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We define generalized Gaussian states for quantum cosmological models based on the suð1;1Þ algebra,
with particular emphasis on its realization in group field theory for a single field mode, and study their

semiclassical properties. These states are generalizations of coherent, squeezed, and thermal states

considered previously. As two possible characterizations of semiclassicality, we contrast the requirement of

small relative fluctuations in volume and energy with the saturation of the Robertson-Schrödinger

uncertainty principle. We find that for the most general class of states, the appearance of small relative

fluctuations, which we take as the main criterion relevant for the emergence of cosmology, is mostly

determined by the amount of displacement used to define the state. We also observe that defining such

generalized Gaussian states is less straightforward in the algebraic approach to canonical quantization of

group field theory, and discuss special cases.

DOI: 10.1103/PhysRevD.109.066022

I. INTRODUCTION

Describing macroscopic phenomena in quantum

mechanics and quantum field theory often requires a semi-

classical approximation. In a canonical setting, such an

approximation may be implemented by choosing suitable

states with (to be specified) semiclassical properties,

whereas in the path integral it is often associated with

stationary phase approximations. A prime example, closely

related to what we will discuss in the following, is the

description of a macroscopic electromagnetic field in terms

of coherent or squeezed states in quantum optics. In

general, an important question is whether coherence or

semiclassical properties of an initially chosen state will be

preserved under time evolution. This is famously the case

for the harmonic oscillator (or free quantum fields), but not

for more general interacting quantum systems.

In quantum gravity and quantum cosmology, identifying

a semiclassical spacetime description is a rather crucial

requirement, both conceptually and for making the link

to the low-energy world in which we do not observe

spacetime superpositions. In traditional Wheeler-DeWitt

quantum cosmology, semiclassical spacetime was often

identified in a WKB (Wentzel-Kramers-Brillouin) regime

in which the wave function is assumed to be highly

oscillating. This approximation is at the heart of applica-

tions to cosmological perturbation theory, in which the

curved spacetime quantum field theory setting of infla-

tionary cosmology emerges from the semiclassical limit of

quantum cosmology (see, e.g., [1–3]). The notion of semi-

classicality applied here is different from that of using

coherent states or wave packets; a WKB state is (by

assumption) not localized in configuration space, but rather

describes an entire classical trajectory “all at once.”

Loop quantum gravity (LQG), one of the most estab-

lished approaches to the problem of quantum gravity, offers

its own proposals for the semiclassical limit. Again, here

we focus on the canonical formulation of the theory, in

which one works with quantum states living on super-

positions of graphs. A class of coherent states for LQG,

which has found many applications in the literature, was

proposed in [4], whereas more recent proposals include [5].

These states realize the traditional properties of coherent

states, peakedness around a given classical configuration

with small uncertainties. In general, given the rather com-

plicated dynamics of full LQG, it is not clear whether these

semiclassical properties would be preserved dynamically.

In this paper, we focus on the group field theory (GFT)

approach [6] whose canonical formulation is closely related

to the canonical formalism for LQG; Fock space quantiza-

tions of GFT lead to state spaces that can be interpreted

in terms of spin-network states of LQG [7]. One may ask

what kind of GFT quantum states could be used for a

semiclassical, macroscopic limit of the theory, relevant in
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particular in the application to cosmology. Here, a particu-

larly influential idea has been to use analogies with

condensed matter physics and think of a “condensate” of

quanta of geometry, or LQG spin-network vertices [8–10].

Such a condensate can be characterized in a mean-field

approximation, or equivalently using a Fock coherent state

built on the fundamental field operators or the annihilation

and creation operators of the theory. Many cosmological

applications of GFT have focused exclusively on such

coherent states in extracting a semiclassical limit [11]. Our

goal here is to broaden this perspective and discuss a class

of semiclassical states that go beyond the simplest choice of

Fock coherent states. In particular, we want to write down

the most general Gaussian state associated with a single

GFT (Peter-Weyl) field mode, and also discuss mixed states

following the work of [12] on thermal states in GFT. We

will build on the work of [13], which already discussed

some more general types of coherent states built on the

suð1;1Þ algebra of observables most relevant for cosmol-

ogy, and extend the results of that paper substantially.

While we are mostly interested in GFT models, our

results are much more generally applicable to any suð1;1Þ
cosmological scenario. For example, as pointed out in [14],

isotropic models of loop quantum cosmology and (bosonic)

GFT cosmology can be seen as different realizations of the

same underlying structure (sometimes called “harmonic

cosmology” [15]). The suð1;1Þ Lie algebra was then also

investigated in detail in the context of loop cosmology in

[16], where it was realized that dynamics could be

implemented as SU(1, 1) transformations, and it was later

associated with the “Complexifier-Volume-Hamiltonian

(CVH) algebra” in [17] (see also [18] for more

recent work).

When discussing the relative merits of possible choices

of semiclassical states, we need to be clear about what

properties we require for a state to be considered semi-

classical. Here we follow to a large extent the criteria set out

in the context of GFT in [13]; our main requirement for

semiclassicality is that the relative uncertainty in the

volume, ðΔV̂Þ=hV̂i, can be made arbitrarily small—in

particular, at late times or large volumes after dynamical

evolution. This criterion is similar to what is often required

for a semiclassical limit in loop quantum cosmology [19].

We also require a small relative uncertainty in the

Hamiltonian (associated with the matter coupled to gravity

in GFT), which is time-independent. In contrast, one could

also require that a semiclassical state saturate the lower

bound on uncertainties implied by the uncertainty principle,

in its stronger Robertson-Schrödinger form. We will argue

that this second requirement seems less relevant physically,

since the right-hand side of the uncertainty principle is in

general state-dependent, and one can end up with an

equality for which both sides are large. For the context

of GFT and the most relevant cosmological observables,

energy and volume, we will find a conflict between the two

requirements: states with small relative uncertainties do not

saturate the Robertson-Schrödinger inequality, while those

that saturate the inequality do not have small relative

uncertainties. This discrepancy was observed for squeezed

states in [13]; again we generalize this discussion to general

Gaussian states.

We will show that while general Gaussian states can be

constructed using displacement, squeezing, and thermality,

semiclassical properties are mostly determined only by the

magnitude of displacement: squeezed or thermal states

alone are not semiclassical in the sense we require, and

hence do not lead to a good interpretation in terms of

emergent cosmology. These results can be seen as justify-

ing to an extent the emphasis on Fock coherent states in the

GFT literature. While most of our analysis uses the

deparametrized approach to the canonical quantization,

in which a scalar matter field is used as a time variable

throughout [20], we also discuss general Gaussian states in

the more commonly used “algebraic” approach based on a

kinematical Hilbert space. In that setting, we find that

generalizations of simple coherent states are difficult to

construct, and only very simple versions of squeezing and

thermality can be straightforwardly defined. We also

encounter a number of technical issues related to diver-

gences in the definition of states and observables. Ignoring

these as much as possible, the general qualitative state-

ments agree with those found in the deparametrized

approach.

Section II reviews the main ingredients in the canonical

quantization of GFT, leading to the emergence of homo-

geneous and isotropic cosmology (satisfying a generalized

Friedmann equation) from the simplest dynamics for a

single field mode in the Peter-Weyl decomposition. In

Sec. III, we discuss different definitions of semiclassicality

and study the examples of coherent and squeezed states

explicitly. This analysis is then generalized to general

Gaussian states in Sec. IV. Given that the algebraic

approach to canonical quantization is used in most of

the GFT literature, in Sec. V we discuss our efforts at

obtaining similar types of states in that approach.

Appendices contain details on expectation values, varian-

ces, and covariances and the Robertson-Schrödinger uncer-

tainty principle; the general definition of Gaussian states

and the thermofield formalism; and details on the possible

construction of semiclassical “condensate” states in the

algebraic approach.

II. COSMOLOGY FROM GROUP FIELD THEORY

GFT is a relatively young, nonperturbative, and back-

ground-independent approach to quantum gravity, which

generalizes matrix and tensor models [21] by including Lie

group structures imported from formalisms like LQG and

spin foam models [22]. The fundamental object in this

framework is the group field φ, whose arguments replace

the discrete indices of a tensor with a number of continuous
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variables taking values in a Lie group. In models of interest

for us, this group consists of four copies of SU(2), so as to

resemble the structure of spin networks of LQG, but

different choices are possible (see, e.g., [23]). One can

then couple gravity to a free massless scalar field χ ∈R,

which can serve as a relational time variable [11]. A real

group field is then a map

φ∶ SUð2Þ4 ×R → R;

φðgI; χÞ ¼ φðgIh; χÞ ∀ h ∈ SUð2Þ; ð1Þ

where requiring invariance of the field under the right

diagonal group action provides a notion of discrete gauge

invariance. The general action for a real group field reads

S½φ� ¼ 1

2

Z

d4g d4g0 dχ φðgI; χÞKðgI; g0IÞφðg0I; χÞ þ V½φ�;

ð2Þ

where dg is the Haar measure on SU(2). Here, KðgI; g0IÞ is a
quadratic kinetic operator, and V½φ� is a generally nonlocal

interaction term. Requiring the kinetic term to respect the

symmetries of a minimally coupled massless scalar field

(shift and sign-reversal symmetries) implies that KðgI; g0IÞ
should not depend on χ, but be a differential operator in χ,

without derivatives of odd powers [11,24]. The simplest

choice is therefore to assume the minimal form

KðgI; g0IÞ ¼ Kð0ÞðgI; g0IÞ þ Kð2ÞðgI; g0IÞ∂2χ ; ð3Þ

which is commonly adopted in the literature [20,25,26].

Radiative corrections coming from renormalization [27]

can dictate the specific forms of Kð0Þ and Kð2Þ, but we can
leave them general for our purposes. Within a broader class

of models, one can in principle have higher derivatives with

respect to χ [11,24]; Eq. (3) would then be seen as an

approximation in which the contribution of these higher-

derivative terms is small.

Similarly to what can be done in tensor models for

quantum gravity, and thanks to the connection with spin

foam models, a perturbative expansion of the GFT partition

function can formally generate an infinite sum over discrete

geometries, or Feynman graphs h. For a real φ, and for

models with only a single interaction with coupling λ,

one finds

ZGFT ¼
Z

Dφ e−S½φ� ¼
X

h

λnV ðhÞAh; ð4Þ

where nVðhÞ is the number of vertices in h and Ah are

Feynman amplitudes. Remarkably, the sum (4) is over

graphs that for suitable choices of V½φ� can be seen as

discrete “histories of geometry,” and whose Feynman

amplitudes Ah are in correspondence with spin foam

amplitudes [28,29]. In this sense, the Feynman amplitudes

of a GFT with action (2) can be associated with a discrete

quantum gravity path integral, and the expansion (4)

generates a sum over two-complexes (or discrete spacetime

histories), weighted by the coupling λ of the interac-

tion term.

GFT models for a full theory of quantum gravity still

remain formal, as it is not clear how to make mathematical

sense of (4). It is already very difficult to compute

individual transition amplitudes Ah between quantum

geometries. Here, we will focus on a canonical quantiza-

tion, which provides very useful insights into the cosmo-

logical sector of GFT [9,10]. This quantization is the

simplest in an approximation in which one neglects the

interaction V½φ�, which is what we will do in the following.
Restriction to the free theory, while motivated by computa-

tional simplicity, is often justified when looking at cos-

mological models: neglecting correlations between “quanta

of geometry” can be interpreted as describing GFT con-

figurations of high symmetry, associated with macroscopic

homogeneous spacetimes.

A geometrical interpretation of GFT is obtained by

associating a 3-simplex (tetrahedron) with the group field

φðgI; χÞ. In a dual picture, one can think equivalently of

φðgI; χÞ as an abstract node with four links labeled by

SU(2) arguments, and an additional real label χ. This is

equivalent to the way in which four-valent spin network

nodes represent geometric tetrahedra in LQG. The nomen-

clature spin network derives from the Peter-Weyl theorem,

which allows decomposing φ as

φðgI; χÞ ¼
X

J

φJðχÞDJðgIÞ;

DJðgIÞ ¼
X

nI

R
jI ;{
nI

Y

4

a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ja þ 1
p

D
ðjaÞ
ma;naðgaÞ: ð5Þ

Here, φJðχÞ are complex functions (subject to reality

conditions), and the compact notation for the modes �J ¼
ðjI;�mI; {Þ encodes representation (or spin) labels

jI ∈N0=2; magnetic indices mI; nI ∈ ½−jI; jI�; and inter-

twiner labels {. In the convolution DJðgIÞ, R
jI ;{
nI are

intertwiners
1
for the spins jI, and D

ðjÞ
m;nðgÞ are Wigner

D-matrices for the irreducible unitary representations of

SU(2). The mode decomposition (5) shifts the focus from

group variables to the more convenient spin variables. In

this representation, the free GFT action [with kinetic term

given by (3)] has the form [20]

1
SU(2) intertwiners are equivariant linear maps from the tensor

product ⊗I jI to the trivial representation. They form a vector
space, with basis labeled by {. Such tensors appear in Eq. (5)
because of property (1).

