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Abstract 

Population ageing raises many fundamental questions, including how the urban environment can 

be configured to promote active ageing. The perceived element for older adults’ involvement in 

the environment differs from the average person. Despite this difference, there is little to no 

research into understanding how the perceived elements (specifically, the visuospatial 

configuration) of the environment influence older adults’ involvement—most studies focused on 

younger adults. The focus here is stress, which occurs when environmental demand exceeds a 

person’s capability. As stress impacts a person’s involvement in the environment and older adults 

are more likely to feel stress due to their decline in functional capability, it is important to 

understand how the visuospatial configuration of urban environment influence stress. Older adults 

were recruited to participate in an urban environment walk while their physiological responses 

(Photoplethysmogram) were monitored using wearable sensors. Their perceived stress responses 

were also collected. Spatial clustering and hot spot analysis were conducted to detect locations 

with clusters of physiological responses caused by spatial factors. These locations were 

subsequently labelled as stress or non-stress based on participants’ perceived stress. The perceived 

visual elements of the urban environment were extracted using isovist analysis. Principal 

component analysis, self-organising map and machine learning algorithms were used to 

understand the relationship. The results demonstrate that isovist minimum visibility, occlusivity, 

and isovist area are the most influential determinants of older adults’ physiological stress. Older 

adults prefer urban configurations where they can be seen. This study can be used to inform urban 

design and planning. 
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1. Introduction 

The age structure of today’s population shows that the world is experiencing an unparalleled 

phenomenon in terms of ageing. The share of the people in the global population aged 65 and over 

is projected to increase from 9.3% in 2020 to 16.0% in 2050. Globally, one in six people is 

expected to age 65 years by 2050 (United Nations, 2020). In view of an ageing population, 

governments worldwide have been stepping up efforts to promote active ageing. Active ageing is 

a concept developed by the World Health Organisation (WHO), which emphasises creating an 

enabling environment for older adults to continue participating in social, economic, civic 

engagement and physical activity in order to enhance their quality of life as they age (WHO, 2018; 

Torku et al., 2020). The older adult’s mobility—their ability to achieve access to their desired 

places (physical environment) and people (social environment)—is critical for such an enabling 

environment (referred to as age-friendly cities and communities) to adequately function. Mobility 

is essential to accessing commodities, using neighbourhood facilities, engaging in social, cultural, 

and physical activity; thus, fundamental to active ageing (Rantanen, 2013).  

 

Mobility limitation is not entirely due to ageing but the interaction between an individual and his 

or her environment (Webber et al., 2010; Verbrugge, 2020; WHO, 2001). Mobility limitation 

arises for an activity when there is a gap between personal capability and the activity’s demand 

(Verbrugge and Jette, 1994). The two main interventions to promote mobility is either by 
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increasing capability or reducing demand. Interventions to increase or maintain an individual’s 

capacity are made by the individual or medical professionals. Recommended options to reduce 

demand are activity accommodation, environmental modifications, psychosocial coping, and 

external support (Verbrugge and Jette, 1994; Verbrugge, 2020). This study focuses on the 

modification of the built environment to reduce environmental demand. Environmental demand is 

the collective influence of elements constituting the environment to produce expectations for 

certain human actions and reactions (Hagedorn, 2001; Lee et al., 2020). When environmental 

demand meets a person’s capability, the person can achieve successful mobility. On the other hand, 

the person experience stress and/or their mobility is limited when the environmental demand 

exceeds their capability (Mair et al., 2011; Yang and Matthews, 2010; Lawton, 1982; Webber et 

al., 2010).  

 

Stress is a type of relationship between person and environment which occurs when demands tax 

or exceed the person capability (Lazarus, 1990). When a person appraises an encounter as stressful, 

the coping process is initiated to manage the troubled person-environment relationship; these 

processes influence the person’s subsequent appraisal and reaction to such stressful encounters 

(Lazarus, 1990). Given that an individual’s functional capability increases in childhood, peaks in 

early adulthood, and eventually decline (WHO, 2007; Kalache and Kickbusch, 1997), it is more 

likely for older adults to experience stress in the urban environment than other age groups. In fact, 

recent studies have reported that the desire to reduce encounters with stressful environmental 

conditions has led to a significant reduction in mobility of older adults in the built environment 

(van Heezik et al., 2020; Portegijs et al., 2017). As a result, there has been a rapid decline in 

mobility indices, including trip frequency, trip distance, and unmet travel demands among older 
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adults (Shumway‐Cook et al., 2003; Portegijs et al., 2017). In a sense, this may indicate that the 

perceived element for older adults’ involvement in the environment might differ from that of the 

average person (Gibson, 1977; Chemero, 2003). Therefore, there is an urgent need to understand 

the influence of perceived elements of the urban environment on older adults. 

