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Integrating Visualised Automatic Temporal
Relation Graph into Multi-Task Learning for
Alzheimer’s Disease Progression Prediction

Menghui Zhou, Xulong Wang, Tong Liu, Yun Yang, and Po Yang∗, Senior Member, IEEE

Abstract—Alzheimer’s disease (AD), the most prevalent dementia, gradually reduces the cognitive abilities of patients while also

posing a significant financial burden on the healthcare system. A variety of multi-task learning methods have recently been proposed in

order to identify potential MRI-related biomarkers and accurately predict the progression of AD. These methods, however, all use a

predefined task relation structure that is rigid and insufficient to adequately capture the intricate temporal relations among tasks.

Instead, we propose a novel mechanism for directly and automatically learning the temporal relation and constructing it as an

Automatic Temporal relation Graph (AutoTG). We use the sparse group Lasso to select a universal MRI feature set for all tasks and

particular sets for various tasks in order to find biomarkers that are useful for predicting the progression of AD. To solve the biconvex

and non-smooth objective function, we adopt the alternating optimization and show that the two related sub-optimization problems are

amenable to closed-form solution of the proximal operator. To solve the two problems efficiently, the accelerated proximal gradient

method is used, which has the fastest convergence rate of any first-order method. We have preprocessed three latest AD datasets, and

the experimental results verify our proposed novel multi-task approach outperforms several baseline methods. To demonstrate the high

interpretability of our approach, we visualise the automatically learned temporal relation graph and investigate the temporal patterns of

the important MRI features. The implementation source can be found at https://github.com/menghui-zhou/MAGPP.

Index Terms—Alzheimer’s disease, automatic temporal relation graph, multi-task learning, disease progression

✦

1 INTRODUCTION

A LZHEIMER’S disease (AD), the most prevalent neu-
rodegenerative disorder, is marked by the deteriora-

tion of cognitive abilities over time. AD accounts for 60% to
80% of dementia cases and eventually leads to irreversible
neuronal loss and death [1]. Since only a challenging brain
biopsy or autopsy can provide a conclusive diagnosis of
AD, it is of great importance to accurately predict AD
progression over time. There are currently no treatments
that can halt or reverse the progression of AD, it is hence
crucial to identify the biomarkers that are significant to the
emergence of this illness [1].

Previous studies have demonstrated that a variety of
cognitive scores, such as ADAS-Cog (the Alzheimer’s Dis-
ease Assessment Scale Cognitive Sub-scale), RAVLT (the
Rey Auditory Verbal Earning Test), and MMSE (the Mini-
Mental State Examination), are capable to assess the state of
AD patients [2], [3], [4]. Non-invasive structural magnetic
resonance imaging (MRI) can identify atrophic changes in
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the brain [5]. Machine learning techniques have been used
to investigate the relationship between various cognitive
scores and MRI features. Owing to an inherent relationship
among multiple time points, it is expected that analysing
multiple time points simultaneously will improve model
performance. To achieve this goal, in recent years, several
multi-task learning strategies have been put forth to forecast
how AD will develop [6], [7], [8], [9]. They consider pre-
dicting a target at a series of time points to be a multi-task
learning problem, with each task focusing on the prediction
at a specific time point. As illustrated in Fig. 1, the k-
th time point is regarded as the k-th task wk. The goal
of multi-task learning is to improve generalization ability
and model performance by utilizing the inherent relations
between various related tasks [10]. Despite the recent great
advancements made in investigating AD through multi-task
learning, a significant challenge is determining how to fully
capture and hence exploit the complex temporal relation
between multiple tasks.

A typical approach is employing the temporal smooth-
ness relation, which assumes there is a limited difference
between two adjacent tasks. Zhou et al. [6] propose a multi-
task learning method with the temporal group Lasso (TGL)
and assume that the cognitive score of patients will not
change significantly over time, i.e., there won’t be much of
a difference in cognitive scores between two successive time
points. TGL penalizes the difference between adjacent tasks
∥wk −wk+1∥22 in order to achieve temporal smoothness at
task level. Similar to TGL, a multi-task learning formulation
with convex sparse group Lasso ( cFSGL) is proposed in
[7] which assumes that nearby time points have similar
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Fig. 1. Illustration of MTL prediction model. We use baseline MRI
features to predict the progression of AD patients, whose states are
measured by cognitive scores. The notation BL and M00 both mean
the baseline time point. Mx means x months after baseline time point
and x ∈ {0, 6, 12, 24, 36, 48}. The time points are not evenly distributed.
Moreover, in practice, the notation Mx is usually inaccurate.

features, so they penalize
∑

k |wi,k − wi,k+1| to pursue
temporal smoothness at feature level. Clearly, these two
kinds of methods seek the same outcome, i.e., wk ≈ wk+1.

However, the main limitation is that both two kinds
of temporal smoothness relation are a type of local and
predefined structure. It only takes into account how the task
relates to its neighbours, potentially ignoring other impor-
tant task relations. In essence, if each task is viewed as a
node in a graph, with edges determining task relation, TGL
and cFSGL both utilise a graph with only edges between
successive tasks, but on other edges. Different from TGL and
cFSGL, Liu et al. [8] propose a multi-task formulation with
fused Laplacian sparse group Lasso (FLSGL), which enables
a fully connected graph with decreasing task weights. This
type of relation is also based on a predefined kernel function.
Recently Zhou et al. [9] propose an adaptive global temporal
relation structure LSA. As this structure is built on a prede-
fined and specific iterative convex combination, it has limited
capability to handle complicated temporal relations among
tasks.

Different from all mentioned existing methods, the mo-
tivation of this work comes from a common but extremely
complicated situation, i.e., the time points are not evenly
distributed and the corresponding notation is usually in-
accurate when collecting the data. Specifically, as shown
in Fig. 1, the notation M00 is the baseline time point and
Mx represents x months after M00. Clearly, the time points
are not evenly distributed since the intervals between two
successive time points are not the same, i.e., 6 months or
a year. Furthermore, even when the time points are evenly
distributed, the given time notation is frequently inaccurate.
The data at M24 may come from M23, M25, or M26 in
practice [11].

To handle this challenging problem, it should be far
preferable to learn the complex temporal relation between
tasks directly and automatically from the given data, rather
than relying on a predefined temporal relation structure. So
we present a novel mechanism, termed Automatic Temporal
relation Graph (AutoTG), to automatically capture the com-
plex temporal relation between tasks and construct it as a
relation graph. Note that multi-task learning based on tem-
poral relation is found in a vast variety of applications. Ex-

cept for the study of AD, in [12], the authors use multi-task
learning with temporal smoothness relation to diagonalize
the progression of Parkinson’s disease. Romeo et al. [13]
suggest a novel spatio-temporal multi-task learning with the
temporal smoothness relation to predict the development of
diabetes and its complications. Wang et al. [14] propose a
temporal multi-task learning model for survival analysis.
Though this paper focuses on the study of AD, AutoTG has
great potential to be a building block for other multi-task
learning models based on temporal relation.

In the area of AD research, finding the biomarkers asso-
ciated with the progression is crucial as well. We apply the
sparse group Lasso [15] to introduce the sparsity between
groups and within each group, as shown in Fig. 1. It means
that we select a universal MRI feature set for all time
points and particular sets for specific time points. Combin-
ing sparse group Lasso with AutoTG, we propose a novel
Multi-task learning approach with Automatic temporal re-
lation Graph for Predicting Alzheimer’s disease Progression
(MAGPP).

We summarize the main contributions as follows:

• We point out that existing multi-task works for AD
progression prediction all rely on strong assumptions
and employ specific predefined structures to mine
temporal relationships among tasks. They disregard
the possibility of a complex asymmetric relationship
and negative correlation between tasks, thereby lim-
iting model performance.

• We present a novel multi-task approach MAGPP. It
automatically captures the complex temporal rela-
tion between tasks and constructs it as a relation
graph, while also selecting a universal MRI feature
set for all time points and particular sets for specific
time points. Experimental findings on three latest
AD datasets show that MAGPP outperforms several
baseline methods in terms of overall performance
and nearly every task-specific performance.

• To solve the non-smooth and biconvex objective
function, we utilize the widely used alternating opti-
mization [16]. To improve the efficiency even further,
we design a warm start strategy based on a variant
of the Gaussian kernel. Experiments show that it can
reduce iterations by up to 87% and computation time
by 85%.