GENERALIZED GAUSSIAN STATES IN GROUP FIELD THEORY … PHYS. REV. D 109, 066022 (2024)

066022-3



S½φ� ¼ 1

2

Z

dχ
X

J

φ−JðχÞðKð0Þ
J þ K

ð2Þ
J ∂

2
χÞφJðχÞ: ð6Þ

A canonical quantization of (6) can now be obtained in a

deparametrized formalism. (There is another approach

commonly used in GFT which we call algebraic quantiza-

tion; see Sec. V.) In a deparametrized approach, we choose

a degree of freedom to parametrize the others before

quantization; here, the obvious candidate is the matter

clock χ. One then performs the Legendre transform,

introducing a conjugate momentum πJðχÞ to the group

field and finding a relational Hamiltonian [20]:

H ¼ −
1

2

X

J

�

πJðχÞπ−JðχÞ
K

ð2Þ
J

þ K
ð0Þ
J φJðχÞφ−JðχÞ

�

: ð7Þ

The Hamiltonian (7) defines dynamics of any observable

via Poisson brackets—or, in the quantum theory defined in

the Heisenberg picture, of any operator via the Heisenberg

equation. Adopting the Heisenberg picture from now on,

we promote the field and its momentum to operators with

canonical (equal-time) commutation relations:

½φ̂JðχÞ; π̂J0ðχÞ� ¼ iδJJ0 : ð8Þ

As in any bosonic field theory, one can now define ladder

operators with commutation relations

�

âJðχÞ; â†J0ðχÞ
�

¼ δJJ0 ð9Þ

and construct a Fock space, starting from a vacuum j0i
(interpreted as a “no geometry” state) such that

âJðχÞj0i ¼ 0. Excitations created by these ladder operators

are interpreted as quanta of geometry: a one-particle state

represents a quantum tetrahedron (or

four-valent node) decorated with a real variable χ and

group-theoretic information encoded in J.
The specific expression of the Hamiltonian (7) in terms

of ladder operators depends on the signs of the kinetic

terms Kð0Þ and Kð2Þ in (6)—when they have opposite signs,

the Hamiltonian is of squeezing type:

Ĥ ¼ 1

2

X

J

ωJðâ†Jâ†−J þ âJâ−JÞ;

ωJ ¼ −sgnðKð0Þ
J Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jKð0Þ
J =K

ð2Þ
J j

q

: ð10Þ

For modes for which Kð0Þ and Kð2Þ have the same sign, on

the other hand, one obtains the Hamiltonian of a harmonic

oscillator. One also defines a number operator in the usual

way as

N̂ðχÞ ¼
X

J

â†JðχÞâJðχÞ ¼
X

J

N̂JðχÞ: ð11Þ

The squeezing Hamiltonian (10) creates pairs of GFT

quanta (with opposite magnetic indices) from the vacuum

state, providing a compelling picture for an expanding

cosmological geometry. The number of quanta in these

unstable modes will then (for generic initial conditions)

quickly exceed the number of quanta in any of the stable

modes, for which the particle number is constant.

To obtain a cosmological interpretation, a central role is

played by the volume operator

V̂ðχÞ ¼
X

J

vJâ
†
JðχÞâJðχÞ ¼

X

J

V̂JðχÞ; ð12Þ

where the vJ’s correspond to the volumes of quanta with

representation data J. These volume values can be formally

obtained from a geometrical quantization of tetrahedra in

terms of SU(2) recoupling theory [30], and they have been

thoroughly described in the LQG literature (see, e.g., [31]),

where they define the volume operator acting on four-

valent spin network nodes. The operator (12) describes a

global notion of spatial volume seen as the sum of many

discrete building blocks carrying their own (quantum)

volume.

A. suð1;1Þ algebra and FLRW cosmology

In addition to restricting to the free GFT, one often

also restricts the setup to a single Peter-Weyl mode J, or
a coupled pair of modes fJ;−Jg. In the latter case, one

can choose “symmetric” initial conditions âJð0Þ ¼ â−Jð0Þ,
which are preserved under time evolution [20]. The

Hamiltonian then effectively describes single-mode

squeezing. A more direct way of picking out a single mode

is to consider a J with magnetic indices mI ¼ 0 (so that

J ¼ −J); this is a somewhat mild assumption, as no geo-

metrical observable depends on the values of the magnetic

indices. It turns out that considering only a single mode

(i.e., only excitations of the same “type”) is enough to

obtain the correct cosmological dynamics of a flat FLRW

universe [11]. Moreover, for a wide class of models, such

an assumption can be justified by the fact that some modes

[those for which jωJj in (10) is largest] grow faster than all

others, and so eventually dominate [32]. This means that an

effective restriction to a single mode (or a small number of

physically indistinguishable modes) would also emerge

dynamically at sufficiently late times, which is the regime

we might want to compare with classical cosmology. We

will use this restriction throughout the rest of the paper and

only study quantum states for a single Peter-Weyl mode.

Restricting to a single mode means that the sums over

modes J trivialize to only one term. In order to simplify

the notation, we will henceforth drop the index J in our

single-mode expressions. We now deal with a quantum

system described by bosonic operators âðχÞ and â†ðχÞ,
with ½âðχÞ; â†ðχÞ� ¼ 1. The main operators of interest for

ANDREA CALCINARI and STEFFEN GIELEN PHYS. REV. D 109, 066022 (2024)

066022-4



cosmological purposes are the Hamiltonian (10) and the

volume (12), which reduce to

Ĥ ¼ −
ω

2

�

â†2 þ â2
�

;

V̂ðχÞ ¼ vN̂ðχÞ ¼ vâ†â; ð13Þ

where v can be thought of as the volume of one GFT

quantum. As mentioned, the operators (13) generate the Lie

algebra suð1;1Þ, extended by a central element [13,14].

The algebra is closed by adding

Ĉ ¼ i
v

2

�

â†2 − â2
�

; ð14Þ

which would be related to the “Thiemann complexifier” in

some analogous LQG models [17]. Here, (14) does not

have a direct physical interpretation but determines whether

the resulting cosmology has a time-reversal symmetry.

The suð1;1Þ algebra of these operators follows from their

composition in terms of ladder operators: one traditionally

defines the three possible quadratic combinations

K̂0 ¼ 1
4
ðâ†âþ ââ†Þ, K̂þ ¼ 1

2
â†2, and K̂− ¼ 1

2
â2, which

satisfy the suð1;1Þ algebra

½K̂0; K̂�� ¼ �K̂�; ½K̂−; K̂þ� ¼ 2K̂0: ð15Þ

In our case, the GFT operators relate to these suð1;1Þ
generators as

Ĥ ¼ −ωðK̂þ þ K̂−Þ;

V̂ ¼ 2vK̂0 −
v

2
;

Ĉ ¼ ivðK̂þ − K̂−Þ; ð16Þ

and the algebra closes as

½V̂; Ĥ� ¼ 2iωĈ;

½Ĉ; V̂� ¼ 2i
v2

ω
Ĥ;

½Ĉ; Ĥ� ¼ 2iω

	

v

2
þ V̂




; ð17Þ

where we see the central element (identity operator)

appearing in the third relation.

We stress that while we focus on GFT in this paper,

the suð1;1Þ structure (together with a cosmological

interpretation) is the only necessary ingredient for all

our main results. Relations analogous to (17) are described

in other realizations of suð1;1Þ quantum cosmo-

logy [14,15]—for example, in loop quantum cosmology

(where this algebra commonly appears [16,18]).

We can now turn to the dynamics of such operators. Ĥ

determines the evolution of any other operator Ô via the

Heisenberg equation

i
dÔ

dχ
¼ ½Ô; Ĥ�: ð18Þ

From this, one can obtain the solutions [13] (here and in the

following, we will adopt a somewhat unusual notation—fα
instead of fðαÞ for trigonometric and hyperbolic functions;

this is to save space in lengthy expressions below)

V̂ðχÞ ¼ −
v

2
þ
	

V̂ þ v

2




cosh2ωχ þĈ sinh2ωχ ; ð19Þ

ĈðχÞ ¼ Ĉ cosh2ωχ þ
	

V̂ þ v

2




sinh2ωχ ; ð20Þ

where V̂ ¼ V̂ð0Þ and Ĉ ¼ Ĉð0Þ. We can now see that,

while V̂ represents the volume at χ ¼ 0, the presence of Ĉ
determines whether the volume evolution (19) has a

symmetry under χ → −χ. Since we are working in the

Heisenberg picture, the solutions (19) and (20) do not refer

to any choice of quantum state; in fact, (19) is all one needs

to obtain an effective Friedmann equation. Taking expect-

ation values, one finds

	

1

hV̂ðχÞi
dhV̂ðχÞi

dχ




2

¼ 4ω2

	

1þ v

hV̂ðχÞi
−

1

hV̂ðχÞi2

×
�

hV̂i2 þ vhV̂i − hĈi2
�




: ð21Þ

For large volumes (or late times χ → �∞), (21) is con-

sistent with the classical Friedmann equation,
2
provided the

identification between the GFT coupling and Newton’s

constant ω2 ¼ 3πG. The two subleading contributions

can be seen as GFT corrections to classical cosmology.

In particular, the 1=hV̂ðχÞi2 term is responsible for the

generic resolution of the big bang singularity, which is

replaced with a cosmological bounce through a minimal

nonsingular volume.

We point out that (21) holds regardless of whether the

quantum state one uses to compute expectation values is a

pure or mixed state. All that is needed to obtain (21) is a

(linear) operation mapping operators to their expectation

values, and the density matrix expression hV̂ðχÞi ¼
trðρ̂ V̂ðχÞÞ is as good as the pure-state evaluation hV̂ðχÞi ¼
hψ jV̂ðχÞjψi. This point was not stressed in [13], where (21)
was obtained, and will allow us to investigate semiclassical

properties of mixed (in particular thermal) states in later

sections. As we review below, only a few types of states

(mainly Fock coherent states) are typically used in GFT

2
In general relativity, the Friedmann equation for the spatial

volume V of a flat FLRW cosmology with a massless scalar field
χ, using a gauge where χ is the time coordinate, can be written as

ð1
V
dV
dχ
Þ2 ¼ 12πG.
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cosmology. This is where we wish to expand the literature:

we will discuss criteria that can classify states as semi-

classical and present Gaussian states as the most general

family of semiclassical states for our theory.

III. SEMICLASSICAL PROPERTIES

AND CANDIDATE STATES

While true for any quantum state, the effective

Friedmann equation (21) is a relation between expectation

values only. To claim that this equation is a good descrip-

tion of the dynamics of cosmological observables, one

needs to adopt quantum states that show some semiclassical

features, such as coherent states. More generally, one needs

to specify criteria for any candidate state for cosmology

to be considered as semiclassical. Here, we focus on two

criteria that are commonly used: the study of relative

uncertainties, and the Robertson-Schrödinger uncertainty

principle. We define variances and covariances for any

operators Â and B̂ as

ðΔÂÞ2 ¼ hÂ2i − hÂi2; ð22Þ

ΔðÂ B̂Þ ¼ 1

2
hfÂ; B̂gi − hÂihB̂i; ð23Þ

where f·; ·g is the anticommutator.

Our first criterion for semiclassicality would be to require

that relative uncertainties ðΔÂÞ2=hÂi2 be small, at least in

a large-volume or late-time regime where the classical

theory is expected to emerge; here, Â could be either the

Hamiltonian Ĥ or volume V̂. One can also check what

happens to the operator Ĉ defined in (14), even though its

interpretation is less transparent; hence, it is unclear whether

this operator would need to be semiclassical.

There is another characterization of semiclassical states

that makes use of the quantities (22) and (23)—namely, the

saturation of the Robertson-Schrödinger (RS) uncertainty

principle [33]. For the GFT operators (13), the uncertainty

principle reads

ðΔV̂Þ2ðΔĤÞ2 ≥ jΔðV̂ ĤÞj2 þ ω2hĈi2: ð24Þ

For basic examples in standard quantum mechanics, an

inequality of this type is saturated (it becomes an equality)

for canonically conjugate pairs when using coherent (or

more generally Gaussian) states; but in general, it is not

guaranteed that there are states for which (24) can be

minimized. As the volume evolves in time, the RS

uncertainty principle (24) is a statement for each χ.

In the context of GFT cosmology or quantum cosmology

in general, demanding small relative uncertainties seems

physically more relevant than minimizing uncertainties by

demanding equality in (24); nothing in (24) requires both

sides to be small in any sense, whereas the Universe appears

to be sharp to observations, without quantum effects on large

scales. Hence, we would say that a good candidate state for

GFT cosmology models primarily needs to show small

relative uncertainties. As wewill see shortly, (Fock) coherent

states have this property; we will also define more general

states that are semiclassical in this sense.