 

1.1. Visuospatial perception  

For sighted individuals, spatial information acquisition occurs largely through their sense of vision 

(Kiefer et al., 2017). The spatial properties of the environment as perceived through the eyes are 

referred to as the visuospatial properties of the environment. The visuospatial properties of the 

environment are influenced by two main elements: the surface characteristic and appearance (e.g., 

material, texture, and colour) and the configuration (e.g., arrangement and size) of the spatial forms 

(Schneider and Koenig, 2012). This study considers only the visuospatial configurations of the 

environment.  

 

In the broader environmental psychology literature, several theories have emphasised that human 

behaviour and experience are determined by the properties of the spatial form of the environment. 

For example, the prospect-refuge theory discovered by Appleton (1975) postulates that humans 

prefer a spatial configuration that affords both the ability to see (prospect) without being seen 

(refuge). “Where these conditions are present their perception is attended with pleasure; anxiety is 

set aside and relaxation is possible. Where they are absent anxiety continues and there is no 

relaxation” (Appleton, 1975, p. 71). Akin to the prospect-refuge theory is the defensible space 

theory that suggests that the environment can be configurated to influence its residents’ 

territoriality, image, milieu, and surveillance behaviours (Reynald and Elffers, 2009). The mystery 
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theory propounded that humans behavioural and emotional responses are influenced by spatial 

configurations promising new information when proceeding further into the environment (Kaplan, 

1988). The complexity concept suggests that human involvement (the concern to figure out, to 

learn, to be stimulated) in an environment is affected by the diversity or richness (how much there 

is to look at) in the environment (Kaplan, 1988; Scott, 1993). These theories have been evaluated 

on several architecture spaces (including Frank Lloyd Wright’s architecture) and urban space 

(Dawes and Ostwald, 2014; Wu et al., 2020; Franz and Wiener, 2005; Xiang et al., 2020). The 

theories collectively suggest that the human visuospatial perception of a space generated by or 

associated with a spatial configuration affects human behaviour and experience; this effect on 

humans is an important factor for creating and maintaining a liveable environment (Gehl, 2011).  

 

The human visuospatial perception of a horizontal slice through space can be measured using 

isovist analysis. It is important to mention that other methods, including the traditional self-report 

assessment, spatial cognition analysis and tests in immersive virtual and augmented reality 

environments, have been used to assess human interaction with the spatial environment (Ergan et 

al., 2019; Kiefer et al., 2017; Banaei et al., 2017; Shemesh et al., 2017). In this study, visuospatial 

perception is quantified using isovist. An isovist is a space in an environment visible to a person 

from an observation point from which various geometrical and mathematical measures are 

computed to define the person’s visuospatial perception (Benedikt, 1979; Batty, 2001). Isovist can 

be studied in both two and three dimensions (Giseop et al., 2019). This study is limited to the two-

dimensional isovist analysis. Isovist analysis is capable of describing a space “‘from inside’, from 

the point of view of individuals, as they perceive it, interact with it, and move through it” (Turner 

et al., 2001, p.103). Isovist analysis has been widely used in the fields of architecture and urban 
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planning in the study of wayfinding (Meilinger et al., 2012), visibility (Wu et al., 2020), Prospect-

Refuge Theory (Dawes and Ostwald, 2014; Ostwald and Dawes, 2013) and urban emotion (Li et 

al., 2016; Knöll et al., 2018; Xiang et al., 2020). Pertinent isovist research has shown that several 

geometrical and mathematical measures (referred to as isovist indicators): area, perimeter, 

compactness, occlusivity, jaggedness, maximum visibility, and minimum visibility (Benedikt, 

1979; Batty, 2001; Schneider and Koenig, 2012) are to some extent associated with spatial 

perceptions including those relating to elements of prospect, refuge (in the prospect-refuge theory), 

mystery (in the mystery theory), and complexity (in the complexity theory). These isovist 

indicators and the experiential properties associated with them are presented in Table 1. 