• To explore the complex temporal relation among
tasks, we visualise the automatically learned relation
graph. It reveals that the temporal relation among
tasks is not strictly symmetric. Not only that, tasks
that are too far apart may even, though not fre-
quently, repel rather than approximate each other
which has never been considered in all previous
works [6], [7], [8], [9].

• To show the high interpretability of MAGPP, we
utilise the method of stability selection [7] to identify
stable biomarkers from the MRI feature set and in-
vestigate their temporal patterns in the progression
of AD. The features selected are consistent with
previous work in bioinformatics, possibly facilitating
the understanding of AD progression.

Notation: Nm = {1, · · · ,m}. xi and xi,j denote the i-th
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element of a vector x and the (i, j)-th element of a matrix
X . xi (x

i) denotes the i-th column (row) of a matrix X . Eu-
clidean and Frobenius norms are denoted by ∥·∥2 and ∥·∥F ,
⟨A,B⟩ is the inner product, A⊙ B is component-wise mul-
tiplication of A and B. ∥X∥p,q = (

∑

j(
∑

i x
p
i,j)

q/p)1/q . The
component-wise operator sgn(·) satisfies: t < 0, sgn(t) =
−1; t = 0, sgn(t) = 0, and t > 0, sgn(t) = 1.

Organization: The remainder of this work is structured
as follows. The related work is in Section 2. In Section 3,
we present the formulation of MAGPP. We go into great
detail about the related optimization algorithm in Section
4. Section 5 presents the experimental findings. Sections 6
and 7 serve as the discussion and conclusion of this paper,
respectively.

2 RELATED WORK

This section includes a brief discussion of some frequently
associated works, roughly divided into single task learning,
multi-task learning and deep learning-based methods.

2.1 Single task learning for AD prediction

Existing single task learning problems basically include clas-
sification, survival analysis, and regression models. Single
task classification model [17] attempts to group the con-
dition of patients into various recognised disease stages,
which are typically divided into AD, Mild Cognitive Impair-
ment (MCI), and Cognitively Normal (CN). For the purpose
of using structural MRI to diagnose AD and localize joint
atrophy, Lian et al. [5] suggest a hierarchical fully convo-
lutional network. Zhang et al. [18] propose a multi-layer
multi-view classification strategy, with the input serving as
the first layer and a latent representation built to investigate
the relationship between class labels and features. Yu et
al. [19] propose a tensorizing GAN with high-order pool-
ing to make full use of the second-order statistics of the
holistic MRI images and thus enhance the assessment of
AD patients. Different from single task classification model,
survival analysis models [20] try to answer how long the
patient can live rather than the state of AD patient. Several
single task regression models tend to predict the cognitive
score at a single time point, e.g., baseline [21] or one year
[22]. However, these single task learning methods only focus
on the prediction of AD patients at a single time point.
Given the intrinsic relationship between a sequence of time
points, it is expected that a joint examination of all time
points will improve model performance, especially when
the amount of data is small and the feature dimension is
high [7].

2.2 Multi-task learning for AD progression prediction

To achieve this, recently several traditional multi-task learn-
ing strategies have been put forth to forecast the progression
of AD [6], [7], [8], [9]. Specifically, in order to fully capture
and hence exploit the complex temporal relation between
multiple tasks, Zhou et al. [6], [7] assume every task is
similar to its neighbouring tasks and propose a local tempo-
ral relation structure, namely temporal smoothness relation.
Then Liu et al. [8] try to extend this local structure to be
adaptively global, so they propose a novel kernel function

based global temporal relation structure and the underlying
assumption is tasks that are further apart are considered to
be less connected. Recently Zhou et al. [9] claim that when
predicting AD progression, every task should be related to
all previous tasks and then propose a convex combination-
based global temporal relation. However, considering all
aforementioned temporal relations are based on predefined
structures, they have limited capability to handle compli-
cated temporal relations among tasks in the case of AD
progression.

2.3 Deep learning-based methods for AD progression

prediction

In the past decade or so, deep neural networks have devel-
oped rapidly, and several works have attempted to use deep
learning-based models to predict AD progression. Bruce
et al. [23] use a graph convolutional network to assess
skeleton-based human behaviour and subsequently track
the progression of AD. However, this kind of monitoring
can only analyse the motor ability of AD patients, not
their cognitive states, especially considering that cognitive
deterioration of AD patients occurs before the behavioural
abnormality [24]. Ghazi et al. [25] propose a generalised
training rule for long short-term memory (LSTM) to model
the progression of AD using six volumetric MRI features.

The specialised training rule enhances to effective man-
agement of both absent predictor values and target values,
consequently leading to notable improvements in overall
model performance. In a similar vein, Nguyen et al. [26] in-
troduce a minimal recurrent neural network (minimalRNN),
which harnesses three distinct strategies designed to profi-
ciently address missing data. Liang et al. [27] recently bring
attention to the fact that minimalRNN frequently produces
many inaccurate values at unobserved time points, poten-
tially degrading performance. Then, based on LSTM, they
propose a multi-task learning framework that can predict
future AD patient progression and adaptively impute the
missing data.

Although these deep learning-based approaches signifi-
cantly advance AD research, a technical hurdle that prevents
their widespread adoption by practitioners is the difficulty
of meaningful interpretation of deep neural networks [28].
This is largely because deep network architectures and their
parts are frequently created after trial and error, and then
deployed as a ”black box.” Many of the widely used heuris-
tic and empirical methods are developed for designing
and training deep networks [29]. For any new data and
tasks, practitioners are constantly faced with a number of
challenges, such as which network architecture or specific
components they should use. How wide or deep should the
network be? etc. Not only that, but in research on healthcare,
we frequently care more about why the model produces the
result rather than just concentrating on the result [24], [28].

As a result, modelling and forecasting the progression
of AD still benefit significantly from traditional multi-
task learning with full interpretability. We understand the
meaning of each model weight, allowing us to directly
incorporate a fully interpretable correlation of features into
multi-task learning models [30]. MRI features can also
be further grouped according to human brain regions of
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interest (ROIs), and the interpretable correlation of ROIS
can also be introduced into the multi-task learning model
[31]. Similarly, we can study the selection of MRI features
with different penalties based on the high interpretability
of model [3]. We can also statistically perform longitudinal
stability analysis of biological features, which entails exam-
ining how the importance of each feature changes over time,
similar to what has been done in earlier studies [6], [7], [8],
[9].

As discussed, although much effort has been dedicated
to the study of AD, the noted algorithms suffer from the
following limitations and challenges:

• Numerous existing single task learning models for
AD prediction [17], [5], [19], [20], [21], [22] only
focus on a single time point, which hinders model
performance since it ignores the intrinsic and valu-
able temporal relationship among a sequence of time
points.

• Existing multi-task learning models with predefined
temporal relation structures [6], [7], [8], [9] are
promising in the field of AD progression prediction
since they are capable of jointly analysing all time
points simultaneously. However, these predefined
structures are rigid and insufficient to adequately
capture and thus utilise the intricate temporal rela-
tion among tasks.

• Many deep learning-based models for progression
prediction methods [25], [26], [27] have achieved
great progress in AD research field. The possible
barrier is their limited interpretability, which raises a
number of questions for practitioners when design-
ing models, such as what special architectures are
required for neural networks, how deep the network
should be, how wide each layer should be, and
so on. The limited interpretability also restricts our
understanding of the model results as well as the
exploration of pathological causes of AD.

3 METHODS

3.1 Multi-task Learning

Given m tasks, each task i ∈ Nm has a set of sam-
ples (Xi,yi), where Xi ∈ R

ni×d,yi ∈ R
ni . X =

[X1, · · · , Xm], Y = [y1, · · · ,ym], W = [w1, · · · ,wm] ∈
R
d×m is the model coefficient matrix. We minimize the

following empirical risks so that we can learn the m tasks
concurrently:

min
W

L(W ) + Ω(W ),

where Ω(W ) is the penalty, L(W ) is the empirical loss. We
use the square loss to fit the relation between X and Y :

L(Y,X,W ) =
1

2

m
∑

i=1

∥Xiwi − yi∥22.