From (19), we can derive the χ-dependent form of the

volume variance, as well as that of the covariance between

the volume and the Hamiltonian,

ðΔV̂χÞ2 ¼ ðΔV̂Þ2cosh22ωχ þ ðΔĈÞ2sinh22ωχ
þ ΔðV̂ ĈÞsinh4ωχ ; ð25Þ

ΔðV̂χĤÞ ¼ ΔðV̂ ĤÞcosh2ωχ þ ΔðĈ ĤÞsinh2ωχ ; ð26Þ

where from now on we use subscripts to indicate time-

dependent operators; operators with no subscript refer to

initial conditions (i.e., to χ ¼ 0). We can then immediately

derive the large-volume limit of relative uncertainties by

taking χ → �∞ in these expressions: ðΔĤÞ2=hĤi2 does

not evolve in time, but for the relative volume fluctuations

we find using (25) and (19),

ðΔV̂χÞ2
hV̂χi2

⟶

χ→�∞ ðΔV̂Þ2 þ ðΔĈÞ2 � 2ΔðV̂ ĈÞ
ðhV̂i þ v

2
� hĈiÞ2

: ð27Þ

To verify the RS uncertainty principle, we would also need

the limit

ðΔðV̂χĤÞÞ2
hV̂χi2hĤi2

þ ω2
hĈχi2

hVχi2hĤi2

⟶

χ→�∞ ðΔðV̂ ĤÞ � ΔðĈ ĤÞÞ2
ðhV̂i þ v

2
� hĈiÞ2hĤi2

þ ω2

hĤi2
: ð28Þ

All these quantities are determined by the initial conditions

only. Notice that the late-time limit χ → þ∞ in general

differs from the limit χ → −∞ (as indicated by the �
notation), so that the asymmetry described by the quantity

Ĉ is manifest here.

One might also be interested in the evolution of these

quantities beyond the strict infinite-volume limit χ → �∞.

We will show some examples for general evolution of the

RS inequality (24) and the relative uncertainties of the

volume operator. For analytical results, we derive expan-

sions in powers of the inverse volume as

ðΔV̂χÞ2
hV̂χi2

¼ Aþ B
v

hV̂χi
þ C

v2

hV̂χi2
þ � � � ; ð29Þ

where A;B; C;… are functions of initial conditions. Such

an expansion captures very well the full evolution as soon

as we are in the macroscopic regime hV̂χi ≫ v.
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We shall see that the saturation of (24) does not

necessarily indicate that the states under question have

small relative fluctuations; conversely, states such as the

simplest Fock coherent states, which are semiclassical by

looking at relative fluctuations, fail to minimize (24). In the

rest of this section, we briefly review quantum states that

have been investigated in the context of GFT cosmology.

We explicitly check whether the RS uncertainty principle

is minimized, and we obtain the exact dynamics of the

relative uncertainties for the volume in closed form. These

properties will serve as comparison for the new family of

states presented in Sec. IV.

A. Coherent states

The most commonly used states in the GFT cosmology

literature are Fock coherent states, introduced already

in [10] and used in different ways in the deparametrized

formalism [20] and the algebraic approach [11,34]. As is

customary in bosonic theories, coherent states can be

defined via the action of the displacement operator D̂ðαÞ
on the Fock vacuum as

jαi ¼ D̂ðαÞj0i;
D̂ðαÞ ¼ eαâ

†−ᾱ â; α ∈ C: ð30Þ

These have the key property that, at χ ¼ 0, âð0Þjαi ¼ αjαi.
Appendix A contains a table with all the quantities of

interest computed with the state (30).

One can easily check that the RS uncertainty principle

(24) for V̂ and Ĥ is not saturated by coherent states. For

instance (using Table I in Appendix A), we see that at

χ ¼ 0, (24) reads

v2ω2

2
jαj2 þ v2ω2jαj4 ≥ v2ω2jαj4: ð31Þ

This feature occurs because (13) and (14) are suð1;1Þ
compositions of the bosonic ladder operators, whereas the

Fock coherent state is coherent with respect to â and â†.
One can in fact show that (24) is never saturated by

coherent states. We refer to Appendix A, where we report

explicitly the analytical expressions representing the gen-

eral case of (24); such a minimization does not happen at

any time, and in particular not as χ → �∞, where the

system is meant to become semiclassical.

As one might expect, this does not really spoil the semi-

classical nature of coherent states in the sense of relative

uncertainties. Decomposing α into modulus and argument

as α ¼ jαj expðiϑÞ, one can see that the relative uncertain-

ties at χ ¼ 0 (again, see Appendix A),

ðΔV̂Þ2C
hV̂i2C

¼ 1

jαj2 ;

ðΔĤÞ2C
hĤi2C

¼ 4jαj2 þ 2

4jαj4 cos22ϑ
;

ðΔĈÞ2C
hĈi2C

¼ 4jαj2 þ 2

4jαj4 sin22ϑ
; ð32Þ

can be made arbitrarily small by choosing appropriate jαj
and avoiding parameters for which ϑ is a multiple of π

4
[or of

the form π
4
þ k π

2
with k∈Z, if we are only interested in

small ðΔĤÞ2C=hĤi2C]. Away from χ ¼ 0, from (19) and (25),

one finds the volume relative uncertainty:

ðΔV̂χÞ2C
hV̂χi2C

¼ ð4jαj2 þ 1Þcosh4ωχ þ 4jαj2sin2ϑsinh4ωχ − 1

ðð2jαj2 þ 1Þcosh2ωχ þ 2jαj2sin2ϑsinh2ωχ − 1Þ2 :

ð33Þ

By choosing jαj to be large, this can be made arbitrarily

small at all times: consider the asymptotic behavior of (33)

for large jαj,

ðΔV̂χÞ2C
hV̂χi2C

∼
1

jαj2
sin2ϑ sinh4ωχ þ cosh4ωχ

ðsin2ϑ sinh2ωχ þ cosh2ωχÞ2
; ð34Þ

and notice that 1=jαj2 multiplies a bounded function in χ.

For late times, we recover the results of [13]

ðΔV̂χÞ2C
hV̂χi2C

⟶

χ→�∞ 2ð1þ 4jαj2ð1� sin2ϑÞÞ
ð1þ 2jαj2ð1� sin2ϑÞÞ2

≕AC: ð35Þ

Again, this becomes arbitrarily small for large jαj and

avoiding the values ϑ ¼ π
4
þ k π

2
.

We can also expand (33) in inverse volume powers,

finding

ðΔV̂χÞ2C
hV̂χi2C

¼ AC

	

1þ v

hV̂χi




þ CC
v2

hV̂χi2
þO

	

1

hV̂χi4



;

ð36Þ

with

CC ¼ −
jαj2 � 2jαj4ðsin2ϑ � 1Þðjαj2ðcos4ϑ þ 1Þ þ 3Þ

ð2jαj2ðsin2ϑ � 1Þ � 1Þ2 :

ð37Þ

We see that the 1=hV̂ðχÞi correction is such that in (29),

BC ¼ AC, which is similar to the terms in the Friedmann

equation (21). Higher contributions can be found, but they

only minimally improve the expansion, whose key behav-

ior is already captured at the 1=hV̂ðχÞi2 order.
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B. Squeezed states

Mimicking standard quantum mechanics notation,

squeezed states can be defined via the action of the

squeezing operator ŜðzÞ on the Fock vacuum as

jzi ¼ ŜðzÞj0i;
ŜðzÞ ¼ e

1
2
ðzâ†2−z̄â2Þ; z∈C: ð38Þ

We decompose z as z ¼ reiψ , where r and ψ are real

parameters.

These squeezed states can be seen as part of the

Perelomov-Gilmore class of coherent states [35] associated

with SUð1; 1Þ; this is how they were introduced for GFT

in [13]. As described in [13], the volume operator (13) is

bounded from below only in the suð1;1Þ representations
of the positive ascending series; when one restricts to the

cases of interest for GFT,
3
the Perelomov-Gilmore coherent

states coincide exactly with the squeezed states that we

define here.

Contrary to coherent states, one can readily find that

squeezed states do saturate the RS uncertainty principle

(24) for the operators V̂ and Ĥ. Using again Table I in

Appendix A, at χ ¼ 0 one explicitly has

v2ω2

16
sinh22rð2sinh22rcos2ψ þ cosh4r þ 3Þ

¼ v2ω2

16
cos2ψ sinh

2
4r þ

v2ω2

4
sin2ψ sinh

2
2r: ð39Þ

This minimization happens because we are interested in

uncertainties of the GFT operators (13) and (14), which

form the suð1;1Þ structure that squeezed states are built

on. [An analogous result for SUð1; 1Þ coherent states in

loop quantum cosmology is reported in [16].] Turning on

time dependence, we find that the uncertainty principle is

indeed an exact equality throughout the whole evolution for

the state in Eq. (38). Again, we refer to Appendix A for the

analytical expressions at generic times; there we show that

the RS uncertainty principle is minimized for all values of

χ, and in particular in the late-time limit χ → �∞.

The minimization of the RS principle does not neces-

sarily mean that relative uncertainties of cosmological

observables are small, and indeed we find at χ ¼ 0 (see

Table I in Appendix A)

ðΔV̂Þ2S
hV̂i2S

¼ 2 coth2r ;

ðΔĤÞ2S
hĤi2S

¼ 2þ 2 sec2ψ csch
2
2r;

ðΔĈÞ2S
hĈi2S

¼ 2þ 2 csc2ψ csch
2
2r: ð40Þ

All these quantities are bounded from below by 2. One

can still check whether the situation improves with time

evolution; a minimal requirement for semiclassicality is

that relative uncertainties are only small at large volume.

Using (19) and (25), one can readily write down the exact

time evolution of the relative uncertainties as

ðΔV̂χÞ2S
hV̂χi2S

¼ 2
sinψ sinh2r sinh2ωχ þ cosh2r cosh2ωχ þ1

sinψ sinh2r sinh2ωχ þ cosh2r cosh2ωχ −1

¼ 2

	

1þ v

hV̂χi




: ð41Þ

Hence, the lower bound of 2 for the relative uncertainty

holds at all times; a uniform large-volume limit of 2 was

already found in [13].

As a final remark on squeezed states, we point out that a

“dipole condensate” state

jξi ¼ exp

	

1

2
ξâ†â†




j0i; ξ∈C ð42Þ

is nothing else but a non-normalized squeezed state. States

similar to (42) were introduced as possible condensate-like

states in the early stages of GFT cosmology [10] (we will

return to a discussion of these states in the algebraic

approach later). Given the norm

hξjξi ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − jξj2
p ; ð43Þ

we should assume jξj < 1 in order to obtain a normal-

izable state.

To see that (42) is a squeezed state, we write the

squeezing operator ŜðzÞ in “normal form” [36],

ŜðzÞ ¼ exp

	

z

2jzj tanh jzjâ
†2




× exp

	

− ln cosh jzj
	

â†âþ 1

2





× exp

	

−
z̄

2jzj tanh jzjâ
2




; ð44Þ

so that one can write a squeezed state as

3
The representations of the positive discrete series are labeled

by a real parameter k called Bargmann index. Using the bosonic
realization of suð1;1Þ [Eq. (15)] and wishing to include the Fock
vacuum among the eigenstates of the volume operator, one is led
to choose k ¼ 1=4, for which all the results of [13] coincide with
the ones described here.
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jzi ¼ ŜðzÞj0i ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh jzj
p exp

	

z

2jzj tanh jzjâ
†2




j0i: ð45Þ

Equation (45) shows that a dipole state (42) is a (rescaled)

squeezed state (38), jξi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh jzj
p

jzi, where the dipole

parameter ξ and the squeezing parameter z are related by

ξ ¼ z

jzj tanh jzj: ð46Þ

Since they are just squeezed states, dipole condensates have

no chance of being semiclassical according to the criterion

of small relative uncertainties.

IV. GAUSSIAN STATES

Gaussian states can be defined in several equivalent ways.

Traditionally, they are presented in quantum mechanics

textbooks as states whose characteristic functions and quasi-

probability distributions (also known as Wigner functions)

are Gaussian functions. Equivalently, especially in the quan-

tum optics and quantum information literature, Gaussian

states are often described as states which are fully deter-

mined by the first and second canonical moments only [37].

Other characterizations are possible, both physical (as mini-

mum uncertainty states) and mathematical (see [38] for

connections to complex structures and symplectic forms).

We will focus on an equivalent but more operational

definition of Gaussian states, given as Gibbs states of

generic second-order Hamiltonians of bosonic fields [37].

Specifically, they can be defined as arising from the action

of the displacement operator (30) and squeezing operator

(38) on a thermal state [39] (see Appendix B)

ρ̂Gðα; z; βÞ ¼ D̂ðαÞŜðzÞρ̂βŜ†ðzÞD̂†ðαÞ; ð47Þ

where, denoting the usual Fock states by jni ¼
ðn!Þ−1=2ðâ†Þnj0i,

ρ̂β ¼
e−βâ

†â

trðe−βâ†âÞ
¼ ð1 − e−βÞ

X

n

e−βnjnihnj: ð48Þ

β > 0 is a free parameter, the analogue of the inverse

temperature in the usual canonical ensemble.

A key property of Gaussian states is that (in the

Schrödinger picture) they retain their Gaussian nature

under time evolution; Ûρ̂GÛ
† is also a Gaussian state if

Û is the unitary time evolution operator.
4
This property

motivates studies of “Gaussian” quantum mechanics, in

which one restricts to Gaussian-preserving measurements

and transformations, and where quadratic Hamiltonians are

fundamental [41]. In this setting, one avoids the difficulties

that come with higher-order dynamics.

Of course, the family of pure Gaussian states is a subset

of (47) obtained in the vanishing “temperature” limit,

ρ̂G ⟶

β→∞

D̂ðαÞŜðzÞj0ih0jŜ†ðzÞD̂†ðαÞ ≕ jα; zihα; zj. These
states are the well-known displaced squeezed states, which

relate nicely to the simpler states discussed in the previous

section.