 

Isovist area represents the area of all spaces visible from a person’s observation point. Isovist 

perimeter measures the length of the edge of all space visible from an observation point. 

Compactness expresses the relationship between area and perimeter relative to a circle; it indicates 

the complexity or compactness of the field of view (Schneider and Koenig, 2012). Occlusivity 

describes the length of open edges (i.e., edges without physical boundaries such as a wall) of the 

field of view (Dawes and Ostwald, 2014). Occlusivity is small in locations with few or no views 

into other parts of the spatial configuration of the environment. For instance, an observation point 

within a completely closed, convex space has an occlusivity of 0. Jaggedness describes the 

convexity (i.e., the number of vertices and vertex density) of the field of view (Wiener and Franz, 

2004). The maximum visibility and minimum visibility refer to the length of the longest and 

shortest single view, respectfully, available at an observation point.  
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Table 1. Isovist indicators with corresponding experiential properties. 

Isovist indicator Spatial 

experience 

Spatial 

property 

References 

Isovist area Prospect Spaciousness Chun et al. (2019), Ostwald 

and Dawes (2013), Dawes and 

Ostwald (2013), Franz and 

Wiener (2005), Xiang et al. 

(2020), Reynald and Elffers 

(2009), Dawes and Ostwald 

(2014), Wu et al. (2020) 

Isovist perimeter Prospect Spaciousness 

Maximum visibility length Prospect Spaciousness 

Minimum visibility length Refuge Spaciousness 

Occlusivity Refuge Openness 

Occlusivity Mystery The promise 

of more 

information 

Dawes and Ostwald (2013), 

Benedikt (1979), Kaplan 

(1988), Xiang et al. (2020), 

Dawes and Ostwald (2014) 

Jaggedness Complexity Diversity or 

richness 

Dawes and Ostwald (2013), 

Kaplan (1988), Scott (1993), 

Franz and Wiener (2005), 

Wiener and Franz (2004), 

Xiang et al. (2020), Ma et al., 

(2020) 

Compactness Complexity Diversity or 

richness 

 

1.2. Research aim and significance 

A few studies have been conducted to understand the relationship between the visuospatial 

configuration of urban space and human physiological response (Li et al., 2016; Hijazi et al., 2016; 

Knöll et al., 2018; Ojha et al., 2019; Xiang et al., 2020). All of these studies focused on younger 

adults with an average age of about 25 years. Drawing on these findings to guide urban planning 

and design may discriminate against older adults even though they are more susceptible to stressful 

urban environment encounters. This could further hinder current efforts in creating universal 

designs and age-friendly cities and communities. 

 

In the previous studies, human physiological responses were generally categorised into positive 

and negative emotions (Li et al., 2016; Hijazi et al., 2016; Xiang et al., 2020); normal and aroused 

physiological response (Ojha et al., 2019); and not stressful and maximum stressful (Knöll et al., 
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2018). Categorising physiological responses into positive and negative emotions or normal and 

aroused physiological responses is too broad and may not provide an adequate understanding of 

the person-environment relationship. For instance, feeling excited and calm are different types of 

positive emotions, and feeling stressed and bored are different types of negative emotions (Barrett 

and Russell, 1998; Scherer, 2005); therefore, it will be difficult to understand which spatial 

configuration is eliciting a specific emotion. Knöll et al.’s (2018) study indicates that a specific 

emotion (i.e., stress) can be detected to understand the person-environment relationship. Knöll et 

al.’s (2018) approach is based on perceived stress rating (i.e., user’s rating of an urban environment 

as stressful or not). However, the perceived stress rating may not be entirely accurate in detecting 

actual environmental stress spots because of the subjectivity of individual reported perception 

(Aghaabbasi et al., 2018). As a result, perceived stress reports can be mixed up with several stress 

stimuli encountered in people’s daily trips. The main advantage of this approach is that it can be 

easily used to estimate urban stress and non-stress person-environment relationship (Rishi and 

Khuntia, 2012; Knöll et al., 2018). 