Fig. 1 is the illustration of the model. Each time point
concerns a prediction of a single task. For the i-th task,
each row in Xi represents all the features of one patient.
An MRI feature is represented by each column of Xi at the
baseline time point. The cognitive score at each time point is

represented by a column of Y = [y1, · · · ,yt]. We have total
6 time points, every time point corresponds to a task for
predicting disease progression. The notation ”Mx” denotes
x months after the baseline time point (BL, M00). When
modelling disease progression using a multi-task learning
approach, the following two major challenges need to be
solved:

• How are the tasks related to one another?
• Which concrete method should be used to capture

such task relation?

To address the challenging problems mentioned above, we
propose a novel mechanism, termed Automatic Temporal re-
lation Graph (AutoTG), to automatically capture the complex
temporal relation among tasks, and construct it as a graph.

3.2 Automatic Temporal Relation Graph

We start with the widely used temporal smoothness as-
sumption [6], [7], [32], [13], which assumes every time point
is similar to its adjacent time points. If every task concerns
a prediction of a time point, every task has a trend to be
similar to its neighbouring tasks, i.e.,

wk ≈ wk+1.

To achieve this goal, the models based on temporal smooth-
ness usually penalize the difference between two successive
tasks ∥wk −wk+1∥22 [33], [13] or

∑

k |wi,k −wi,k+1| [7], [9].
Despite that many experiments have proved that the intro-
duction of temporal smoothness can effectively enhance the
model performance, it is actually only a local and predefined
temporal relation.

To make our statement clear, we explain this temporal
relation from the perspective of graph theory. In [6], [7], [34],
they consider a total of six time points and each time point
corresponds to a task. If we view each task as a node, the
temporal relation between a pair of nodes is an edge, so all
tasks and their temporal relation form a graph. However,
the adjacency matrix of the temporal smoothness relation
graph is fixed and symmetric tridiagonal. This structure at
has least three drawbacks as follows: ① Every task is only
related to its adjacent tasks, potentially missing the helpful
and informative relation with other tasks. ② The weights
of temporal relations are fixed, which is not sufficient and
flexible to capture the complex temporal relation between
tasks. ③ The weights of temporal relations are also identical,
which is not appropriate in terms of the heterogeneity of
time.

Different from the temporal smoothness relation, Liu et
al. [8] propose a multi-task formulation with a type of global
temporal relation which enables a fully connected graph
with decreasing task weights. The underlying assumption of
this approach is tasks that are further apart are considered to
be less connected. They use a local approximation method
based on a kernel to compute the temporal weight of the
inter-task relationship in advance as

wt ≈
m
∑

ℓ=1
ℓ ̸=t

hℓ,twℓ, hℓ,t =
exp

(

− (ℓ−t)2

σ2

)

∑m
ℓ′ ̸=t exp

(

− (ℓ′−t)2

σ2

) . (1)



5

The kernel-based temporal relation is a global structure
because each task can have a relationship with any other
task. This approach, however, is still based on a predefined
kernel function, and the adjacency matrix is non-negative.

Compared to the above two relation structures, our pre-
vious work [9] proposes a multi-task learning with a convex
combination-based global temporal relation. The intuitive
idea is that when diagnosing a patient in practice, the expert
should consider not only the current state of AD patient,
but also all previous states. So the basic assumption is every
task is related to all previous tasks and the corresponding
mathematical form is

WH(α) = WΘA1(α)A2(α) · · ·At−2(α), (2)

where the matrix Θ ∈ Rm×(m−1) satisfies Θij = 1 if
i = j,Θij = −1 if i = j + 1, and Θij = 0 otherwise.
Ai(α) ∈ R(m−1)×(m−1) is an identity matrix except that
Aim,n

(α) = α if m = i, n = i + 1, Aim,n
(α) = 1 − α if

m = n = i + 1. Even though this method has achieved
good performance, it is still a predefined structure which is
rigid and inflexible. Moreover, this structure makes a trade-
off in the temporal relationships between all tasks, which
can easily lead to α = 0 [9]. That means this temporal
relation structure could easily degenerate into the temporal
smoothness relation [6], [7], [12], [13].

Motivated by the discussion above, first of all, a better
approach is to make no assumptions about the temporal
relationships between tasks. The weight of temporal relation
can be learned directly and automatically from every given
dataset, rather than being predefined. So we write this type
of temporal relation mathematically as

wk ≈ r1,kw1 + · · ·+ rk−1,kwk−1

+ rk+1,kwk+1 + · · ·+ rm,kwm.

Clearly, as shown in Fig. 1, wk is related to all other
tasks wi, ∀i ̸= k. The weight of temporal relation rx,k (the
relation from task wk to wx) is not fixed yet and needs
to be learned from data. Another important point is that
in this structure, the temporal relation is not symmetric as
predefined by temporal smoothness [6], [7] or the relation
based on Gaussian kernel [8], since we do not constrain
rx,k = rk,x. In fact, this asymmetry corresponds to the
real-life temporal relation. For instance, rk−1,k represents
analyzing the past state of one patient in the current k-th
time point, whereas rk,k−1 represents predicting future state
from (k − 1)-th time point. They have completely different
meanings in practice and should be allowed to have differ-
ent values, rather than being predefined as the same value
which is too strict in real-life applications. Not only that, we
do not assume that tasks are necessarily similar to others,
i.e., we do not constrain rx,k ⩾ 0. In fact, as the results show
in Section 5, we found that sometimes two tasks that are too
far apart will have a slightly negative relation with rx,k < 0,
i.e., they slightly repel, rather than approximate each other.
This phenomenon has never been considered in all existing
works [6], [7], [8], [9].

After integrating the temporal relation between all tasks,

we have

W ≈ W















0 r1,2 · · · r1,m
r2,1 0 · · · r2,m

...
...

. . .
...

rm−1,1 rm−1,2 · · · rm−1,m

rm,1 rm,2 · · · 0















= WR, (3)

where R is the adjacency matrix of the temporal relation
graph between tasks.

Based on the above description, we propose the follow-
ing mechanism, termed Automatic Temporal relation Graph
(AutoTG), to automatically capture the complex temporal
relation among tasks, and construct it as a temporal graph
adjacency matrix:

min
W,R

1

2

m
∑

i=1

∥Xiwi − yi∥22 + λ1∥W −WR∥2F + λ2∥R∥1,1,

s.t. ri,i = 0, i ∈ Nm. (4)

The first penalty ∥W − WR∥2F is applied to chase the
complex temporal relation among all tasks. We use the
second penalty ∥R∥1,1 to encourage only the tasks that are
most pertinent to share common temporal information.

We emphasize that the penalty ∥W − WR∥1,1 is an
alternate option to chase the temporal relation, however,
with extremely expensive computational cost. Please refer
to Section 4 for the detailed discussion about the reason for
using ∥W −WR∥2F , rather than ∥W −WR∥1,1.

In order to constrain ri,i = 0, we need to penalize the
main diagonal elements of R much more heavily than other
entries. So we introduce the auxiliary matrix S which is
formulated as

S = (s− 1) · Im×m + 1m×m.

The optimization problem (4) becomes

min
W,R

1

2

m
∑

i=1

∥Xiwi − yi∥22

+ λ1∥W −WR∥2F + λ2∥R⊙ S∥1,1. (5)

We want to emphasize that s is only a “pseudo” hyperpa-
rameter, not a hyperparameter like λ1 and λ2. We just need
to give s an enough large number to constrain ri,i = 0 for
i ∈ Nm. In our experimental setting , we let s = 109 to
achieve the constraint of ri,i = 0. Please refer to Section 5
for more detailed information. We conclude that introducing
the auxiliary matrix S will not increase the computational
complexity of the associated optimization problem.

Note that the optimization problem (4) is biconvex. We
can employ the alternating optimization algorithm to up-
date both variables W and R. Based on AutoTG, we have
the capability of automatically and directly learning the
complex temporal relation among tasks from every specific
dataset.

3.3 A Novel Multi-task Learning Formulation

In the area of AD research, finding the biomarkers associ-
ated with the progression is crucial, so we utilise the group
Lasso [35] to choose a universal set of biomarkers for all
tasks. The group Lasso constraint, however, fails to select
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particular feature sets for each task. Then, we use the Lasso
to add sparsity to the matrix of model coefficients. The
sparse group Lasso β∥WT ∥2,1+α∥WT ∥1,1 [15], the mixture
of L1-norm and L2,1-norm, introduces sparsity into both
group and within-group levels, as illustrated in 1. In the
context of AD study, it promotes choosing a particular MRI
feature set for each task as well as selecting a universal MRI
feature set for all tasks [32], [9]. Then the proposed novel
mechanism AutoTG is applied to capture the temporal task
relation automatically.