The general class of states (47) can straightforwardly

be imported in our GFT framework [and analogue

suð1;1Þ cosmologies] since, as detailed in Sec. II A, we

deal with a bosonic system governed by a second-order

Hamiltonian (13). The state (47) can in fact also be

understood along the lines of [12], where GFT states are

defined as statistical equilibrium states of exponential form

e−Ô for some operator Ô. The parameter β in (48) is to

be taken formally (for instance, as the periodicity in the

one-parameter flow of a KMS state or as a Lagrange

multiplier [12]) and does not necessarily relate to a physical

notion of temperature. Effectively, given that N̂ ¼ â†â
represents the number of quanta, β in (48) could be seen

as more akin to a chemical potential of a grand canonical

ensemble.

Equipped with the new and generalized family of

states (47), we can now turn to the calculation of quantities

of interest for harmonic cosmology; Appendix B outlines

helpful tools for using (47) to obtain the following

results. First, we compute the expectation value of the

three main operators for our models, given in (13) and (14).

One finds

hV̂iG ¼ v
�

jαj2 þ Nβ cosh2rþ sinh2r
�

;

hĤiG ¼ −
ω

2

�

2jαj2 cos2ϑ þð2Nβ þ 1Þ sinh2r cosψ
�

;

hĈiG ¼ v

2

�

2jαj2 sin2ϑ þð2Nβ þ 1Þ sinh2r sinψ
�

; ð49Þ

where we denote the thermal expectation value [computed

with (48)] of the number operator as

Nβ ≔ hN̂ithermal ¼ trðρ̂βâ†âÞ ¼
1

eβ − 1
: ð50Þ

By means of (50), the reduction to pure states (β → ∞)

is achieved by setting Nβ ¼ 0. Next, we evaluate vari-

ances (22) and covariances (23). Incorporating the dis-

placement and squeezing phases into a shorthand F� ¼
cos2ϑ cosψ � sin2ϑ sinψ and noticing that 2Nβ þ 1 ¼
cothβ=2, one finds

4
For a quadratic Hamiltonian, the evolution operator can

always be decomposed as Û ¼ eiγŜðzÞD̂ðαÞR̂ðϕÞ, where R̂ðϕÞ ¼
expðiϕâ†âÞ is the rotation operator and expðiγÞ a phase factor
[40]. While a rotation operator can in principle enter the
definition of Gaussian states (47), it does not affect any result
(see Appendix B for details).
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ðΔV̂Þ2G ¼ v2

4

�

4jαj2cothβ

2

ðcosh2r þ Fþsinh2rÞ þ coth2β
2

cosh4r − 1
�

;

ðΔĤÞ2G ¼ ω2

8

�

8jαj2cothβ

2

ðcosh2r þ F−sinh2rÞ þ coth2β
2

ð1þ 2sinh22rcos2ψ þ cosh4rÞ þ 2
�

;

ðΔĈÞ2G ¼ v2

8

�

8jαj2cothβ

2

ðcosh2r − F−sinh2rÞ þ coth2β
2

ð1þ 2cosh4rsin
2
ψ þ cos2ψ Þ þ 2

�

; ð51Þ

and

ΔðV̂ ĤÞG ¼ −
vω

4

�

4jαj2cothβ

2

ðsinh2rcosψ þ cosh2rcos2ϑÞ þ coth2β
2

sinh4rcosψ
�

;

ΔðV̂ ĈÞG ¼ v2

4

�

4jαj2cothβ

2

ðsinh2rsinψ þ cosh2rsin2ϑÞ þ coth2β
2

sinh4rsinψ
�

;

ΔðĤ ĈÞG ¼ −
vω

4

�

4jαj2cothβ

2

sinh2rðsin2ϑcosψ þ cos2ϑsinψÞ þ coth2β
2

sinh22rsin2ψ
�

: ð52Þ

The quantities in (49), (51), and (52) combine in a non-

trivial way coherent, squeezed, and thermal contributions;

they generalize the expressions for simple states reported in

Appendix A, being now (at the same time) functions of

α ¼ jαjeiϑ, z ¼ reiψ , and β.

Expectation values, variances, and covariances are all the

ingredients one needs to analyze the semiclassical criteria

discussed in Sec. III. For instance, using the first two

expressions in (51), the first in (52), and the last in (49), it is

straightforward (albeit tedious) to see that the Robertson-

Schrödinger uncertainty principle (24) is not minimized by

Gaussian states at χ ¼ 0. One can in fact prove that the

inequality is never saturated for any χ, much like with

coherent states. As expected, the inequality becomes an

identity only when α ¼ Nβ ¼ 0, which is the case of a pure

squeezed state (39). Details on the Robertson-Schrödinger

principle for Gaussian states are given at the end of

Appendix A.

More importantly, we now show that Gaussian states can

be chosen to have small quantum fluctuations. Even with

such a large parameter space (spanned by α, z, and β), one

can notice from (51) and (49) that it is always possible

to manipulate the displacement parameter α to make

relative uncertainties arbitrarily small at χ ¼ 0. While

squeezed and thermal states alone do not allow for such

a feature, squeezing and thermal effects can lead to semi-

classical Gaussian states as long as one uses a large enough

displacement. To make this more explicit, we can expand

the fluctuations stemming out of (51) and (49) for large jαj,
obtaining

ðΔV̂Þ2G
hV̂i2G

∼
1

jαj2 cothβ

2

�

cosh2rþFþ sinh2r
�

; ð53Þ

ðΔĤÞ2G
hĤi2G

∼
1

jαj2 cos22ϑ
cothβ

2

�

cosh2rþF− sinh2r
�

; ð54Þ

ðΔĈÞ2G
hĈi2G

∼
1

jαj2 sin22ϑ
cothβ

2

�

cosh2r −F− sinh2r
�

: ð55Þ

These expressions still refer to χ ¼ 0, so they generalize

(32) and (40). We now discuss the dynamics of quantum

fluctuations, focusing on the volume operator.

Recall from Sec. II that the single-mode GFT

Hamiltonian (13) makes the evolution operator ÛðχÞ ¼
e−iĤχ a squeezing operator (with purely imaginary squeez-

ing parameter). Relations allowing a reordering of dis-

placement and squeezing operators, or the composition of

two squeezing operators into one, are well known (see

Appendix B), and it might be tempting to work in the

Schrödinger picture and to define

ρ̂Gðα; z; β; χÞ ¼ ÛðχÞD̂ðαÞŜðzÞρ̂βŜ†ðzÞD̂†ðαÞÛ†ðχÞ ð56Þ

as a time-dependent Gaussian state. However, one finds

that using properties such as (B2) and (B3) on (56) leads

to very complicated calculations, due to the mixing of para-

meters. We thus keep working in the Heisenberg picture, in

which the explicit dynamical equations (19), (25), and (26)

allow us to obtain the χ evolution of all the quantities of

interest. For example, the dynamics of the volume expect-

ation value reads

hV̂χiG ¼ v

2

�

2jαj2
�

cosh2ωχ þ sinh2ωχsin2ϑ
�

− 1

þ cothβ

2

�

sinh2ωχsinh2rsinψ þ cosh2ωχcosh2r
��

:

ð57Þ

While it is not useful to show all the other χ-dependent

counterparts of (49), (51), and (52) in full, one can compute

them in the same fashion [also using (20) for quantities

containing Ĉ]. Crucially, we find that Gaussian states can
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be chosen to make the volume relative uncertainties, ðΔV̂χÞ2G=hV̂χi2G, arbitrarily small at all times. We can analytically show

this again by considering the asymptotic behavior of the evolving volume fluctuations for large jαj, finding

ðΔV̂χÞ2G
hV̂χi2G

∼
cothβ=2

jαj2
sinh4ωχðsin2ϑ þ sinh2r sinψÞ þ cosh4ωχðsinh2r sin2ϑ sinψ þ1Þ þ sinh2r cos2ϑ cosψ

ðsin2ϑ sinh2ωχ þ cosh2ωχÞ2
: ð58Þ

Again avoiding the problematic values ϑ ¼ π
4
þ k π

2
, this is

the product of a bounded function (in χ) and a factor 1=jαj2,
which can hence be made arbitrarily small at all times. The

function exhibits similar features to the coherent-states case

and generalizes (34) to Gaussian states by also keeping

squeezing and thermal contributions. The dynamics hence

do not spoil the semiclassical behavior of suitably chosen

Gaussian states. To give some graphical intuition, we also

plot in Fig. 1 a few instances illustrating some interplay

between the various state parameters, in particular exem-

plifying that jαj can make ðΔV̂χÞ2G=hV̂χi2G as small as

desired at all times. Compared to the choice of jαj, the other
parameters seem to have relatively minor impact on the

relative uncertainty.

Finally, we can explicitly find the asymptotic behavior

represented by the plateaus in Fig. 1:

ðΔV̂ðχÞÞ2G
hV̂ðχÞi2G

⟶

χ→�∞

2 −
8jαj4ðsin2ϑ � 1Þ2

½2jαj2ðsin2ϑ � 1Þ � cothβ=2ðcosh2r � sinh2rsinψ Þ�2
≕AG; ð59Þ

which generalizes (35) and shares the same properties. In particular, approximating (59) for large jαj, we can see that it can
be made arbitrarily small:

AG ∼
2

jαj2
cothβ=2ðcosh2r � sinh2rsinψÞ

ð1� sin2ϑÞ
: ð60Þ

We can also expand ðΔV̂χÞ2G=hV̂χi2G in inverse volume powers as per (29), finding

ðΔV̂χÞ2G
hV̂χi2G

¼ AG

	

1þ v

hV̂χi




þ CG
v2

hV̂χi2
þO

	

1

hV̂χi3



; ð61Þ

where, using h� ¼ cothβ

2

ðcosh2r� sinh2r sinψ Þ to encapsulate squeezing and thermal contributions,

CG ¼ h�ð4jαj2ðsin2ϑ � 1Þ � h�Þ
8

�

8jαj2cos2ϑcotψðh� − h∓Þ � cot2ψ ðh� − h∓Þ2 ∓ 4

2h�ðh� � 4jαj2ðsin2ϑ � 1ÞÞ

þ 2jαj2ðsin2ϑ ∓ 1Þ ∓ h∓

h� � 2jαj2ðsin2ϑ � 1Þ ∓
2jαj2ðhþ þ h− þ 2jαj2cos22ϑ � sin2ϑðh∓ − h�ÞÞ þ h−hþ − 4

ðh� � 2jαj2ðsin2ϑ � 1ÞÞ2
�

: ð62Þ

FIG. 1. Volume relative uncertainties with Gaussian states for some state parameters.
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Interestingly, here again BG ¼ AG, as with all the other

states. One can check that CG reduces to (37) for r ¼ 0 and

β → ∞ (since h� → 1) and vanishes for α ¼ 0 and β → ∞

[cf. Eq. (41)].

To summarize, we have seen that the general family of

Gaussian states contains states with small relative uncer-

tainties and can thus be regarded as semiclassical. This

property is realized for the volume, the Hamiltonian, and

the Ĉ operator in the context of GFT cosmology, and it

holds at all times (crucially at late times, where quantum

fluctuations are actually expected to be small). Because all

harmonic cosmologies [14,15] rely on the same underlying

Lie algebra, these results actually hold for any general

suð1;1Þ (or CVH) quantum cosmological scenario.

As for coherent states, Gaussian states do not saturate

the Robertson-Schrödinger uncertainty principle, showing

again that it is not clear whether such a criterion should be

invoked to classify states as semiclassical.

V. ALGEBRAIC APPROACH TO GFT

COSMOLOGY

In this section, we explore the role and behavior of

semiclassical states in the original formalism of the GFT

cosmology program [7], which we denote algebraic

approach, following [25]. In particular, we investigate

whether generalized Gaussian states can exist, and we

highlight differences with the deparametrized approach

adopted in previous sections.

The algebraic formalism for group field theory shares

some similarities with a standard Dirac quantization. It is

based on the construction of a kinematical Hilbert space of

abstract states, among which physical states are selected

by demanding that they satisfy a constraint coming from

the underlying theory. Following Sec. II, states in the

GFT kinematical Fock space would be unphysical quantum

tetrahedra (or spin-network-like states), on which dynami-

cal equations are imposed a posteriori, usually in a

mean-field regime [9–11]. However, unlike in a Dirac

quantization, one here assumes that physical states are

elements of the original Hilbert space. This assumption is,

strictly speaking, inconsistent, since such states have

infinite norm.
5
Moreover, working in a “timeless” setting,

one defines kinematical operators as relational observables

(e.g., the volume as a function of the scalar field χ), which

may also contain infinities. We will encounter divergences

at many points in this section, so that our expressions need

to be treated as formal and subject to some regularization

procedure (some ideas for dealing with these infinities

include [12,34]). We are mainly interested in a general

conceptual comparison with the analysis of previous

sections; regardless of divergences, one can check whether

one can define Gaussian-like states in this formalism, in the

sense of at least approximately physical states.