 

Physiological responses have been used to detect stress during real-world settings. For example, 

Healey and Picard (2005) detected stress during real-world driving tasks using physiological 

responses. Physiological responses combined with spatial analysis have been used to detect stress 

in ambulatory, outdoor or built environment settings (Li et al., 2016; Chrisinger and King, 2018; 

Birenboim et al., 2019; Kim et al., 2019; Lee et al., 2020; Saitis and Kalimeri, 2021). However, 

results from the physiological responses sensed in an ambulatory, outdoor or built environment 

are inconsistent. For instance, Chrisinger and King (2018) reported that physiological response 

was higher in favourable (non-stressful) environmental conditions and lower in less favourable 
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(stressful) environmental conditions. Whereas Lee et al. (2020) reported high intense physiological 

responses at built environmental conditions with barriers (stressful conditions) and low intense 

physiological responses at built environmental conditions without barriers (non-stressful 

conditions). This means that either high or low physiological responses can indicate environmental 

stress and non-stress spot. The main advantage of this approach is that the data is user-centred, 

objective and can be combined with spatial analysis to minimise the impact of random 

environmental factors on stress (Li et al., 2016; Kim et al., 2019). 

 

To understand the influence of spatial factors on stress, it is important to distinguish stressful 

person-environment interactions due to spatial factors from stressful person-environment 

interactions due to other environmental or personal factors. In this study, the authors harness the 

advantages of the perceived stress rating and the physiological responses stress detection 

(physiological-perceived stress). The aim is to (1) estimate stress and non-stress environmental 

conditions using perceived response (2) integrate physiological response with GPS data, conduct 

hot spot analysis to identify hot spots and cold spots (3) spatially match hot spots and cold spots 

to perceived response to detect stressful person-environment interactions due to spatial factors in 

order to enhance our understanding of the relationship between the visuospatial configuration of 

urban space and older adults stress response. Given the rate of population ageing and the likelihood 

of older adults encountering excessive environmental demands during their daily trips, this 

research is important to efficiently understand their relationship with the environment to inform 

urban planning and design. The research overview is presented in Fig. 1. 
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Fig. 1. Overview of research. (a) Data collection during an environmental walk. (b) Data processing, heart rate variability (HRV) 

analysis, hot spot analysis, and computing isovist indicators from different fields of view. (c) Self-organising Maps depicting the 

influence of visual perception on physiological response. (d) Adopting machine learning algorithms to identify the most influential 

isovist indicators of physiological response. The performance of the algorithms was examined using the Area under the Receiver 

Operating Characteristic (AUROC) based on 10-fold cross-validation. 
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2. Method 

2.1. Experiment design and data collection 

The field data collection was conducted in the neighbourhood of Hung Hom, Kowloon, Hong 

Kong. A total of ten older adults (Table 2) were recruited to participate in an environmental walk 

on a 570 m predefined path. The path was chosen because it captures a range of spatial 

configurations, including spacious and narrow streets, high and low-density building areas, as 

shown in Fig. 2. The path is located in an old district currently undergoing urban renewal. All 

participants achieved a score of ≥ 22 points on the Cantonese version of the Mini-Mental State 

Examination. A cut-off score of 19/20 is recommended to indicate cognitive impairment among 

Hong Kong older adults (Chiu et al., 1998; Lao et al., 2019). Only one participant (participant 7) 

used a walking stick for mobility. None of the participants has previously experienced or is 

familiarised with the path. This study should be interpreted bearing in mind that the survey is 

female-dominated, and there were no people over 76 years of age. The median age of the 

participants is 66, which is just the retirement age in many countries. The environmental walk was 

conducted in November 2019 between 10 a.m. and 4 p.m. The environment temperature ranges 

from 24°C-29°C, and the humidity ranges from 41%-55%. The participants completed and signed 

an informed consent form after obtaining written and spoken information about the experimental 

procedure. A shopping voucher of HK$100 was offered as compensation for participation. The 

predefined path and the experimental procedures were reviewed and approved by the Human 

Subjects Ethics Sub-committee of The Hong Kong Polytechnic University (Reference Number: 

HSEARS20190826002). 
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Table 2. Demographic information of participants. 