After integrating AutoTG with sparse group Lasso,
we present a novel approach, termed Multi-task learning
with Automatic temporal relation Graph for Predicting
Alzheimer’s disease Progression (MAGPP). The mathemat-
ical formulation of MAGPP is defined as

min
W,R

1

2

m
∑

i=1

∥Xiwi − yi∥22 + λ1∥W −WR∥2F

+ λ2∥R⊙ S∥1,1 + λ3∥WT ∥2,1 + λ4∥WT ∥1,1. (6)

λ1, λ2, λ3, λ4 are all fine-tuned hyperparameters. The Au-
toTG part of two penalties λ1∥W −WR∥2F + λ2∥R⊙ S∥1,1
is applied to automatically capture the complex temporal
relation among tasks. The sparse group Lasso part of two
penalties λ3∥WT ∥2,1 + λ4∥WT ∥1,1 is employed to conduct
feature selection at both group and within-group levels.

4 OPTIMIZATION ALGORITHM

Note that the objective function (6) is not easy to solve,
since it is non-smooth and biconvex. In this section, we first
introduce the whole alternating optimization for solving (6).
Then we show how to customize the accelerated proximal
gradient method (APM) [36] to solve the associated two sub-
problems about W and R with high efficiency.

The alternating optimization is widely used for solving
the biconvex objective function [37]. We conclude the overall
alternating optimization algorithm for solving our proposed
MAGPP in Alg. 1. The procedure is stopped when the rela-
tive changes in W and R between two successive iterations
∆W and ∆R are both not bigger than the threshold τ .

Algorithm 1 Alternating Optimization for MAGPP.

Input:
X = [X1, · · · , Xm]: feature dataset for m tasks.
Y = [y1, · · · ,ym]: response for m tasks.
λ1, λ2, λ3, λ4: hyperparameter.
s: the pseudo hyperparameter to constrain ri,i = 0.
ϵ: the threshold for terminating the procedure.

Output:
W : the model coefficient matrix.
R: the temporal relation between tasks.

1: Initialize: W = 0, R = 0.
2: for k = 1 to · · · do
3: Fix R, update W .
4: Fix W , update R.
5: if then∆W ⩽ τ and ∆R ⩽ τ
6: break
7: end if
8: end for

4.1 Accelerated Proximal Gradient Method

To update W and R efficiently, we use the accelerated
proximal gradient method (APM). Because of the fastest
convergence rate for the class of first-order methods, APM
has been widely used to address issues with multi-task
learning [38], [39]. It has the following form:

min
W

F (W ) = f(W ) + g(W ), (7)

where f(W ) is smooth and convex, and g(W ) is nonsmooth
and convex.

APM is built on two sequences, the search point {Sk}
and the approximation point {W k}. Sk is a linear combina-
tion of W k−1 and W k.

Sk+1 = W k + αk(W
k −W k−1),

where αk is the combination coefficient. According to [40],

let αk = (tk−1−1)
tk

, t0 = 1 and tk = 1
2 (1 +

√

4t2k−1 + 1) for

k ⩾ 1.

The approximation point W k is computed as

W k = π(Sk − ηk∇f(Sk)), (8)

where ηk is the chosen step size, π(V ) is the proximal
operator of V .

The global convergence of APM is dependent on an
appropriate step size of ηk. Many sophisticated line search
schemes [41] can estimate the step size ηk. Updates are made
to the value of ηk up until the following condition is met:

f(W k) ⩽fη(W
k, Sk)

=f(Sk) + ⟨∇f(Sk),W k − Sk⟩

+
1

2ηk
∥W k − Sk∥2F . (9)

We summarize the procedure of APM in Alg. 2.

Algorithm 2 The Accelerated Proximal Gradient Algorithm.

Input: X = [X1, · · · , Xm], Y = [y1, · · · ,ym]
Output: W : the model coefficient matrix.

1: Initialize: η0 = 1, t0 = 0, t1 = 1,W 1 = W 0.
2: for k = 1 to · · · do
3: αk = tk−1−1

tk
, Sk = W k +αk(W

k −W k−1). ▷ search
point

4: for m = 0 to · · · do
5: ηk = 2mηk−1

6: Solving (8) for W k+1.
7: if (9) is satisfied then ▷ line search
8: break
9: end if

10: end for
11: tk = 1

2

(

1 +
√

1 + 4t2k−1

)

12: if convergence crition is satisfied then
13: Output W k, break
14: end if
15: end for

Emphasize that the computation of the proximal oper-
ator (8) is the crucial step in using APM. The complexity
for solving (8) dominates the whole complexity of APM-
based algorithms. As usual, the proximal operator of the
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non-smooth part is not easy to solve, e.g., [7], [9]. How-
ever, in our proposed novel MAGPP (6), we will show no
matter updating W or R, the proximal operators admit a
closed-form solution, which enables to design an efficient
algorithm.

4.2 Fix R, Update W

For updating W , we fix the matrix R, the sub-optimization
problem is

min
W

1

2

m
∑

i=1

∥Xiwi − yi∥22 + λ1∥W −WR∥2F

+ λ3∥WT ∥2,1 + λ4∥WT ∥1,1. (10)

The last two terms λ3∥WT ∥2,1 + λ4∥WT ∥1,1 are non-
smooth. In order to find the proximal operator, we need
to solve

π(W ) = argmin
V

1

2
∥V −W∥2F

+ λ3∥V T ∥2,1 + λ4∥V T ∥1,1. (11)

Each row of V and W is decoupled in (11). To get the i-th
row vi, we need to solve

π(wi) = argmin
vi

1

2
∥vi −wi∥22 + λ3∥vi∥2 + λ4∥vi∥1. (12)

We introduce the following Lemma 1 to get the closed-form
solution.

Lemma 1. [42] For any λ1, λ2,

πLasso(w) = argmin
v

1

2
∥v −w∥22 + λ1∥v∥1. (13)

πGLasso(w) = argmin
v

1

2
∥v −w∥22 + λ2∥v∥2. (14)

π(w) = argmin
v

1

2
∥v −w∥22 + λ1∥v∥1 + λ2∥v∥2.

Then the following holds:

π(w) = πGLasso(πLasso(w)).

We use the soft-thresholding method to get the closed-
form solution for (13). Each element of πLasso(v) satisfies

πLasso(w)i = max(|vi| − λ, 0) · sgn(vi). (15)

For the closed-form solution for (14), we use Lemma 2.

Lemma 2. [43] For λ ⩾ 0,w ̸= 0,

π(w) = argmin
v

1

2
∥v −w∥22 + λ∥v∥2

= max{∥w∥2 − λ, 0} w

∥w∥2
.

We conclude that the complexity for solving (11) is only
O(md), so we can update W efficiently.

4.3 Fix W , Update R

For updating R, the sub-optimization problem is

min
R

λ1∥W −WR∥2F + λ2∥R⊙ S∥1,1. (16)

To obtain the proximal operator of λ2∥R ⊙ S∥1,1, we must
resolve the problems below.

π(R) = argmin
Q

1

2
∥Q−R∥2F + λ2∥R⊙ S∥1,1. (17)

Clearly, (17) is an extension of Lasso problem, so we also
apply the soft-thresholding method to arrive the closed-
form solution:

π(R) = max(|R| − λ2S, 0)⊙ sgn(R). (18)

We only need the complexity of O(m2) to solve (16).

4.4 The Reason for Using ∥W −WR∥2F
Based on the above discussion, here we explain the reason
why we choose ∥W −WR∥2F , rather than ∥W −WR∥1,1, to
capture the complex temporal relation between tasks.