Aiming to extract effective cosmological dynamics, we

work with a similar setup to the one described in Sec. II, the

main difference being that the group field (1) is now

complex valued. Restricting again to a single Peter-Weyl

mode [and hence dropping SU(2) arguments as in

Sec. II A], we deal with a free complex group field theory,

where the classical equation of motion reads

ð∂2χ − ω2ÞφðχÞ ¼ 0 ð63Þ

with ω2 ¼ −Kð0Þ=Kð2Þ [cf. Eq. (6)]. A canonical quantiza-

tion performed in this approach requires promoting the

field and its complex conjugate to operators φ̂ and φ̂† with

�

φ̂ðχÞ; φ̂†ðχ0Þ
�

¼ δðχ − χ0Þ: ð64Þ

The key deviation from the deparametrized approach of

Sec. II is the fact that the operators φ̂ðχÞ and φ̂†ðχÞ are not
thought of as evolving in time, but as separate independent

operators for each value of χ. Using these as abstract ladder

operators, one can now construct a kinematical Fock space

with vacuum j0i satisfying φ̂ðχÞj0i ¼ 0. Then, for instance,

the state associated with a single (unphysical) GFT quan-

tum with a given (fixed) value of χ reads φ̂†ðχÞj0i, not to
be confused with the dynamical one-particle state â†ðχÞj0i
of Sec. II A. Kinematical analogues of the number and

volume operators are naturally defined in this approach

as V̂ðχÞ ¼ vN̂ðχÞ ¼ vφ̂†ðχÞφ̂ðχÞ.
Among these kinematical states, one needs to identify

physical ones. To do this, from the GFT action one

can derive Schwinger-Dyson equations for correlation

functions,

�

Ψ

�

�

�

�

δÔ

δφ̂†
− Ô

δS½φ̂; φ̂†�
δφ̂†

�

�

�

�

Ψ




¼ 0; ð65Þ

which must be satisfied for physical states, where Ô is any

polynomial functional of the field operators. In practice,

one truncates this infinite tower of equations by considering

a few very simple choices for Ô, the most common being

the identity operator. Indeed, setting Ô ¼ 1 in Eq. (65)

amounts to requiring that the operator version of the Euler-

Lagrange equations hold on average.

Alternatively, one can require physical states to

satisfy [9–11]

δS½φ̂; φ̂†�
δφ̂†

jΨi ¼ 0; ð66Þ

which can be seen as the imposition of a quantum

constraint on jΨi typical of a Dirac quantization scheme.

5
For a more standard Dirac quantization of (free) GFT that

uses group averaging to define a physical Hilbert space, see [42].
The resulting theory is close, though not exactly equivalent, to the
deparametrized theory defined earlier.
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Compared to requiring some expectation value to vanish

(usually given by the first Schwinger-Dyson equation), (66)

provides a stronger condition for defining exactly physical

states. We shall see that one can quickly find at least one

exact solution for a free GFT; moreover, we explore some

other possibilities in Appendix C, where we show that to

be a solution of the constraint (66) (and hence physical),

a generic jΨi must satisfy strict conditions. Whether one

uses (66) or a truncation of (65), the task in this approach is

to find equations for the functions defining the states. Such

conditions ensure the corresponding states are either exact

or approximate solutions of the quantum dynamics.

The only class of states (including the more specific

proposal of [34]) which has been successfully used to

extract cosmological dynamics is given by field coherent

states:

jσi ¼ D̂ðσÞj0i;

D̂ðσÞ ¼ exp

	
Z

dχ
�

σðχÞφ̂†ðχÞ − σðχÞ φ̂ðχÞ
�




; ð67Þ

which we define in analogy with (30) using a displacement-

like operator. Due to the Baker-Campbell-Hausdorff

formula, (67) is equivalent to a single-particle condensate

state of the type usually adopted in the literature, jσi¼
N σexpð

R

dχσðχÞφ̂†ðχÞÞj0i, withN σ¼expð−1
2

R

dχjσðχÞj2Þ,
which explicitly shows a divergent norm [N σ ¼ 0 for any σ

solving (63)]. One way of regularizing the state jσi is by

introducing an ad hoc cutoff in χ, which would represent an

arbitrarily large (but finite) range of validity for the resulting

effective relational dynamics.
6

While often described as an approximate solution in the

literature (even for GFT models based on the free theory),

we stress that states of the form (67) can solve (66) exactly.

Indeed, due to the property φ̂ðχÞjσi ¼ σðχÞjσi, (67) is

a physical state provided that the displacement para-

meter σðχÞ satisfies the classical free GFT equation of

motion (63), namely ð∂2χ − ω2ÞσðχÞ ¼ 0. The solution to

this equation dictates how dynamics are implemented in the

algebraic approach, as geometrical quantities inherit χ

dependence through σðχÞ. In particular, one can obtain

the volume expectation value

hV̂ðχÞiσ ¼ v
hσjφ̂†ðχÞφ̂ðχÞjσi

hσjσi ¼ vjσðχÞj2;

σðχÞ ¼ Aeωχ þ Be−ωχ ; ð68Þ

where A and B are constants, and show that it satisfies a

Friedmann-like equation similar to (21). This can be

expressed by means of the quantities [11,32]

E ¼ −4ReðAB̄Þ; Q ¼ 2ImðAB̄Þ; ð69Þ

so that

	

1

hV̂ðχÞiσ
dhV̂ðχÞiσ

dχ




2

¼ 4ω2

	

1þ vE

hV̂ðχÞiσ
−

v2Q2

hV̂ðχÞi2σ




:

ð70Þ

Apart from differences in numerical factors, such effective

cosmological dynamics share the properties of (21) and

essentially describe the same scenario discussed at the

end of Sec. II A. The crucial difference is that in order to

obtain (70), we had to specifically use the state (67), as

indicated by the index of hV̂ðχÞiσ . In contrast, the effective

Friedmann equation (21) of the deparametrized approach

holds in any state.

Note that even if the volume itself does not show any

infinities, volume fluctuations diverge as

ðΔV̂Þ2σ
hV̂i2σ

¼ δð0Þ
jσðχÞj2 : ð71Þ

If one removes the distribution δð0Þ by means of some

regularization procedure [e.g., replacing the Dirac delta

in (64) with a Kronecker delta by considering smeared

observables [12], or imposing the dynamics in a different

way by working with the peaked coherent states of [34] ],

Eq. (71) gets automatically smaller and smaller over time

as σðχÞ grows exponentially [cf. Eq. (68)]. In this sense,

one might then argue that these coherent states are

semiclassical.

Because the effective Friedmann equation (70) seems to

rely on coherent states, it is natural to ask whether one can

use more general states, such as Gaussian states, to obtain a

similar result. Given how dynamics are implemented in the

algebraic approach, we shall see that it is not clear whether

Gaussian states are a useful option for this framework.

In order to define generalized Gaussian states, we resort to

the thermofield formalism, since a well-defined procedure

in terms of thermal-like density matrices is not directly

available in the algebraic approach to GFT. The thermofield

dynamics were developed in the context of GFT in [12] for

thermal coherent states; this naturally extends to the case of

Gaussian states following the strategy of Appendix B, with

suitably generalized definitions. Explicitly, in analogy

with (B16), a Gaussian-like state in the algebraic approach

can be defined as
7

jσ; ζ; βi ¼ D̂ðσÞŜðζÞj0βi; ð72Þ

6
One might argue that this does not represent an issue, as the

free-theory approximation breaks down at some χ [when the
interactions in Eq. (2) become important], so one should not trust
the model for too large χ anyway.

7
Just like (67), the state (72) has a divergent norm. Again, one

could impose a cutoff in the χ integrations, but in this case the
divergences are even more severe. See Appendix C for details on
condensate states and their norms.
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where we introduce a squeezing-like operator

ŜðζÞ ¼ exp

	

1

2

Z

dχ
�

ζðχÞφ̂†2ðχÞ − ζðχÞφ̂2ðχÞ
�




ð73Þ

and the algebraic counterpart of the thermal vacuum (B11),

j0βi ¼ T̂ ðθβÞj0; 0̃i;

T̂ ðθβÞ ¼ exp

	
Z

dχθβðχÞ
�

φ̂†ðχÞ ˆ̃φ†ðχÞ − φ̂ðχÞ ˆ̃φðχÞ
�




:

ð74Þ

The general construction of Appendix B applies here: the

state j0; 0̃i is a product vacuum for the doublet kinematical

Hilbert space, and the tilde operators ˆ̃φðχÞ and ˆ̃φ†ðχÞ satisfy
the algebra (64) while commuting with nontilde operators,

etc. In particular, one can make use of the relation

sinh2ðθβðχÞÞ ¼ ðeβðχÞ − 1Þ−1 [cf. Eq. (B15)] to express

results in terms of the statistical parameter βðχÞ.
Such a Gaussian-like state is not physical, as it does not

solve the constraint (66). More precisely, focusing on

the case of a pure Gaussian state for simplicity, one can

start from (66) with jσ; ζi ¼ D̂ðσÞŜðζÞj0i and obtain the

condition

�

∂
2
χ −ω2

�

	

σðχÞþ ζðχÞ
jζðχÞj tanhðjζðχÞjÞ

�

φ̂†ðχÞ− σðχÞ
�




¼ 0;

ð75Þ

which cannot generically be solved for the displacement

and squeezing functions σðχÞ and ζðχÞ. Including thermal

contributions only results in a more complicated equation

with no interesting novelties, as T̂ ðθβÞ is essentially a

generalized squeezing operator just like ŜðζÞ. While setting

ζ ¼ 0 in (75) returns the classical equation of motion for

σðχÞ [which makes the coherent-like state (67) physical],

notice that setting σ ¼ 0 shows that a purely squeezed-like

state jζi ¼ ŜðζÞj0i is also unphysical, as

ð∂2χ − ω2Þ
	

ζðχÞ
jζðχÞj tanhðjζðχÞjÞφ̂

†ðχÞ



¼ 0 ð76Þ

cannot yield a solution for the squeezing function ζðχÞ.
The usual strategy in this situation is to shift the attention

towards averages, and require that the state be only approxi-

mately physical. We can use the general Gaussian states (72)

in (65)—e.g., with Ô ¼ 1—to determine the form of our

state parameters as functions of χ. One finds that the first

Schwinger-Dyson equation does not provide a condition for

the squeezing and thermal functions:

�

δS½φ̂; φ̂†�
δφ̂†




σ;ζ;β

¼ ð∂2χ − ω2Þhφ̂ðχÞiσ;ζ;β

¼ ð∂2χ − ω2ÞσðχÞ ¼ 0: ð77Þ

As essentially observed in [12] for thermal coherent states,

we can only determine the χ dependence for the displace-

ment parameter σðχÞ, which in particular is the same as in

the (pure) coherent-states scenario. This is due to the fact

that squeezed states jζi, and thus also squeezed thermal

states jζ; βi, have a vanishing field expectation value

hζ;βjφ̂ðχÞjζ;βi¼ 0. As a consequence, one cannot use (77)

to extract dynamical information for ζ and β.

Since going to Schwinger-Dyson equations of higher

order is rather complicated (see Appendix C for an attempt

with dipole states and squeezed-like states), we can follow

the idea of [12] and assume that the parameters ζ and β

are constant. While the dynamics is still governed by the

same function σðχÞ, this simple generalization does affect

observable averages (such as the volume), and hence the

resulting Friedmann equation, with new static contributions

of squeezing and thermal nature. From the volume expect-

ation value computed with (72),

hV̂ðχÞiσ;ζ;β ¼ v
�

jσðχÞj2 þ δð0Þ sinh2ðjζjÞ
þ δð0Þðeβ − 1Þ−1 coshð2jζjÞ

�

; ð78Þ

one finds the following effective Friedmann equation:

 

1

hV̂ðχÞiσ;ζ;β
dhV̂ðχÞiσ;ζ;β

dχ

!

2

¼ 4ω2

 

1þ v

hV̂ðχÞiσ;ζ;β
ðEþ EÞ− v2

hV̂ðχÞi2σ;ζ;β
ðQ2 þQ2Þ

!

;

ð79Þ

where E and Q are given in (69), and the squeezing and

thermal contributions are encoded in

E ¼ δð0Þ
�

1 − cothðβ=2Þ coshð2jζjÞ
�

;

Q2 ¼ −
1

4
EðE þ 2EÞ: ð80Þ

As mentioned, we formally keep the Dirac delta distribu-

tions in these expressions, assuming one can get rid of them

by using, e.g., a smearing procedure [12]. Notice that such

divergences affect the thermal and squeezing contributions

already at the level of the volume expectation value.

Of course, when ζ ¼ 0 and β → ∞, Eq. (79) reduces to

(70), since E ¼ Q ¼ 0. Similarly, one can check that the

result of [12] with a “static thermal cloud” emerges by

setting ζ ¼ 0. We remark, however, that both (79) and the

modified Friedmann-like equation of [12] represent only

a somewhat weak generalization of (70), as the new

ANDREA CALCINARI and STEFFEN GIELEN PHYS. REV. D 109, 066022 (2024)

066022-14



contributions are assumed to be χ independent; this is an

arbitrary assumption that was made because the model is

not predictive for ζ and β [cf. Eq. (77)].

