-sectional shape-dependent constant. The vertical
shift in the straight lines reflects this difference in the value of
the constant of proportionality.

4. Conclusion

We present a power law relationship between the apparent mod-
ulus of elasticity along the stacking direction, and the porosity of
a woodpile lattice, when struts are diametrically compressed. A
simple scaling argument results in the modulus being propor-
tional to the second power of the relative density, which is found
to be consistent with our computations and laboratory experi-
ments. The modulus–porosity relationship presented here is
based on the diametrical compression of a long elastic rod, which
suggests effects of compressive response from neighboring sites.
We demonstrate using a simple analysis that the persistence
length of a pinched solid rod is comparable to the cross-sectional
characteristic length, so that the effect at about one cross-
sectional distance is of the order of 3%–4% and hence can be
ignored. That such a diametrical compression is localized is
further verified computationally. Lattice structures of varying
porosity were fabricated using additive manufacturing, so that
the modulus–porosity relationship could be experimentally
observed. This was achieved by 1) controlling the lattice spacing;
2) and using nozzles with different bore size, including a bespoke

(a) (b)

Figure 7. Stress–strain curve for two set of identical specimens with aligned woodpile arrangement under compression a) r ¼ 0.2 mm and λ ¼ 2.4 mm

and b) r ¼ 0.3 mm and λ ¼ 1.6 mm.

Figure 8. A comparison results for the apparent Young’s modulus versus

apparent density between the experimental and those obtained from FE

simulations, alongside the predictions from the simple theory, considering

woodpile structures with struts of square and cylindrical (15% overlap)

cross-sectioned filaments.
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nozzle capable of dispensing beads of square cross section. For
dense staggered woodpile lattices, the deviations from the
power law are expected and can be attributed to unaccounted
for deformations. The experimental modulus–porosity relation-
ship agrees well with detailed FE simulation. An implication
of the present work is in advanced material design that
is enabled by a simple power law with respect to porosity,
despite rather complex inherent mechanics in the diametrical
compression.
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