Participant Gender Age 

(years) 

Height 

(cm) 

Weight 

(kg) 

Body mass 

index (kg/m2) 

Time to walk the 

path (MM: SS) 

1 Female 65 162.0 57.0 21.7 11: 31 

2 Female 65 158.0 62.0 24.8 8: 47 

3 Male 66 160.0 71.0 27.7 9: 59 

4 Female 75 161.1 67.5 26.0 8: 55 

5 Male 68 173.0 83.0 27.7 13: 47 

6 Female 72 157.5 54.4 21.9 9: 56 

7 Female 71 152.4 60.5 26.0 15: 01 

8 Female 66 157.5 59.0 23.8 10: 57 

9 Female 66 154.9 60.0 25.0 8: 57 

10 Male 66 175.0 77.7 25.4 9: 00 

 

The environmental walk was completed in two phases. During the first phase, the participants walk 

the path in one direction (i.e., from start to finish, as shown in Fig. 2) at a self-directed pace to 

optimise their experience and enable ecological validity. While walking along the path and 

experiencing the environment, the participants’ physiological response—Photoplethysmogram 

(PPG) signal at 64 Hz—were collected using a wristband-band type sensor (Empatica E4). The 

participants also wore a belt-clip-type Global Positioning System (GPS) sensor (Qstarz BT-

Q1000XT) for geographical referencing (at 1 Hz). The participants’ environmental walk was video 

recorded. Two researchers accompanied the participants. One of the researchers was present for 

safety and health purposes. The other researcher recorded a video of the environmental walk. The 

accompanied researchers remained half a stride behind the participants to allow the participants to 

determine the pace. Upon completing the first phase of the environmental walk, the participants 

walked the same path without wearing the sensors. Instead, a survey was conducted while the 

participants were walking. Each participant was asked to identify the locations on the path where 

they experienced stressful interactions with the environment. The participants also stated the 

intensity of their perceived stress (low or high intensity). A researcher accompanied and assisted 
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the participants in documenting their responses. This approach was adopted to ensure that older 

adults accurately recall their experiences. 

 

 
 

Fig. 2. Path with perceiver’s view in the forward direction, starting from A to L. Basemap data 

copyrighted Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Air bus DS, USDA, 

USGS, AeroGRID, IGN, and the GIS User Community. Photographs by authors. 
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2.2. Detecting stress and non-stress responses to the urban environment: Perceived and 

Physiological  

The commonality in the participants perceived responses are analysed. The path is categorised into 

(1) stress (high or low) and (2) non-stress based on the commonly perceived responses. In this 

study, the commonly perceived response is considered an estimation of urban stress and non-stress 

spots. The perceived response is complemented with physiological response to minimise the 

impact of stress due to random or personal factors and maximise the impact of stress due to spatial 

factors. The following outlines the pre-processing and spatial analysis of the physiological 

response. 

 

Stress—either environmental or psychological—triggers several stress hormones that result in 

human physiological changes (Kogler et al., 2015). The general response to stress activates the 

autonomic nervous system (ANS) (Acharya et al., 2006). PPG signal contains valuable 

physiological information; it reflects a changing arterial wave during each cardiac cycle which is 

influenced by the ANS (Heo et al., 2021; Charlton et al., 2018). Aside from the informativeness 

of the PPG signal, it is collected by attaching sensors to the wrist; therefore, it is a non-invasive 

and less obstructive means of monitoring older adults’ physiological responses during a real-world 

ambulatory setting. Heart rate variability (HRV) is a reliable signal for understanding the status of 

the ANS (Acharya et al., 2006). Previous studies have used HRV metrics to distinguish between 

normal and stressed states (Kabisch et al., 2021; Birenboim et al., 2019; Healey and Picard, 2005; 

Saitis and Kalimeri, 2021). 
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Before extracting the HRV metric, the recorded video of each participant’s environmental walk 

was inspected by the authors and unintended person-environment interaction (e.g., older adults 

interaction with vehicles, people, and losing stability due to encounters with path obstructions such 

as potholes, stairs, or curbs) that could affect stress were excluded to ensure that the physiological 

response was mainly influenced by spatial factors. To extract the HRV metric, the authors 

computed the inter-beat interval (IBI) from the PPG signal. The IBI is the time interval between 

individual beats of the heart. IBI was used to estimate the instantaneous heart rate at 1 Hz using a 

proprietary algorithm (Empatica, 2020). Artefacts including missing, extra, or misaligned beats 

and ectopic beats such as premature ventricular contractions or other arrhythmias were corrected, 

and HRV analysis was conducted, respectively, from the instantaneous heart rate using a 

proprietary algorithm (Tarvainen et al., 2014). All participants physiological responses were 

baseline normalised using 10 min baseline measurements to reduce inter-individual variability.  