Along the same lines, one can also find new constant

contributions to the volume fluctuations for general

Gaussian-like states. Since all the χ dependence is encoded

in the displacement parameter σðχÞ, one can proceed to

remove the divergences of the usual kind and find again

that relative uncertainties are automatically tamed under

time evolution. To give a concrete but concise example,

pure
8
Gaussian-like states jσ; ζi yield the following relative

uncertainties:

ðΔV̂Þ2σ;ζ
hV̂i2σ;ζ

¼ δð0Þ 2jζjjσðχÞj
2 coshð2jζjÞ þ sinhð2jζjÞðσðχÞ2ζ̄ þ σðχÞ2ζÞ þ δð0Þjζjsinh2ð2jζjÞ

2jζjðjσðχÞj2 þ δð0Þsinh2ðjζjÞÞ2 : ð81Þ

Since σðχÞ grows exponentially, one easily finds that at late
times (81) reduces to an analogue of (53) (in this case with

β → ∞). Of course, in the limit ζ → 0, one recovers (71).

Notice that when σ ¼ 0, one is left with an expression

which incidentally has no divergences, namely

ðΔV̂Þ2ζ=hV̂i2ζ ¼ 2 coth2ðjζjÞ [as in Eq. (40)]. We show a

similar feature for dipole states (expected to be a type of

squeezed state) in Appendix C.

VI. CONCLUSIONS

In this paper, we constructed the wide class of (mixed)

Gaussian states in the context of group field theory and

suð1;1Þ quantum cosmological models, and we analyzed

relevant properties for such states to be semiclassical and

lead to a macroscopic cosmology. Inspired by bosonic

theories in other areas of quantum mechanics, in particular

quantum optics and quantum information theory, we

defined the family of Gaussian states in its most general

form, obtaining the most general state by applying dis-

placement and squeezing operators to a pure thermal state.

Since such states are generally defined as equilibrium (or

Gibbs) states, Gaussian states should carry a statistical

interpretation. In a discrete setting such as GFT, the notion

of particle number allows one to think of a statistical

ensemble where adding or removing quanta might come

with some intrinsic cost in “energy” (usually the chemical

potential in thermodynamics). In this sense, the “thermal”

effects appearing in our results are not inherently related to

some physical temperature like the one adopted in standard

cosmology, but a grand canonical interpretation might be

more meaningful. From this perspective, discrete GFT

models can add new features to cosmological scenarios

which are missing in the continuum. However, giving a

precise physical meaning to statistical parameters is highly

nontrivial for a background-independent quantum gravity

theory, where spacetime is only seen as emergent. Here we

restrict ourselves to studying thermality from a mathemati-

cal point of view.

While all existing work in GFT cosmology focuses on

some type of coherent states, our results extend this past

work to the most general family of semiclassical states,

under the assumptions of a free theory and a single field

mode. The general family includes pure coherent and
squeezed states as special cases, as well as thermal (or
generally mixed) states constructed along the lines of [12].
With the exception of Sec. V, the paper mainly focuses on
the deparametrized approach to canonical quantization of
GFT. We give explicit analytical results for the relevant
quantum fluctuations at all relational times, for both
Fock coherent states and the Perelomov-Gilmore family
of SUð1; 1Þ coherent states (herein called squeezed states).
These return and generalize the late-time results of [13].
We distinguish between two possible properties that can
be associated with semiclassicality: the requirement that
relative uncertainties (in the geometrical observables of
interest) be small, and the saturation of the Robertson-
Schrödinger uncertainty principle, which was never prop-
erly investigated in GFT (for similar work in loop quantum
cosmology, see, e.g., [43]). We argue that saturation of the
Robertson-Schrödinger equality is a less useful criterion in
practice; for instance, simple Fock coherent states would
not be semiclassical according to this, yet they yield relative
uncertainties that can be arbitrarily small, which seems
physically more relevant. On the other hand, states which
do saturate the Robertson-Schrödinger inequality, such as
squeezed states, show large relative uncertainties and are
hence not semiclassical (as already argued in [13]).
For a free GFT and single field mode, the dynamics are

given by a simple quadratic bosonic Hamiltonian. Hence,

the class of Gaussian states studied here represents the most
general family of semiclassical states for the cosmological
models under investigation. In the most general case,
we studied the two possible semiclassicality criteria using
analytical expressions for all the dynamical quantities of
interest. One key result is that, while general Gaussian
states just like coherent states do not saturate the
Robertson-Schrödinger inequality, the fluctuations of the
relevant geometrical observables (energy and volume) can
be made arbitrarily small, at all relational times (especially
in the late-time limit, where a classical cosmology is
expected to emerge). Not too surprisingly, this behavior

8
One can write down an expression including β, but it is not

insightful to show this in full, since thermal contributions are of
squeezing type (see thermofield formalism in Appendix B) and
assumed to be constant.
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is mainly governed by the displacement parameter, which
can be manipulated arbitrarily so as to allow for non-
vanishing thermal and squeezing contributions. In this
sense, Gaussian states can be regarded as semiclassical.

All such results rely on the algebra generated by the

volume, the Hamiltonian, and the Ĉ operator (dubbed CVH

algebra in [17]). For this reason, our findings apply to any

general quantum system based on the suð1;1Þ algebra, in
particular provided that one can give a cosmological inter-

pretation to some of the generators. Apart from GFT [13], a

standard example ofsuð1;1Þ cosmology is provided by loop

quantum cosmology [16,18], another realization of the

harmonic cosmology of [14,15]. Similar ideas were also

applied to FLRW cosmological models in [44], where the

CVH algebra slð2;RÞð≃suð1; 1ÞÞ allows one to formulate

quantum cosmology as a one-dimensional conformal field

theory.

We then studied similar questions in the algebraic

approach to GFT cosmology, where states in a kinematical

Hilbert space are subject to additional dynamical equations

(constraints) in order to be seen as physical. In our attempts

to generalize previous results to a wider class of states, we

looked at different possible definitions of Gaussian-like

states and used these to extract effective dynamics. A state

is physical in an exact sense when it is annihilated by the

free GFT equation of motion, and it can be considered

approximately physical when at least one of the Schwinger-

Dyson equations is satisfied. Ignoring as much as possible

the known issues related to divergent norms, which affect

all physical states in this formalism, we defined a family of

generalized Gaussian states assuming that they could be

regularized. Regardless of these divergences, we found that

in the general family of Gaussian states, there seem to be no

(even approximately) physical states. The only Gaussian

states that are physical turn out to be the pure coherent

states considered in previous literature. In light of these

findings, we analyzed a simplified scenario, which includes

the thermal construction of [12], where all the time

dependence is encoded in the displacement function.

With this assumption, we found an effective Friedmann

equation which generalizes previous works with new

(albeit constant) contributions, as well as volume fluctua-

tions that decrease over time, just like for coherent states.

We also found a class of physical states that are more

general than coherent states, but these are not Gaussian

states and are (in general) not semiclassical.

In line with the ideas of exploring the connection

between entanglement, entropy, and geometry, which has

seen recent attention, for example, in LQG [45], a natural

direction for future work is to investigate similar questions

in the context of GFT. In particular, it would be interesting

to generalize the construction of our paper to multiple

modes—specifically, to more general squeezed states like

those used in areas such as quantum optics [46] or cosmo-

logy [47]. One could explore whether our results hold for

two-mode (or generically multimode) Gaussian states, at

least in the deparametrized approach where such states can

be easily defined. This extension could add new features to

GFT cosmological scenarios which are not captured by our

single-mode construction.
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APPENDIX A: UNCERTAINTY PRINCIPLE

In this appendix, we analyze in detail the Robertson-

Schrödinger (RS) inequality (24) for all states described in

this paper. First, Table I reports the expectation values,

variances, and covariances for the operators of interest at

χ ¼ 0, using coherent states (30) and squeezed states (38).

Moreover, using the analytical expressions for the time

evolution of variances and covariances [cf. Eqs. (25)

and (26)], we explicitly compute the dynamical behavior

of the left-hand side and right-hand side of the RS

inequality (24). For coherent states, we find

TABLE I. Useful quantities computed with coherent states jαi and squeezed states jzi, where the displacement

and the squeezing parameters are decomposed as α ¼ jαjeiϑ and z ¼ reiψ .

Coherent states Squeezed states

hV̂i vjαj2 v sinh2r

hĤi − ω
2
ðᾱ2 þ α2Þ ¼ −ωjαj2 cos2ϑ − ω

2
sinh2r cosψ

hĈi i v
2
ðᾱ2 − α2Þ ¼ vjαj2 sin2ϑ v

2
sinh2r sinψ

ðΔV̂Þ2 v2jαj2 v2

2
sinh22r

ðΔĤÞ2 ω2

2
ð1þ 2jαj2Þ ω2

8

�

3þ cosh4r þ2 cos2ψ sinh
2
2r

�

ðΔĈÞ2 v2

2
ð1þ 2jαj2Þ v2

8

�

3þ cosh4r −2 cos2ψ sinh
2
2r

�

ΔðV̂ ĤÞ − vω
2
ðᾱ2 þ α2Þ ¼ −vωjαj2 cos2ϑ − vω

4
cosψ sinh4r

ΔðV̂ ĈÞ i v
2

2
ðᾱ2 − α2Þ ¼ v2jαj2 sin2ϑ v2

4
sinψ sinh4r

ΔðĤ ĈÞ 0 − vω
4
sin2ψ sinh

2
2r
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ðΔV̂χÞ2CðΔĤÞ2C ¼ v2ω2

8
ð2jαj2 þ 1Þ

�

4jαj2ðsinh4ωχ sin2ϑ þ cosh4ωχÞ þ cosh4χω −1
�

;

�

ΔðV̂χĤÞ
�

2
C
þ ω2hĈχi2C ¼ v2ω2

4

�

4jαj4 cosh22ωχ cos22ϑ þ
�

2jαj2ðcosh2ωχ sin2ϑ þ sin2ωχÞ þ sinh2ωχ
�

2
�

;

which can only be equal if vωjαj2 cosh2ωχ ¼ 0. Since we exclude the trivial cases with vanishing GFT parameters and with

α ¼ 0 (which would reduce a coherent state jαi to the vacuum j0i), there is no χ for which the Robertson-Schrödinger

relation is saturated. Conversely, for squeezed states we find that the uncertainty principle is minimized at all times:

�

ΔV̂χ

�

2
S
ðΔĤÞ2S ¼

�

ΔðV̂χĤÞ
�

2
S
þ ω2hĈχi2S

¼ v2ω2

16

�

sinh22ωχ
�

sinh42rsin
2
2ψ þ 4cosh22r

�

þ cosh22ωχ
�

4sinh22rsin
2
ψ þ sinh24rcos

2
ψ

�

þ 1

4
sinh4ωχsinψ

�

8sinh32rcosh2rcos2ψ þ 6sinh4r þ sinh8r
�

�

:

In other words, χ evolution does not change the statement of whether the RS uncertainty principle is saturated. Figure 2

shows this feature for some state parameters. Other than studying generic intermediate times, we can in particular also

evaluate the large-volume limits (27) and (28) using the quantities in Table I. We find

ðΔV̂χÞ2C
hV̂χi2C

ðΔĤÞ2C
hĤi2C

⟶

χ→�∞ ð2jαj2 þ 1Þ½1þ 4jαj2ð1� sin2ϑÞ�
jαj4cos22ϑð1þ 2jαj2ð1� sin2ϑÞÞ2

;

ðΔðV̂χĤÞÞ2C
hV̂χi2ChĤi2C

þ ω2
hĈχi2C

hVχi2ChĤi2C
⟶

χ→�∞ 1þ 4jαj2ð2jαj2 þ 1Þð1� sin2ϑÞ
jαj4cos22ϑð1þ 2jαj2ð1� sin2ϑÞÞ2

and

ðΔV̂χÞ2S
hV̂χi2S

ðΔĤÞ2S
hĤi2S

⟶

χ→�∞

4þ 4csch22rsec
2
ψ ;

ðΔðV̂χĤÞÞ2S
hV̂χi2ShĤi2S

þ ω2
hĈχi2S

hVχi2ShĤi2S
⟶

χ→�∞

4þ 4csch22rsec
2
ψ ;

showing confirmation of the above statements for both classes of states.