If we apply ∥W − WR∥1,1, the associated optimization
problem for updating W becomes from (10) to

min
W

1

2

m
∑

i=1

∥Xwi
− yi∥22 + λ1∥W −WR∥1,1

+ λ3∥WT ∥2,1 + λ4∥WT ∥1,1. (19)

The proximal operator problem (11) becomes

π(W ) = argmin
V

1

2
∥V −W∥2F + λ1∥V − V R∥1,1

+ λ3∥V T ∥2,1 + λ4∥V T ∥1,1. (20)

This problem (20) no longer admits a closed-form solution.
In fact, we can solve (20) using the alternating direction
method of multipliers (ADMM) [44]. Despite ADMM being
widely used [16], [9], [9], for a desired accuracy ϵ, the worst-
case convergence rate of ADMM is only O(1/ϵ2). It is quite
slow, and the actual speed of implementation of ADMM
may be affected by the penalty parameter ρ chosen [42].
It is concluded that applying ∥W − WR∥1,1 will result in
expensive computational costs for updating W .

Similarly, if ∥W − WR∥1,1 is applied, the associated
optimization problem for updating R becomes from (16) to

min
R

λ1∥W −WR∥1,1 + λ2∥R⊙ S∥1,1. (21)

Due to the all non-smooth terms, (21) is challenging to
solve. The subgradient method [41] is a viable option. How-
ever, the low convergence rate of subgradient method, say
O(1/ϵ2) for a desired accuracy ϵ, will also lead to extremely
expensive computational cost for updating R.

We conclude that the utilization of ∥W − WR∥2F is
for reducing the computational cost. ∥W − WR∥1,1 is an
alternative option, however, only from the perspective of
theory. In practice, we can hardly accept such expensive
computational costs leading by the use of ∥W −WR∥1,1.

4.5 Complexity Analysis

For simplicity, we make an assumption that each task has
identical n training samples. The computational cost of our
proposed optimization algorithm is composed of two parts,
the complexity of updating W and R.
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4.5.1 The Complexity of Updating W

When optimizing W , each iteration needs to compute the
gradient of the smooth part 1

2

∑m
i=1 ∥Xiwi−yi∥22+λ1∥W −

WR∥2F and the proximal operator of the non-smooth part
λ3∥WT ∥2,1 + λ4∥WT ∥1,1. The complexity for computing
the gradient is O(nmd + m2(m + d)). Here we empha-
size that in our implementation MATLAB code, we com-
pute the loss part L(W ) parallelly with the complexity
of O(nd), so the complexity of every iteration reduces to
O(nd + m2(m + d)). The cost for computing the prox-
imal operator of λ3∥WT ∥2,1 + λ4∥WT ∥1,1 is O(md). So
in the procedure of updating W , each iteration has the
complexity of O(nd + m2(m + d)). The convergence rate
of APM is proved to be O(1/

√
ϵ) iterations for a desired

accuracy ϵ [45], so the overall complexity for updating W is
O

(

(nd+m3 +m2d)/
√
ϵ
)

.

4.5.2 The Complexity of Updating R

When optimizing R, each iteration needs to compute the
gradient of smooth part λ1∥W − WR∥2F and the proximal
gradient of nonsmooth part λ2∥R ⊙ S∥1,1. The complexity
for computing the gradient is O(m2d). The cost for comput-
ing the proximal operator of λ2∥R ⊙ S∥1,1 is O(m2). So for
updating R, each iteration has the complexity of O(m2d).
So the overall complexity for updating R is O

(

m2d/
√
ϵ
)

.

4.5.3 The Overall Complexity of Algorithm 1

In Alg. 1, W and R will be updated once each, which counts
as a full iteration. Therefore, a full iteration has the following
complexity:

O
(

nd+m2(m+ d)√
ϵ

)

.

4.6 A Warm Start Strategy

Note that, there is currently no theory work that can guar-
antee the convergence rate of the alternating optimization
[46]. In order to further improve the efficiency, we propose
a warm start technique to initialize R. Specifically, this strat-
egy starts from an intuitive idea that the larger the interval
between two time points, the less similar they are. We use
a variant of the Gaussian kernel to measure the similarity
between two time points i and j. The corresponding weight
of the temporal relation is initialised as

ri,j
Initialize
======











e−|i−j|

∑m
i=1,i ̸=j e

−|i−j|
, ∀i ̸= j

0, i = j.

According to experimental results, it can, at most, reduce the
number of iterations by 87% and the computational time
by 85%, compared to initialization using the zero matrix
in our experiments. Please refer to Section 5 for details.
It is worth noting that we can use e−|i−j|α to propose
different initialization strategies. The parameter α adjusts
the decay of the temporal relation. In fact, we have tried
α ∈ {0.5, 1, 2, e, 5, 10} and it works best when α = 1. As a
result, in this work, we uniformly set α = 1.

5 EXPERIMENTAL RESULT

In this section, the three AD datasets used in this study
are first described. Then we show the effectiveness of
the warm start strategy and compare the performance of
MAGPP with several baseline methods. To investigate the
complex temporal relations between tasks, we visualise
the adjacency matrix of the temporal relation graph which
MAGPP automatically learns from the datasets. To show the
high interpretability of our method, and possibly facilitate
the understanding of AD progression, we perform stability
selection to find stable biomarkers from the MRI feature set
and examine their temporal trends in the development of
AD. The hardware condition is an Apple M1 Max chip with
32 GB memory. The implementation source runs on MAT-
LAB and can be found at https://github.com/menghui-
zhou/MAGPP.

5.1 The Latest Dataset from ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [11] helps many research works like [47], [48] and
also provides the data for this study. The primary goal of
ADNI has been to ascertain whether magnetic resonance
imaging (MRI), positron emission tomography (PET), and
neuropsychological tests can be used in conjunction to track
the development of early AD. Finding sensitive and precise
biomarkers of very early AD progression will help clinical
trials move more quickly and affordably. This will assist
medical professionals in developing new treatments and
evaluating their effectiveness. The initial hospital screening
of patients is known as the baseline (BL). The moment the
baseline began serves as a representation of the follow-up
time point. For instance, the notation “M12” indicates a time
point that is a year after the initial visit (baseline time point).
For certain patients, the most recent ADNI provides follow-
up data from up to 120 months. But many participants leave
the study for a variety of reasons. Due to the small amount
of data at the last time points, according to the method
of previous works [6], [7], [8], only the data from the first
six time points are used. The three measurements for AD
cognitive state used in this paper are MMSE, ADAS-Cog,
and RAVLT.

Here is a list of the data preprocessing steps we take:

• Patients without baseline MRI records are excluded.
• Delete any participants whose MRI picture quality

control failed.
• Use the average value to fill in missing entries of

features.

Finally, we get 314 features. The specifics of datasets are
shown in Table 1.

5.2 Effectiveness of Warm Start Strategy

Here we compare the efficiency of two different initializa-
tion strategies for R on three datasets. We refer to MAGPP
initialised with zero as MAGPP-0, and initialised with our
suggested warm start strategy as MAGPP-w.

In order to comprehensively compare the efficiency
of the two initialization strategies, we randomly select
5 times of hyperparameters and run them on three
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TABLE 1
The specific details of the sample number at each time point in the

sequence. The number of patients who have baseline MRI features at
subsequent time points is the sample size.

Time point MMSE ADAS-Cog RAVLT

M00 1092 1074 1091
M06 1078 1064 1074
M12 1027 1014 1021
M24 883 867 877
M36 579 556 576
M48 494 483 468

datasets, respectively. The hyperparameters λ1, λ2, λ3, λ4 ∈
{100, 101, 102, 103, 104}, the pseudo hyperparameter s is
set as 109. The feature matrix X is normalised. When the
relative changes of objective function value in two succes-
sive iterations are not greater than the stopping criterion
τ ∈ {10−1, 10−2, 10−3, 10−4, 10−5}, the optimization al-
gorithm is terminated. The maximum iteration is 200. We
record the average number of iterations on three datasets,
respectively. We put the results about the iteration number
in Table 2 and computational cost in Table 3.

TABLE 2
Comparing the number of iterations of MAGPP-0 and MAGPP-w on

three datasets.

Dataset Method
Stopping Criterion (⩽ τ)

10−1 10−2 10−3 10−4 10−5

MMSE
MAGPP-0 43.5 74.0 75.4 78.6 86.5
MAGPP-w 8.1 9.9 12.9 17.1 67.6

Rate (%) 81↓ 87⇓ 83↓ 78↓ 22↓

ADAS-Cog
MAGPP-0 35.4 41.6 45.0 55.4 63.1
MAGPP-w 7.4 9.0 16.4 19.9 26.5

Rate (%) 79↓ 78↓ 64↓ 64↓ 58↓

RAVLT
MAGPP-0 57.5 64.5 65.1 91.9 111.9
MAGPP-w 10.9 13.8 15.3 19.0 21.0

Rate (%) 81↓ 79↓ 77↓ 79↓ 81↓

TABLE 3
Comparing the computation time (second) of MAGPP-0 and MAGPP-w

on three datasets.