 

The balancing act of the sympathetic and parasympathetic components of the ANS controls the 

heart rate. The sympathetic component modulates heart rate at low frequencies ranging from 0.04 

to 0.15 Hz, and the parasympathetic component modulates heart rate at high frequencies ranging 

from 0.15 to 0.4 Hz (Acharya et al., 2006). By computing the ratio of the low-frequency heart rate 

absolute spectral power to high-frequency heart rate absolute spectral power, the authors derived 

a HRV feature representing the ratio of the sympathetic to parasympathetic (sympathovagal 

balance) influence on the heart. The absolute spectral power of the low frequency (LF) band (0.04-

0.15) and high frequency (HF) band (0.15-0.4) were calculated, and the ratio 𝐿𝐹 𝐻𝐹⁄  was derived. 

This 𝐿𝐹 𝐻𝐹⁄  ratio was used to model older adults’ physiological stress responses to urban 

environmental conditions.  
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It is known that the expected physiological effect of a stressor occurs slightly after the stimulus 

(Healey and Picard, 2005). Therefore, the authors expect that the physiological effect of a stressful 

environmental condition would occur slightly after older adults interact with the environmental 

condition. The 𝐿𝐹 𝐻𝐹⁄  metric was extracted from a 60 sec response window in order to model the 

physiological effect of the environmental conditions accurately. Previous studies have reported 

that a 60 sec window produces informative HRV metrics (Shaffer and Ginsberg, 2017). To create 

a continuous 𝐿𝐹 𝐻𝐹⁄  metric that is proportional to the participant’s physiological state throughout 

the environmental walk, the authors used the 60 sec response window, advanced by 1 sec for each 

second of the walk (to correspond to the 1 Hz GPS data) for the total duration of the environmental 

walk. 

 

A participant experiencing a high or low physiological response at a location could result from 

spatial factors (e.g., spatial configuration), temporal factors (e.g., noise level and weather) or 

individual factors (e.g., health condition and previous experience). Because the participants’ 

responses to the environment were collected on different days and different time-of-day, there was 

no direct mutual interference between them; therefore, it is assumed that their responses were 

comparatively independent. As a result, the authors employed spatial clustering analysis, 

specifically hot spot, to amplify the physiological responses induced by spatial factors while 

reducing the impact of temporal and random factors. Hot spot analysis was performed using Getis-

Ord Gi* statistics to detect locations in the study area that elicited a common physiological 

response among multiple participants. Getis-Ord Gi* statistics is a useful GIS-based tool for 

detecting statistically significant spatial clusters of high values (hot spots) and low values (cold 

spots) (Ord and Getis, 1995). Previous studies have successfully used Getis-Ord Gi* statistics to 
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conduct spatial clustering on physiological data (Li et al., 2016; Chrisinger and King, 2018). The 

Getis-Ord Gi* statistics returns a z-score and a p-value for each physiological response 

experienced on the path by each participant. The resultant z-scores and p-values show the 

statistically significant spatial clusters of all participants’ high or low physiological responses. A 

location is determined as a hot spot if the physiological response at that location is high and the 

physiological responses at the neighbouring locations are also high, and vice versa for a cold spot. 

The Getis-Ord Gi* statistics (Ord and Getis, 1995) is given as  

𝐺𝑖
∗ =  

∑ 𝑤𝑖,𝑗𝑥𝑗 − �̅� ∑ 𝑤𝑖,𝑗
𝑛
𝑗=𝑖

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖,𝑗
2 − (∑ 𝑤𝑖,𝑗

𝑛
𝑗=1 )

2𝑛
𝑗=1 ]

𝑛 − 1

,                                                                                                   (1) 

where 𝑥𝑗 is the attribute value for physiological response 𝑗, 𝑤𝑖,𝑗is the spatial weight between 

physiological response 𝑖 and 𝑗, 𝑛 is equal to the total number of physiological responses, and  

�̅� =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
,                                                                                                                                                  (2) 

𝑆 = √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (�̅�)2.                                                                                                                                 (3) 

The detected hot spots and cold spots are spatially matched with the commonly perceived stress 

and non-stress path segments. The hot spots and cold spots within perceived stress path segments 

were detected as spatial significant stress locations, and hot spots and cold spots within the 

perceived non-stress path segments were detected as spatial significant non-stress locations. 