In a similar fashion, one can also deal with the more general Gaussian states (47). As with coherent states, one finds that

Gaussian states do not minimize the RS principle at any χ. For χ ¼ 0, one can quickly read off from the results in Sec. IV

that the right-hand side and the left-hand side of the inequality do not match, namely

FIG. 2. Left-hand side (LHS) and right-hand side (RHS) of the RS inequality [Eq. (24)] for coherent (α ¼ 1) and squeezed (z ¼ 1)

states, setting v ¼ 1. The first two panels show that coherent states do not saturate the inequality at early or late times; the last panel

shows that squeezed states saturate Eq. (24) at all times.
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ðΔV̂Þ2GðΔĤÞ2G ¼ v2ω2

32

�

4jαj2Bðcosh2r þ Fþsinh2rÞ þ B2cosh4r − 1
��

8jαj2Bðcosh2r þ F−sinh2rÞ

þ B2
�

2sinh22rcos2ψ þ cosh4r þ 1
�

þ 2
�

;

ðΔðV̂ ĤÞÞ2G þ ω2hĈi2G ¼ v2ω2

16

�

B2
�

4jαj2ðcosh2rcos2ϑ þ sinh2rcosψ Þ þ Bsinh4rcosψ
�

2 þ 4ð2jαj2sin2ϑ þ Bsinh2rsinψÞ2
�

;

where B ¼ cothβ=2 and F� ¼ cos2ϑ cosψ � sin2ϑ sinψ . As with any other states, one can also use the time-dependent

expressions (25) and (26) to compute the behavior of the uncertainty principle under time evolution. Even though such

results can be calculated analytically, we do not report the (lengthy) Gaussian state expressions because they are not

insightful; we refer the reader to Fig. 3 instead. On the other hand, we show explicitly that the inequality is not saturated for

χ → �∞. Using again the convenient large-volume limits (27) and (28), one can compare the product of the (late-time)

volume and Hamiltonian relative uncertainties

ðΔV̂χÞ2G
hV̂χi2G

⟶

χ→�∞

2 −
8jαj4ðsin2ϑ � 1Þ2

½2jαj2ðsin2ϑ � 1Þ � Bðcosh2r � sinh2rsinψÞ�2
;

ðΔĤÞ2G
hĤi2G

¼ 8Bjαj2ðcosh2r þ F−sinh2rÞ þ B2ð2sinh22rcos2ψ þ cosh4r þ 1Þ þ 2

2ð2jαj2cos2ϑ þ Bsinh2rcosψÞ2

with

ðΔðV̂χĤÞÞ2G
hV̂χi2GhĤi2G

þ ω2
hĈχi2G

hVχi2GhĤi2G
⟶

χ→�∞ 4

ð2jαj2cos2ϑ þ Bsinh2rcosψÞ2

þ B2½4jαj2ðsinh2rðcosψ � sin2ϑþψÞ þ cosh2rcos2ϑÞ þ Bðsinh4rcosψ � sinh22rsin2ψÞ�2
ð2jαj2cos2ϑ þ Bsinh2rcosψÞ2½2jαj2ðsin2ϑ � 1Þ þ Bðsinh2rsinψ � cosh2rÞ�2

to see that the saturation of the RS relation does not occur at

late times. Since the complexity of Gaussian states makes

these expressions somewhat intransparent, we report in

Fig. 3 a graphical demonstration of the exact time evolution

for some state parameters.

APPENDIX B: GAUSSIAN STATES AND

THERMOFIELD FORMALISM

In this appendix, we present the features of Gaussian

states that lead to the definition in Eq. (47), as well as the

tools used to obtain all the results of Sec. IV. We start by

means of a pivotal result, originally investigated in [40] (see

also [37,38] for modern perspectives), which states that

when dealing with second-order bosonic Hamiltonians, the

most general Gaussian state can always be expressed as

three types of unitary operators acting on the thermal state

ρ̂β [Eq. (48)] (or on the Fock vacuum j0i for pure Gaussian
states). These so-called “fundamental Gaussian unitaries”

are the squeezing, displacement, and rotation operators

ŜðzÞ ¼ e
1
2
ðzâ†2−z̄â2Þ;

D̂ðαÞ ¼ eαâ
†−ᾱ â;

R̂ðϕÞ ¼ eiϕâ
†â; ðB1Þ

where ðz; αÞ∈C, z ¼ reiψ and ðr;ψ ;ϕÞ∈R.

FIG. 3. Left-hand side (LHS) and right-hand side (RHS) of the RS principle [Eq. (24)] for Gaussian states, setting v ¼ 1. The

inequality is not saturated at early or late times, regardless of the choice of parameters.
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To prove that a generic Gaussian state can be taken to be

of the form (47), one can first notice that the operators

in (B1) satisfy

R̂ðϕ1ÞR̂ðϕ2Þ ¼ R̂ðϕ1 þ ϕ2Þ;
D̂ðα1ÞD̂ðα2Þ ¼ e

1
2
ðα2α1−α2α1ÞD̂ðα1 þ α2Þ;

Ŝðz1ÞŜðz2Þ ¼ eiϕ=2Ŝðz3ÞR̂ðϕÞ; ðB2Þ

where, defining ta ¼ tanhðraÞ expðiψaÞ, ϕ and z3 are

determined by eiϕ ¼ 1þt1t2
j1þt1t2j

and t3 ¼ t1þt2
1þt1t2

. Moreover,

one finds that operators of different types “compose in a

closed way”—namely,

Ŝ†ðzÞD̂ðαÞŜðzÞ ¼ D̂ðα coshr −ᾱeiψ sinhrÞ; ðB3Þ

R̂†ðϕÞŜðzÞR̂ðϕÞ ¼ Ŝðe−2iϕzÞ; ðB4Þ

R̂†ðϕÞD̂ðαÞR̂ðϕÞ ¼ D̂ðe−iϕαÞ: ðB5Þ

Since the state parameters are arbitrary, properties (B2)–(B5)

show that one can define a Gaussian state by acting on ρ̂β
with any number of the operators in (B1), in any order.

Finally, we can see that it is no loss of generality to define

Gaussian states without using the rotation operator.

Using (B4) and (B5), starting from an arbitrary definition

of Gaussian states, we could move the rotation operator

until it acts on ρ̂β (or on j0i in the case of zero temperature).

These operations only change the free parameters z and α,

which were arbitrary to being with, by a phase. But R̂ðϕÞ
leaves both ρ̂β and j0i invariant, and hence has no effect

whatsoever.

Central to the computation of expectation values with

(both pure and mixed) Gaussian states is the action of the

displacement operator and squeezing operator on â and â†:

Ŝ†ðzÞâ ŜðzÞ ¼ coshrâþ eiψsinhrâ
†;

Ŝ†ðzÞâ†ŜðzÞ ¼ coshrâ
† þ e−iψ sinhrâ; ðB6Þ

D̂†ðαÞâ D̂ðαÞ ¼ âþ α;

D̂†ðαÞâ†D̂ðαÞ ¼ â† þ ᾱ: ðB7Þ

From these, one can see that expressions of the form

Ŝ†ðzÞD̂†ðαÞfðâ; â†ÞD̂ðαÞŜðzÞ are in general simpler than

D̂†ðαÞŜ†ðzÞfðâ; â†ÞŜðzÞD̂ðαÞ for any function f of the

ladder operators. This is why, for instance, displaced

squeezed states jα; zi ¼ D̂ðαÞŜðzÞj0i are usually adopted

as pure Gaussian states instead of squeezed coherent states

jz; αi ¼ ŜðzÞD̂ðαÞj0i [the same applies to our general

definition (47)]; the property (B3) effectively allows us

to choose the most convenient ordering.

While by use of (B6) and (B7) one can obtain all the

expressions of Sec. IV using the density matrix ρ̂G (47) and

the standard techniques for calculating traces, we outline

here the thermofield formalism as a very useful tool to

extract the same results (in particular, if one wishes to use a

computational software, such as Mathematica). This also

allows us to link the present paper with the work of [12],

where such a formalism was adopted to introduce thermal

effects in GFT.

Thermofield dynamics were introduced in [48] (see [49]

for a recent detailed treatment) as a formalism to link

ensemble averages of statistical mechanics to expectation

values computed with a temperature-dependent vacuum

state, dubbed thermal vacuum and denoted j0βi. In a nut-

shell, such a framework establishes a correspondence

between a density matrix, which in our case is of thermal

type ρ̂β [Eq. (48)], and the pure vector state j0βi, such that

tr
�

ρ̂βÔ
�

¼ h0βjÔj0βi: ðB8Þ

In [48], it is shown that one can define a thermal vacuum

satisfying (B8) only by enlarging the conventional Fock

space. Specifically, one needs to double it by adding a

fictitious system (denoted with a tilde) identical to the one

under investigation. For simple theories such as our single-

mode GFT cosmological models, this means introducing a

new pair of bosonic ladder operators ( ˆ̃a, ˆ̃a†) and construct-

ing a second Fock space from a “tilde vacuum” j0̃i in the

standard way, with

�

ˆ̃a; ˆ̃a†
�

¼ 1; ˆ̃aj0̃i ¼ 0: ðB9Þ

The tilde operators commute with the nontilde operators,

as they live in distinct spaces. The next step in the thermo-

field formalism is to define a “product vacuum” in the

doublet Hilbert space as a zero-temperature ground state,

from which one can construct product states in the usual

manner:

j0; 0̃i≡ j0i ⊗ j0̃i;
âj0; 0̃i ¼ ˆ̃aj0; 0̃i ¼ 0;

jn; m̃i ¼ ðâ†Þnð ˆ̃a†Þm
ffiffiffiffiffi

n!
p ffiffiffiffiffiffi

m!
p j0; 0̃i: ðB10Þ

Finally, the correspondence with thermal states is estab-

lished by introducing temperature through a Bogoliubov

transformation that mixes the real and fictitious systems:

j0βi ¼ T̂ðθβÞj0; 0̃i; T̂ðθβÞ ¼ eθβðâ
† ˆ̃a†−â ˆ̃aÞ: ðB11Þ

The so-called thermalizing operator T̂ðθβÞ is a two-mode

squeezing operator, and the real parameter θβ encodes

temperature in a way that will enable us to verify (B8). One
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can easily check that the transformed, now temperature-

dependent, ladder operators

âβ ¼ T̂ðθβÞâT̂†ðθβÞ ¼ coshθβ â − sinhθβ
ˆ̃a†;

˜̂aβ ¼ T̂ðθβÞ ˜̂aT̂†ðθβÞ ¼ coshθβ
ˆ̃a − sinhθβ â

† ðB12Þ

indeed annihilate the state (B11):

âβj0βi ¼ ˆ̃aβj0βi ¼ 0: ðB13Þ

The operators (B12) and their adjoints still satisfy the

bosonic algebra, because Bogoliubov transformations are

canonical. Therefore, one can construct a Fock space with

respect to the β-dependent operators, where general states

read

jn; m̃; βi ¼ T̂ðθβÞjn; m̃i ¼
ðâ†βÞnð ˆ̃a†βÞm
ffiffiffiffiffi

n!
p ffiffiffiffiffiffi

m!
p j0βi: ðB14Þ

The association of the thermal vacuum j0βi with a

density matrix ρ̂β as given in (48) is obtained by determin-

ing θβ as a function of β. This is done by imposing the

condition (B8) for the number operator so that, thanks to

(50), one has

1

eβ − 1
¼ trðρ̂βâ†âÞ ¼ h0βjâ†âj0βi ¼ sinh2θβ ; ðB15Þ

where the right-hand side is computed using the thermal

vacuum (B11). The fictitious system is understood as

unphysical and is only introduced as a useful tool. We

are not interested in expectation values of tilde operators;

this helps to define a simple thermofield counterpart of

Gaussian states.

Starting from the thermal vacuum j0βi, we can construct
states by analogy with (30) and (38), and hence use

displacement and squeezing operators to define general

Gaussian states in the thermofield formalism. Indeed, we

can generalize the GFT coherent thermal states of [12],

defining the thermofield analogue of ρ̂G [cf. Eq. (47)] as

jα; z; βi ¼ D̂ðαÞŜðzÞT̂ðθβÞj0; 0̃i
¼ D̂ðαÞŜðzÞj0βi; ðB16Þ

which clearly reduces to a pure Gaussian state when β → ∞

(or equivalently, θβ → 0). Since the thermalizing operator

(B11) is of squeezing type, the order in which the operators

appear in (B16) is in principle arbitrary (see above

discussion) and was chosen for convenience. There is,

however, a subtlety: while D̂ðαÞ and ŜðzÞ only act on the

nontilde sector, T̂ðθβÞ is a two-mode operator which mixes

the physical and fictitious parts. Thus, choosing T̂ðθβÞ to be
to the left of D̂ðαÞ and/or ŜðzÞ requires the introduction of

ˆ̃Dðα̃Þ and/or ˆ̃Sðz̃Þ, with α̃ ¼ ᾱ and z̃ ¼ z̄ (see [49] for

details).
9

On the other hand, if the mixing between the physical

and the fictitious sectors happens first [i.e., T̂ðθβÞ is to the

right of every other operator as in (B16)], one is free to

displace and squeeze only the nontilde component of the

state. Of course, one can also include the tilde operators
ˆ̃DðᾱÞ and ˆ̃Sðz̄Þ acting from the left in (B16) (as done in [12]

for coherent states), but this is not necessary; it would only

be relevant if one were interested in the expectation values

of tilde operators. In short, the state (B16) is the simplest

thermofield analogue of the Gaussian density matrix (47).

The explicit computational convenience of the thermo-

field formalism comes from the following transformation

rules of our GFT ladder operators:

T̂†ðθβÞâ T̂ðθβÞ ¼ coshθβ âþ sinhθβ
ˆ̃a†;

T̂†ðθβÞâ†T̂ðθβÞ ¼ coshθβ â
† þ sinhθβ

ˆ̃a; ðB17Þ

which were tacitly used to compute the right-hand side

of (B15). The transformations (B17), together with (B6)

and (B7), allow us to forget entirely about Gaussian density

matrices and taking traces. This makes calculations very

mechanical: one first simply computes expectation values

with (B16) exactly as if using pure states; then, one makes

use of the identification (B15) to map the thermofield

results to the standard (β-dependent) results of the density

matrix approach.