Dataset Method
Stopping Criterion (⩽ τ)

10−1 10−2 10−3 10−4 10−5

MMSE
MAGPP-0 5.5 8.9 9.3 10.2 11.3
MAGPP-w 1.0 1.3 1.7 2.4 8.2

Rate (%) 83↓ 85⇓ 83↓ 77↓ 27↓

ADAS-Cog
MAGPP-0 3.5 4.4 4.9 6.2 7
MAGPP-w 0.8 1 1.7 1.9 3

Rate (%) 78↓ 78↓ 65↓ 69↓ 57↓

RAVLT
MAGPP-0 5.8 6.5 6.7 9.6 13
MAGPP-w 1 1.2 1.5 1.8 2.1

Rate (%) 83↓ 82↓ 78↓ 81↓ 84↓

As shown in Table 2, regardless of the stopping cri-
terion on either dataset, the number of iterations needed

by MAGPP-w is rather less than the number needed by
MAGPP-0. When τ = 10−2, on the MMSE dataset, our
proposed warm start strategy can reduce the number of
iterations by up to 87%. Similarly, as shown in Table 3,
it can also effectively reduce the computation time of the
algorithm. When τ = 10−2, on the MMSE dataset, the com-
putation time of the algorithm is reduced by at most 85%,
which means that the efficiency has increased by 6.84 times.
Overall, our proposed simple warm start strategy based
on a variant of the Gaussian kernel can effectively reduce
the number of iterations and computation time required by
the algorithm on all datasets and under different stopping
criteria.

5.3 Empirical Evaluation

In this section, we thoroughly assess the efficacy of our
proposed MAGPP in comparison to several baseline meth-
ods. We randomly select β of the dataset as the training
set, where the training ratio β ∈ {0.4, 0.6, 0.8} and the
rest are divided randomly and equally into the valida-
tion set and test set. We repeat 5 trials. In each trial, we
train the model on the training set and use the valida-
tion set to select the best hyperparameters λ1, λ1, λ3, λ4

where λ1 ∈ {102, 103, 104}, λ2 ∈ {100, 101}, λ3, λ4 ∈
{100, 101, 102, 103}, the pseudo hyperparameter s is set as
109. The feature matrix X is normalised.

5.3.1 Evaluation Metrics

We use the Root Mean Squared Error (rMSE) for task-
specific regression performance. Additionally, we measure
overall performance across all tasks using the weighted R-
value (wR) and the normalized mean squared error (nMSE),
both of which are frequently used in the multi-task learning
literature [7], [9]. Higher performance is indicated by lower
nMSE and rMSE or higher wR. The nMSE, wR, rMSE are
defined as follows:

nMSE(Y, Ŷ ) =

∑t
i=1 ∥Yi − Ŷi∥22/σ2(Yi)

∑n
i=1 ni

,

wR(Y, Ŷ ) =

∑t
i=1 Corr(Yi, Ŷi)ni

∑t
i=1 ni

,

rMSE(y, ŷ) =

√

∥y − ŷ∥22
n

,

where Y and Ŷ are the ground truth cognitive scores and
the predicted cognitive scores, respectively. σ2(·) is variance.

5.3.2 Comparative Models and Ablation Experiments

We thoroughly contrast our MAGPP with a number of
multi-task learning baseline techniques. All comparative
models include TGL [6], cFSGL [7], VSTG [16], NCCMTL
[49], FLSGL [8], LSA [9] and GAMTL [50]. The tuning range
of all hyperparameters is ∈ {101, 102, 103, 104}. For VSTG,
the hyperparameter k of the k-support norm is ∈ {1, 3, 5}.
For FLSGL, the bandwidth hyperparameter σ ∈ {1, 5, 10}.
For LSA, the hyperparameter is α ∈ {0, 0.05, 0.1, 0.2}. We
emphasize that although VSTG is not specifically proposed
for predicting AD progression like other baseline methods,
because it can use task relation to select the important MRI
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TABLE 4
Three different types of cognitive scores are used. The average nMSE and wR over 5 repetitions are displayed in the results. The bold font

highlights the statistically superior models. SGLasso and AutoTG are the two parts of MAGPP.

Ratio β Metric TGL cFSGL FLSGL VSTG NCCMTL LSA GAMTL LSTM SGLasso AutoTG MAGPP

Dataset: MMSE

0.4
nMSE 0.620 0.631 0.651 0.649 0.626 0.630 0.635 0.850 0.671 0.642 0.624

wR 0.616 0.610 0.594 0.588 0.611 0.610 0.608 0.438 0.590 0.601 0.619

0.6
nMSE 0.621 0.597 0.639 0.659 0.632 0.601 0.627 0.860 0.666 0.638 0.585

wR 0.618 0.632 0.607 0.593 0.609 0.619 0.611 0.444 0.599 0.607 0.636

0.8
nMSE 0.602 0.583 0.626 0.641 0.627 0.579 0.591 0.756 0.653 0.617 0.567

wR 0.631 0.650 0.619 0.608 0.600 0.650 0.637 0.562 0.612 0.629 0.663

Dataset: ADAS-Cog

0.4
nMSE 0.494 0.490 0.511 0.527 0.519 0.493 0.511 0.870 0.526 0.498 0.485

wR 0.717 0.730 0.700 0.691 0.690 0.734 0.718 0.493 0.673 0.695 0.740

0.6
nMSE 0.482 0.470 0.491 0.500 0.498 0.463 0.493 0.796 0.519 0.487 0.460

wR 0.729 0.747 0.713 0.698 0.705 0.749 0.736 0.513 0.685 0.709 0.748

0.8
nMSE 0.471 0.459 0.474 0.483 0.480 0.463 0.475 0.703 0.505 0.476 0.453

wR 0.734 0.756 0.729 0.711 0.717 0.753 0.724 0.591 0.698 0.717 0.755

Dataset: RAVLT

0.4
nMSE 0.618 0.620 0.634 0.629 0.627 0.599 0.625 0.882 0.639 0.614 0.587

wR 0.632 0.633 0.609 0.605 0.607 0.639 0.621 0.445 0.576 0.618 0.646

0.6
nMSE 0.600 0.605 0.617 0.615 0.620 0.587 0.609 0.829 0.635 0.609 0.575

wR 0.640 0.651 0.616 0.607 0.609 0.656 0.622 0.514 0.584 0.624 0.665

0.8
nMSE 0.593 0.574 0.589 0.601 0.596 0.571 0.587 0.781 0.629 0.601 0.549

wR 0.648 0.659 0.632 0.618 0.625 0.660 0.652 0.556 0.597 0.635 0.673

1 2 3 4 5 6

2

2.5

3

3.5

4

4.5

5

5.5

6

MMSE

TGL

cFSGL

FLSGL

VSTG

NCCMTL

LSA

LSTM

GAMTL

SGLasso

AutoTG

MAGPP

1 2 3 4 5 6

6

7

8

9

10

11

12

13

14

ADAS-Cog

TGL

cFSGL

FLSGL

VSTG

NCCMTL

LSA

LSTM

GAMTL

SGLasso

AutoTG

MAGPP

1 2 3 4 5 6

2.2

2.4

2.6

2.8

3

3.2

3.4

RAVLT

TGL

cFSGL

FLSGL

VSTG

NCCMTL

LSA

LSTM

GAMTL

SGLasso

AutoTG

MAGPP

Fig. 2. The comparison of the single task performance, between our MAGPP and several baseline methods. The results show the average rMSE
with 5 repetitions. The index of x-axis represents the time points M00, M06, M12, M24, M36, and M48, respectively. The training ratio β = 0.8.

features, we regard it to be a baseline method. For GAMTL,
we use the same MRI feature grouping strategy as [50], i.e.,
we group all features according to brain regions of interest.