 

 

 

2.3. Measuring visuospatial perception: Isovist analysis 
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The spatial layout of the experiment neighbourhood (Hung Hom, Kowloon, Hong Kong) was 

generated using OpenStreetMap (OpenStreetMap and Contributors, 2019), as shown in Fig. 3(a). 

The isovist was generated using DepthmapX (SpaceGroupUCL, 2019). DepthmapX has the 

following field of view options: 90°, 120°, 180°, and 360°. The combined visual field for both 

human eyes is 130-135° vertically and 200-220° horizontally (Szinte and Cavanagh, 2012; 

Dagnelie, 2011). During the environmental walk, the participants walked the path in one direction 

(i.e., from start to finish, as shown in Fig. 2); therefore, the maximum horizontal visible urban 

space to the participants is about 220°. Due to the limited field of view options available in 

DepthmapX, only the 90°, 120°, and 180° fields of view were used for the isovist analysis. Hence, 

the far peripheral vision of the human eye beyond 180° was ignored in this study. An example of 

the generated 90°, 120°, and 180° fields of view from an observation point on the path is presented 

in Fig. 3(b), Fig. 3(c), and Fig. 3(d), respectively. In order to capture a more realistic isovist, a 

view distance of 200 m was set, considering the visual acuity for an average 65-year-old. For 

instance, it would be unrealistic to assume that people have near-infinite isovists in an open space. 

Fig. 3(b) depicts a more realistic isovist with a visibility boundary from an observation point. The 

isovist within the visibility boundary represents a closed polygon from which isovist indicators: 

area, perimeter, compactness, occlusivity, jaggedness, maximum visibility, and minimum 

visibility were calculated. The isovist was generated for the entire path using the fields of view, 

the view distance, and the GPS locations as observation points. Isovist area is calculated as the 

total space bounded by the edges of the polygon, isovist perimeter is calculated as the total length 

of the edges of the polygon, isovist maximum and minimum visibility are calculated as the length 

of the longest and shortest line to the solid edge of the polygon from an observation point. The 

formulas for compactness, occlusivity, and jaggedness are 
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𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 = 1 −
2√𝜋𝑆

𝑃
,                                                                                                                     (4) 

 

𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑣𝑖𝑡𝑦 = 𝑃 − 𝑃𝑓 ,                                                                                                                                (5) 

 

𝐽𝑎𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 =
𝑃2

𝑆
,                                                                                                                                      (6) 

 

where 𝑆 is the isovist area, 𝑃 is the isovist perimeter, and, 𝑃𝑓 is the total length of the solid edges 

within the isovist area (𝑆). 
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Fig. 3. Generated spatial layout with isovist from an observation point. (a) Spatial layout of the experiment neighbourhood with 

predefined path. (b) Isovist with 90° field of view from an observation point 𝑅 with a defined boundary, 𝑀 = visibility limit of 200 m 

(equivalent to the maximum visibility length), 𝑚 = minimum visibility length. (c) Isovist with 120° field of view from an observation 

point 𝑅. (d) Isovist with 180° field of view from an observation point 𝑅. Basemap data copyrighted OpenStreetMap (and) contributors. 
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2.4. Influence of visuospatial perception on physiological response: Self-organising map 

A self-organising map (SOM) is a type of artificial neural network trained using unsupervised 

learning to visualise and explore different patterns and relationships in the data (Kohonen, 2013). 

SOM has a unique property of effectively projecting input space (high-dimensional space) into a 

low-dimensional (usually two-dimensional) regular grid such that the proximity relations are 

preserved (Vesanto and Alhoniemi, 2000). Maps that are generated using unsupervised SOM 

mainly capture the significant factors that influence the similarities in the data (e.g., clustering in 

the data). In this study, the authors are more interested in variations in factors resulting in a specific 

effect (i.e., the isovist indicators that influence physiological response). Supervised SOMs offer 

the opportunity to study the isovist indicators influencing physiological response by increasing 

their importance on the organisation of the maps (Platon et al., 2017; Wongravee et al., 2010; 

Kuzmanovski et al., 2007).  