APPENDIX C: CONDENSATE STATES

AND PHYSICALITY CONDITIONS

In this appendix, we focus on states that have been

proposed in the algebraic approach to GFT [8–10], and we

study their properties in relation to the questions addressed

in this paper. As mentioned in Sec. V, the single-particle

condensate state ubiquitously adopted in the literature,

jσi ¼ N σ exp

	
Z

dχσðχÞφ̂†ðχÞ



j0i;

N σ ¼ exp

	

−
1

2

Z

dχjσðχÞj2



; ðC1Þ

with σðχÞ solving the classical equations of motion

[cf. Eq. (68)], is an exact solution of the constraint (66) for

a free GFT, as it is equivalent to (67). After some regulari-

zation (e.g., a cutoff in χ) is adopted to make the state well

defined, this yields compelling cosmological effective

9
One can, for example, use the state T̂ðθβÞD̂ðαÞ ˆ̃DðᾱÞ×

ŜðzÞ ˆ̃Sðz̄Þj0; 0̃i or any other alternative definition achieved by
changing the operator ordering; they will all be related to jΨG; βi
in (B16) via (B3).
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dynamics (70), as well as volume uncertainties (71) which

are well behaved if one considers smeared observables.

Next to (C1), two-particle (or dipole) condensate states

jξi ¼ N ξ exp

	

1

2

Z

dχξðχÞφ̂†ðχÞφ̂†ðχÞ



j0i;

N ξ ¼ exp

 

−

X

∞

k¼1

1

4k
δð0Þ

Z

dχjξðχÞj2k
!

ðC2Þ

were also initially proposed for GFT cosmology [10], even

though they were never used to obtain relational dynamics.

Here, we return to these states because of the connection

with squeezed states [see Sec. III B, and in particular

Eq. (46)], which makes them part of the Gaussian states

family. Indeed, assuming one can make such two-particle

states well defined, dipoles (C2) and squeezed-like states

ŜðζÞj0i [with ŜðζÞ in (73)] correspond to the same type of

states and share the same properties.

An important difference between the normalization

factor N ξ in (C2) and the one given in [10] is the appea-

rance of a Dirac delta function δð0Þ due to the commutator

(64), which does not appear for models without a matter

scalar field. A cutoff in χ, while required to make sense of

the integrals in N ξ, is not enough to make the state well

defined; some other regularization would be needed to deal

with the δð0Þ. As in Sec. III B, we will proceed to study

properties of dipole states, assuming that a way of regu-

larizing (C2) is found [and hence leaving formal δð0Þ
factors in our expressions]. We shall see that, even assum-

ing they exist, dipole states are not viable candidates as

semiclassical states for the class of GFT models discussed

in this paper, for a number of reasons.

Formally keeping divergences in all our expressions

below, one can “blindly” follow the usual strategy to derive

a cosmological scenario by focusing on the volume

operator. Computing its expectation value with respect to

(C2), one finds

hV̂ðχÞiξ ¼ v
hξjφ̂†ðχÞφ̂ðχÞjξi

hξjξi

¼ vδð0Þ jξðχÞj2
1 − jξðχÞj2 ; ðC3Þ

where again the commutator (64) gives rise to a δð0Þ. Since
the expectation value (C3) is positive by construction,

one concludes that the dipole function must satisfy the

condition

jξðχÞj < 1; ðC4Þ

similarly to what we observed in Sec. III B. Next, we shall

find that for any ξðχÞ, quantum fluctuations of these states

are never small. To see this, one first computes the volume

variance as

ðΔV̂ðχÞÞ2ξ ¼ v2
�

δð0Þhφ̂†ðχÞφ̂ðχÞiξ
þ hφ̂†2ðχÞφ̂2ðχÞiξ − hφ̂†ðχÞφ̂ðχÞi2ξ

�

¼ v2δ2ð0Þ 2jξðχÞj2
ðjξðχÞj2 − 1Þ2 ; ðC5Þ

so that the relative uncertainty reads

ðΔV̂ðχÞÞ2ξ
hV̂ðχÞi2ξ

¼ 2

jξðχÞj2 : ðC6Þ

Even though the δð0Þ distributions fortuitously cancel [as

already seen below Eq. (81)], such fluctuations can never

be made small because of the condition (C4). This means

that dipole states never become semiclassical according to

our main criteria.

One can now turn to the task of finding the form of ξðχÞ
using dynamical equations, but as anticipated for squeezed-

like states in Sec. V, this does not seem to be possible. First

of all, the dipole state (C2) is not exactly physical, since it

does not solve the constraint (66). To be precise, using the

property φ̂ðχÞjξi ¼ ξðχÞφ̂†ðχÞjξi, one can obtain from (66)

the condition

�

∂
2
χ − ω2

��

ξðχÞφ̂†ðχÞ
�

¼ 0; ðC7Þ

which cannot yield a solution for the dipole function ξðχÞ.
Equation (C7) is the analogue of (76) translated into the

notation of dipole states via (46).

One could then try to find ξðχÞ as an approximate solu-

tion from expectation values of the type (65). As already

assessed in Sec. V for more general states [cf. Eq. (77)],

the first Schwinger-Dyson equation does not help in this

respect, since dipoles have a vanishing field expectation

value. Climbing the tower of Schwinger-Dyson equations

would entail setting, e.g., Ô ¼ φ̂ in (65), which gives

ð∂2χ − ω2Þhξjφ̂ðχ0Þφ̂ðχÞjξi ¼ 0: ðC8Þ

Calculating explicitly the correlation function

hξjφ̂ðχ0Þφ̂ðχÞjξi yields

�

∂
2
χ − ω2

�

	

δðχ − χ0Þ ξðχÞ þ ξðχ0ÞjξðχÞj2
1 − jξðχ0Þj2jξðχÞj2




¼
�

∂
2
χ − ω2

�

	

δðχ − χ0Þ ξðχÞ
1 − jξðχÞj2




¼ 0; ðC9Þ

where in the last step we use the relation

δðχ − χ0Þfðχ; χ0Þ ¼ δðχ − χ0ÞfðχÞ. To show the connection

with squeezed-like states one last time, one can write the

same Schwinger-Dyson equation using the state jζi ¼
ŜðζÞj0i defined via (73), finding
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ð∂2χ − ω2Þ
	

δðχ − χ0Þ ζðχÞ
2jζðχÞj sinhð2jζðχÞjÞ




¼ 0: ðC10Þ

Unfortunately, it seems that no nontrivial solution to either

(C9) or (C10) exists. Schwinger-Dyson equations of higher

order would be even harder to solve. In short, two-particle

states such as squeezed-like states or dipoles (C2) do not

seem to be suitable candidate states for the GFT models

under investigation. Specifically, while they are clearly not

semiclassical [cf. Eq. (C6)], it is also not clear whether one

can tackle the problem of finding a condition for the

function ξðχÞ so as to extract dynamics [in the same way

that σðχÞ gave rise to (70)] in any meaningful way.

These observations are in conflict with some results of

[10], where a detailed account on dipole states can be

found. In particular, in the specific case of a GFT coupled to

a matter scalar field χ, the condition on the dipole function

is not given by the classical GFT equation of motion (63),

ð∂2χ − ω2ÞξðχÞ ¼ 0; ðC11Þ

as was claimed in [10]. Interestingly, by plugging the

solution of (C11) [i.e., ξðχÞ ¼ αeωχ þ βe−ωχ] into the

volume expectation value (C3), one finds new effective

cosmological dynamics, where the volume diverges as

hVðχÞiξ ∼ ðχ − χ0Þ−1 in a finite relational time
10

χ ¼ χ0.

In particular, assuming α and β are small [so as to satisfy

(C4)] and real for simplicity, one has the effective

Friedmann equation

	

1

hV̂ðχÞiξ
dhV̂ðχÞiξ

dχ


2

¼ 4ω2

	

C1 −
vC2

hV̂ðχÞiξ
þ C3

v
hV̂ðχÞiξ þ

C4

v2
hV̂ðχÞi2ξ




; ðC12Þ

where C1 ¼ 1–12αβ, C2 ¼ 4αβ, C3 ¼ 2–12αβ, and C4 ¼
1–4αβ. Note that the last two terms in (C12) effectively

behave like matter components with equations of state

typical of “dust” and “dark energy,” respectively. To see this

explicitly, we recall that in classical cosmology, the rela-

tional Friedmann equation for the volume as a function of χ

takes the form [13,50]

	

1

VðχÞ
dVðχÞ
dχ




2

¼
X

i

AiVðχÞ−wiþ1; ðC13Þ

where Ai are constants and i labels the different types of

perfect fluids (with equations of state pi ¼ wiρi) in the

Universe. Comparing (C12) and (C13), one can readily find

the “effective equation-of-state parameters” w3 ¼ 0 and

w4 ¼ −1. Note that a term ∼1=hV̂ðχÞi2ξ , usually character-

izing effective Friedmann equations coming from GFT, is

absent in the “dipole cosmological dynamics” [Eq. (C12)].

While this path might have some interesting implications

from a phenomenological point of view, it is not clear why

one should assume (C11) to begin with.

To shed some light on the more general question of

finding physical states, we conclude by deriving the general

solution to the constraint (66), or

ð∂2χ − ω2Þφ̂ðχÞjΦi ¼ 0: ðC14Þ

Any element jΦi of the Fock space can be written as

jΦi ¼
X

∞

n¼0

Z

dχ1…dχn
�

fnðχ1;…χnÞ

× φ̂†ðχ1Þ…φ̂†ðχnÞ
�

j0i; ðC15Þ

where the functions fn are totally symmetric under

exchange of their arguments. Substituting this form into

(C14) and using the commutator (64), it follows that we

would need

X

∞

n¼0

n

Z

dχ1…dχn−1
�

ð∂2χ − ω2Þfnðχ; χ1;…; χn−1Þ

× φ̂†ðχ1Þ…φ̂†ðχn−1Þ
�

j0i ¼ 0; ðC16Þ

which is true if and only if

Z

dχ1…dχn−1
�

ð∂2χ − ω2Þfnðχ; χ1;…; χn−1Þ

× φ̂†ðχ1Þ…φ̂†ðχn−1Þ
�

¼ 0 ∀ n: ðC17Þ

If such equations are satisfied by some fn, then the state

jΦi is physical. For example, forgetting about normaliza-

tion, the coherent state (C1) corresponds to (C15) with

fnðχ1;…; χnÞ ¼
1

n!
σðχ1Þ…σðχnÞ: ðC18Þ

The conditions (C17) for the first few n’s read

10
If ðα; βÞ∈R, one finds hVðχÞiξ ∼ vð1−4αβÞ−1=2

2ωðχ−χ0Þ , with the time of

divergence given by ωχ0 ¼ ln
�

1þ
ffiffiffiffiffiffiffiffiffiffi

1−4αβ
p
2α

�

.
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ð∂2χ − ω2ÞσðχÞ ¼ 0; n ¼ 1;
R

dχ1σðχ1Þφ̂†ðχ1Þð∂2χ − ω2ÞσðχÞ ¼ 0; n ¼ 2;
R

dχ1dχ2σðχ1Þσðχ2Þφ̂†ðχ1Þφ̂†ðχ2Þð∂2χ − ω2ÞσðχÞ ¼ 0; n ¼ 3;

..

.

ðC19Þ

Clearly, all these conditions are met if σðχÞ satisfies the

classical GFT equation of motion (63). Note that the

constants 1=n! in (C18) do not play a role in obtaining

(C19), so (C18) can straightforwardly be generalized to

fnðχ1;…; χnÞ ¼ cnσðχ1Þ…σðχnÞ, where cn’s are generic

coefficients. In other words, one can define a slightly more

general class of exact physical states,

jFσi ¼ F

	
Z

dχσðχÞφ̂†ðχÞ



j0i; ðC20Þ

where F can be any function that can be expressed in a

power series, generalizing the previously used exponential.

However, all these (physical) states are non-normalizable

regardless of F; even the simple one-particle state

, for example, would require a

cutoff as . It seems the only regular

physical state of the theory (when defined without cutoff) is

the Fock vacuum.

As a last example, we can use the general expressions in

(C17) to confirm that the two-particle condensate state (C2)

cannot be a physical state. Again forgetting about the

normalization, (C15) reduces to a dipole state by choosing

fnðχ1;…; χnÞ ¼ 0 for n ¼ 2mþ 1 and

fnðχ1;…; χnÞ ¼
1

2mm!
δðχ1 − χmþ1Þ…δðχm − χ2mÞ

× ξðχmþ1Þ…ξðχ2mÞ for n¼ 2m; ðC21Þ

where m∈N. The state would be physical if the conditions

in (C17) are satisfied. However, excluding the trivial (odd)

ones, the first few read

ð∂2χ − ω2ÞðξðχÞφ̂†ðχÞÞ ¼ 0; n ¼ 2;
R

dχ1ξðχ1Þðφ̂†ðχ1ÞÞ2ð∂2χ − ω2ÞðξðχÞφ̂†ðχÞÞ ¼ 0; n ¼ 4;
R

dχ1dχ2ξðχ1Þξðχ2Þðφ̂†ðχ1ÞÞ2ðφ̂†ðχ2ÞÞ2ð∂2χ − ω2ÞðξðχÞφ̂†ðχÞÞ ¼ 0; n ¼ 6;

..

.

ðC22Þ

which reduce to the condition (C7).

In conclusion, it seems that only states built from

iterations of the same single creation operator
R

dχσðχÞφ̂†ðχÞ, generically given by (C20) and in particular
including the coherent state (C1) or equivalently (67), are

exact solutions of (C14), and hence physical states. To the

best of our knowledge, no other (nontrivial) state can be

found such that the infinitely many conditions of (C17) are

satisfied. This question needs to be investigated more in

future work.
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