It is worth noting that the number of MRI features is
relatively high in comparison to the number of samples,
as shown in Table 1. Several baseline works TGL, cFSGL,
VSTG, FLSGL, LSA, GAMTL, and our proposed MAGPP
all have used a penalty term associated with Lasso to select
the most important feature subset. Although NCCMTL does
not involve the part of feature selection, it considers the case
that different tasks have varying noise levels, so we still use
it as a kind of baseline in order to provide deeper Insights
into AD progression.

In addition, in order to further demonstrate the superi-
ority of our algorithm, we also compare the performance
of the neural network based method, LSTM (Long Short
Term Memory). The number of training iterations is 1000

epochs. In multiple training iterations, we train the model
using the Adam optimizer, set rMSE as the loss function,
and the batch size is 2. The learning rate starts at 0.0001.
Since LSTM does not allow the patient to have missing
cognitive scores at specific time points, after we keep all the
patient data with cognitive scores at six time points, MMSE,
ADAS-Cog, RAVLT datasets have 331, 365, and 350 samples,
respectively.

Considering that MAGPP is composed of two parts, the
first is AutoTG, which automatically captures the temporal
relation between tasks, and the second is sparse group Lasso
(SGLasso). We test the effectiveness of AutoTG and SGLasso
on three AD datasets, respectively, to further confirm the
efficacy of our MAGPP.

As shown in Table 4, we first notice that LSTM
has the worst performance in all cases, mainly because
about 300 samples could not train a good enough LSTM
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1 2 3 4 5 6

Task

1

2

3

4

5

6

T
a
s
k

MMSE

0.29 0.25

0.13

0.12

0.23

0.22

0.18

0.17

0.17

0.12

0.13

0.18

0.27

0.27

0.12

0.18

0.28

0.29
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Fig. 3. The adjacency matrix of the temporal relation graph between tasks, which MAGPP automatically learns from the MMSE, ADAS-Cog, and
RAVLT datasets, respectively.

model. SGLasso does not perform well. The performance
of SGLasso is essentially the second worst when compared
to all other methods, with a noticeable performance gap in
MMSE and RAVLT datasets. The reason is that SGLasso
does not consider the relation between tasks, which also
indicates that it is necessary to take advantage of the relation
between tasks in the study of AD progression. Compared to
SGLasso, AutoTG performs significantly better, but not as
well as MAGPP. It suggests that it is useful to introduce
sparsity within and between groups for feature selection.
The preceding discussion fully demonstrates the effective-
ness of the components of MAGPP.

In most cases, MAGPP achieves the best performance,
except in several cases like on the ADAS-Cog dataset with
β = 0.8, cFSGL achieves the best result with wR = 0.756
as the metric, but only slightly better than MAGPP with
wR = 0.755. We also notice that on the RAVLT dataset
with β = 0.8, compared with the best baseline performance
nMSE = 0.571 of LSA, MAGPP significantly reduces
the nMSE to 0.549. Other than MAGPP, LSA gets the
best performance. It indicates the adaptive global temporal
structure used in LSA is effective in handling the temporal
relation between tasks in the AD progression. VSTG does
not perform well in all of these datasets. The possible reason
is that VSTG is capable of feature selection, but the low-
rank task relation based on the k-support norm is not a
great choice for the case of the progression of AD. The
poor performance of FLSGL suggests that using a specific
exponential format to capture the temporal relation between
tasks is insufficient. TGL also performs poorly, owing to the
fact that it does not introduce sparsity within and between
groups as cFSGL does. It constrains all tasks to share a single
feature set, which is overly restrictive in practice. NCCMTL
achieves good performance. The possible reason is that it
adopts square root loss function to deal with different noise
levels of different tasks. This also shows that the effect of
noise cannot be easily ignored in the three used datasets. We
also note that GAMTL performs moderately, which again
demonstrates the effectiveness of feature selection in AD
progression prediction, considering that GAMTL does not
do feature selection.

In addition to analyzing the model’s overall perfor-
mance, we also examine how well MAGPP performs at each

time point. Considering the limited paper space, we only
show the results of training ratio β = 0.8 in Fig. 2. We em-
phasize that other cases with different β have similar results.
First of all, in most cases, LSTM has the worst performance
of every task at different datasets. We discover that SGLasso
basically gets the second worst performance at each time
point on all three datasets. It demonstrates once again that
the relation between tasks must be fully considered and
utilised in the study of AD progression. In contrast, the
other component of the MAGPP, AutoTG, gets a middle
performance, compared to other methods, explaining the
need for feature selection in the AD progression. It is evident
that, regardless of the outcomes on the MMSE, ADAS-Cog,
or RAVLT datasets, the prediction performance of MAGPP
is generally the best at single time points.

5.4 Visualisation of Temporal Relation

To fully analyse the temporal relation between multiple
tasks, we visually analyze the temporal relation captured
automatically by MAGPP, where all training ratio β = 0.8.
We specifically visualise the adjacency matrix of the learned
task relation graph. According to the results in Fig. 3,
the temporal relation automatically learned by MAGPP on
the three datasets has both similarities and differences. To
begin with, all adjacency matrices are not strictly symmetric
and this asymmetry corresponds to the real-life temporal
relation. For instance, rk−1,k represents analyzing the past
state of one patient at the current k-th time point, whereas
rk,k−1 represents predicting future state from (k−1)-th time
point. They have completely different meanings in practice
and should be allowed to have different values, rather than
being predefined as the same value.

In each of the three datasets, almost every task is pri-
marily related to its neighbours. The difference is that the
relation between adjacent tasks is basically strongest in the
RAVLT dataset. For example, the average weight of the 1-st
task and the 2-nd task is 0.56. This could be because the
RAVLT is designed to assess episodic memory, but AD pa-
tients do not lose episodic memory very quickly. The ADAS-
Cog dataset also has a strong neighbouring relation which is
due to that the ADAS-Cog is a detailed and comprehensive
measurement to evaluate the cognitive state of AD patients,
and it includes 11-item cognitive tests designed to detect
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Fig. 4. The stability vector of table MRI features using MAGPP on three datasets. We choose top 6 stable features on each time point, finally we
get 21 stable features on MMSE dataset, 22 stable features on ADAS-Cog dataset, and 25 stable features on RAVLT dataset. The feature is more
stable the higher the value.

changes in AD severity. Given that AD is the most common
chronic disease, the relations between adjacent time points
should be strong, as evidenced by previous literature that
studies AD with a local temporal relation [6], [7].

However, in the MMSE dataset, the relation between
neighbouring tasks is the weakest, especially the weight of
the relation between the 3-th and 4-th tasks is only 0.18. A
possible reason is that, while MMSE is the most common
scale for measuring the degree of mental impairment of
AD in clinical practice, compared with ADAS-Cog, MMSE
cannot further perform detailed neuropsychological tests,
including memory, executive function, and language ability

as ADAS-Cog does. MMSE only has brief content and
measurements. As a result, when compared to ADAS-Cog,
the measurement of MMSE may be rougher and unable to
accurately assess patients’ cognitive state.

It is very worth noting that on the two datasets ADAS-
Cog and RAVLT, some temporal relation weights are neg-
ative. For example, on the ADAS-Cog dataset, the relation
weights of the 1-st task and the 5-th and 6-th tasks are -
0.01 and -0.05, respectively. On the RAVLT dataset, they are
-0.03 and -0.05. This shows that when the time points are
too far apart, the corresponding tasks are no longer similar
to each other, but a little repulsive. This phenomenon has
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never been considered in all previous works [6], [7], [8], [9].

We conclude that the temporal relation learned by
MAGPP shows that:

• In the study of AD progression, the temporal rela-
tion between tasks is asymmetric and global, which
proves the deficiency of using local temporal relation
in previous works [6], [7].

• The temporal relation between tasks is extremely
complex, which indicates that the previous works
use a predefined Gaussian kernel method [8] or a
predefined iterative convex structure [9] can not fully
capture the complex task relation.

• All existing works [6], [7], [8], [9] do not consider the
possible negative temporal relation.

5.5 Temporal Pattern of Stable Biomarkers

One of the advantages of MAGPP is its capacity to examine
the temporal patterns of MRI features, which makes it easier
to comprehend how AD progresses. To further explore the
MRI biomarkers discovered by our formulations, we use the
longitudinal stability selection method [32], which has been
employed in numerous prior studies [8], [9]. The details are
in [51], [32]. In this context, the term “stability vector” refers
to the calculated frequency vector.

To begin, we notice that the volume of the left hip-
pocampus (Vol. of L.Hippocampus) is considered a sta-
ble biomarker in all datasets, particularly in the ADAS-
Cog and RAVLT datasets, where the volume of the left
hippocampus is selected to be stable biomarker with the
probability close to 1. In the MMSE dataset, the volume of
the left hippocampus is selected to stable the biomarkers
with a probability greater than 0.8. This is in line with
other AD studies [52] because it has long been known that
the hippocampus plays a key role in the development of
AD. There are many different discoveries between the three
datasets. In the ADAS-Cog dataset, we also discover that
the cortical thickness average of the left entorhinal (CTA.
of L. Entorhinal) and the cortical thickness average of the
right entorhinal (CTA. of R. Entorhinal) are both chosen as
stable biomarkers with a probability close to 1. The most
stable biomarker in the MMSE dataset is the volume of right
IsthmusCingulate (Vol of R.IsthmusCingulate). However, in
the ADAS-Cog dataset, the volume of right IsthmusCin-
gulate only shows stability in the last few moments from
M24 to M48, and in the RAVLT dataset, the volume of the
right IsthmusCingulate only shows stability in the last few
moments, from M12 to M48. The cortical thickness average
of middle temporal (CTA. of Mid. Temporal) always has a
high selection frequency of about 0.7 in the MMSE dataset,
in the ADAS-Cog dataset, it is selected as a stable biomarker
with a higher frequency, close to 0.9. However, in the RAVLT
dataset, the cortical thickness average of middle temporal is
not selected as stable biometrics all the time.

The distinct temporal patterns of the stable biomarkers
of these three cognitive scores also suggest that it may be
less effective to confine the model to a shared set of features,
as do previous methods [7], [8], [9].

6 DISCUSSION

Although our proposed method achieves good performance
on datasets corresponding to multiple cognitive scores, in-
cluding visualised temporal relationships, longitudinal sta-
bility selection analysis of MRI features, etc., its performance
and generalization capacity could be further improved in
the future by carefully addressing the limitations or chal-
lenges listed below.

• Our model analyses different cognitive scores sepa-
rately, which means that the input data only contains
one type of cognitive score. Given that different cog-
nitive scores measuring the state of the same patient
are intrinsically related, it is possible to improve
the model performance and generalisation ability by
jointly analysing multiple cognitive scores. In fact,
we already have some preliminary ideas. For exam-
ple, Romeo et al. [13] integrated the input data of the
five diabetes complications into the same multi-ask
learning model without losing interpretability, and
we can try to borrow the spirit to extend MAGPP to
deal with multiple cognitive scores at the same time.

• Recently, in the field of deep learning, especially in
transformer related research, the positional encoding
technique has been recognised as an effective way
to exploit temporal relationships. The main idea is
to treat the time point information as a feature and
part of the model input. Temporal information can
be treated as an input to our MAGPP, or more specif-
ically, as a special type of feature. In our future work,
we plan to investigate the feasibility of incorporating
the positional encoding technique into our MAGPP.

7 CONCLUSION

In this paper, we investigated AD progression using the
baseline MRI feature set and cognitive scores at future time
points. We conclude this paper in the following three parts.

We propose AutoTG, a novel mechanism for automat-
ically capturing the complex temporal relation between
tasks, and build it as a graph adjacency matrix. Then, to
predict the progression of Alzheimer’s disease, we combine
the sparse group Lasso and AutoTG to propose MAGPP,
a novel multi-task formulation that outperforms several
baseline methods on three AD datasets. To solve the non-
smooth and biconvex objective function, we customize the
alternating optimization and utilize the accelerated prox-
imal gradient method to handle the two associated sub-
optimization problems efficiently. Since there is currently no
theory work to prove the convergence rate of alternating
optimization, to improve the efficiency of our algorithm
even further, we design a warm start strategy based on
a local temporal relation between multiple tasks. When
compared to the method without the warm start strategy,
the outcomes of the experiment indicate that the warm start
strategy can, at most, cut the number of iterations by 87%
and the computation time by 85%.

To demonstrate the ability of MAGPP for capturing the
complex temporal relation, and also explore the temporal
relation between tasks in the study of AD progression, we
visualise the automatically learned graph adjacency matrix.
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The results on three datasets demonstrate that every task is
temporally related to all other tasks, with different relation
weights. The asymmetry of the learned adjacency matrices
on three AD datasets reveals that the temporal heterogeneity
can not be ignored. It means that analyzing the relation
between time points m and n at time point m is not
equivalent to analyzing the relation between time points m
and n at time point n. Not only that, we also show two
tasks that are far apart in time can even have a negative
weight, meaning that they are mutually exclusive rather
than similar. Furthermore, to show the high interpretability
of our method, and also aid the understanding of AD
progression, we use stability selection to identify stable MRI
features and investigate their temporal patterns. Some of the
selected features are consistent with previous works, while
others have the potential to facilitate the discovery of new
biomarkers.

Since AutoTG is a general method for capturing the
complex temporal relation between multiple tasks, in the
future, we hope to investigate the efficacy in a border area,
such as the development prediction of Parkinson’s disease
[12] and diabetes [13].
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Arindam Banerjee. Modeling alzheimer’s disease progression
with fused laplacian sparse group lasso. ACM Transactions on
Knowledge Discovery from Data (TKDD), 12(6):1–35, 2018.

[9] Menghui Zhou, Yu Zhang, Tong Liu, Yun Yang, and Po Yang.
Multi-task learning with adaptive global temporal structure for
predicting alzheimer’s disease progression. In Proceedings of the
31st ACM International Conference on Information & Knowledge Man-
agement, pages 2743–2752, 2022.

[10] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE
Transactions on Knowledge and Data Engineering, 2021.

[11] Michael W Weiner, Paul S Aisen, Clifford R Jack Jr, William J
Jagust, John Q Trojanowski, Leslie Shaw, Andrew J Saykin, John C
Morris, Nigel Cairns, Laurel A Beckett, et al. The alzheimer’s
disease neuroimaging initiative: progress report and future plans.
Alzheimer’s & Dementia, 6(3):202–211, 2010.

[12] Saba Emrani, Anya McGuirk, and Wei Xiao. Prognosis and
diagnosis of parkinson’s disease using multi-task learning. In
Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1457–1466, 2017.

[13] Luca Romeo, Giuseppe Armentano, Antonio Nicolucci, Marco
Vespasiani, Giacomo Vespasiani, and Emanuele Frontoni. A
novel spatio-temporal multi-task approach for the prediction of
diabetes-related complication: a cardiopathy case of study. In
IJCAI, pages 4299–4305, 2020.

[14] Ping Wang, Tian Shi, and Chandan K Reddy. Tensor-based tem-
poral multi-task survival analysis. IEEE Transactions on Knowledge
and Data Engineering, 2020.

[15] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshi-
rani. A sparse-group lasso. Journal of computational and graphical
statistics, 22(2):231–245, 2013.

[16] Jun-Yong Jeong and Chi-Hyuck Jun. Variable selection and task
grouping for multi-task learning. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1589–1598, 2018.

[17] Feng Li, Loc Tran, Kim-Han Thung, Shuiwang Ji, Dinggang Shen,
and Jiang Li. A robust deep model for improved classification of
ad/mci patients. IEEE journal of biomedical and health informatics,
19(5):1610–1616, 2015.

[18] Changqing Zhang, Ehsan Adeli, Tao Zhou, Xiaobo Chen,
and Dinggang Shen. Multi-layer multi-view classification for
alzheimer’s disease diagnosis. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

[19] Wen Yu, Baiying Lei, Michael K Ng, Albert C Cheung, Yanyan
Shen, and Shuqiang Wang. Tensorizing gan with high-order
pooling for alzheimer’s disease assessment. IEEE Transactions on
Neural Networks and Learning Systems, 2021.

[20] P Vemuri, HJ Wiste, SD Weigand, LM Shaw, JQ Trojanowski,
MW Weiner, David S Knopman, Ronald Carl Petersen, CR Jack,
et al. Mri and csf biomarkers in normal, mci, and ad subjects:
predicting future clinical change. Neurology, 73(4):294–301, 2009.

[21] Cynthia M Stonnington, Carlton Chu, Stefan Klöppel, Clifford R
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