 

The SOM architecture is described in the following. Note that three different fields of view were 

considered in this study. Therefore, a SOM of two-dimensional grid size 𝑀 × 𝑁 = 𝑈 nodes was 

generated for each field of view dataset. The input data 𝐗, to be projected on the SOM of dimension 

𝐼 × 𝐽 (which is 3283 × 7 for each field of view) and its label 𝐘 has dimensions 𝐼 × 𝐾 (where 𝐾 =

2, representing the two classes of the physiological response [stress and non-stress]). The SOM 

learning process is as follows. Given a set of samples (𝒙𝑖, 𝒚𝑖) from the dataset (𝐗, 𝐘), 𝑖 = 1, ⋯ , 𝑛, 

where 𝒙𝑖 is the input vector of the 𝑖th sample and 𝒚𝑖 is a vector corresponding to its label (recall 

that the dimension of 𝒚𝑖 is equal to the number of classes in the label, which is 2 in this study). If 

the class of 𝒙 is 𝑙, the 𝑙th component of 𝒚𝑖 is equal to 1 and the other component is equal to 0. The 

supervised SOM is able to learn a function 𝑓: 𝐗 → 𝐘 by training on an augmented vector 𝒙 =
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[𝑥𝑣, 𝑥𝑙], which is a combination of label vector 𝒙𝑙 with the input vectors 𝒙𝑣. Each node 𝑟, in the 

supervised SOM has a weight vector 𝒘𝑟 = [𝑤𝑟
𝑣, 𝑤𝑟

𝑙]. During the competitive learning process, the 

distance between 𝒙𝑖 and 𝒘𝑟 of each node is computed. The best matching unit (BMU) is 

determined by finding the node 𝑟, having the closest weight vector 𝒘𝑟, to the input vector 𝒙𝑖: 

 

𝑏 = arg min
𝑟

𝑑(𝒙𝑖, 𝒘𝑟),                                                                                                                               (7) 

 

where 𝑏 denotes the index of the BMU and 𝑑(𝒙𝑖, 𝒘𝑟) is the Tanimoto distance between 𝒙𝑖 and 𝒘𝑟 

(note that the 𝐘 is categorical, hence the reason for using Tanimoto distance measure). The BMU 

and its topological neighbours are updated as  

 

𝒘𝒓(𝑡 + 1) = 𝒘𝒓(𝑡) + 𝛼(𝑡)ℎ𝑏𝑟[𝒙𝒊 − 𝒘𝒓(𝑡)],                                                                                         (8) 

 

where 𝛼(𝑡) is the learning rate at time 𝑡—𝛼(𝑡) is a monotically decreasing function—and ℎ𝑏𝑟 is 

the neighbourhood function between BMU and the 𝑟th node at time 𝑡. The two traditional 

neighbourhood functions are the bubble function and Gaussian function. Both neighbourhood 

functions were tested. The learning process adopted in this study is based on the classical 

sequential SOM algorithm (Kohonen, 2013). The learning process is repeated until there is 

convergence in 𝐗 and 𝐘. Several SOM were trained in parallel using different hyperparameters 

settings. The optimal SOM was selected using the Area under the Receiver Operating 

Characteristic (AUROC) based on 10-fold cross-validation. The AUROC and the validation of the 

SOM are explained in the validation section. 
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2.5. Identifying the most influential isovist indicators of physiological response 

The SOM is able to provide the isovist indicator levels that are responsible for stress and non-

stress physiological responses. However, it is also important to ascertain which of the isovist 

indicator (s) have the greatest influence on older adults’ physiological responses. Hence, subsets 

of isovist indicator (s) based on their correlation and intercorrelation were generated. Subsets of 

isovist indicator (s) that are highly correlated with the physiological responses, while having low 

intercorrelation, have greater influence (Hall, 1999). A greedy forward search was performed 

through the space of the generated subsets to create a hierarchy of influential isovist indicator (s) 

subsets. A greedy forward search is an efficient method to select a choice from multiple choices 

that achieve the largest possible improvement or fitness in the value of some measure (Resende 

and Ribeiro, 2010).  

 

The hierarchy of influential subsets of isovist indicator (s) was subsequently confirmed by 

considering its ability to discriminate between stress and non-stress physiological responses when 

used to train several machine learning algorithms. Decision tree (J48), k-nearest neighbour (kNN), 

logistic regression, Naïve Bayes, and support vector machine were used because they have been 

successful used in previous studies to detect stress (Panicker and Gayathri, 2019). The performance 

of the algorithms was examined using the Area under the Receiver Operating Characteristic 

(AUROC) based on 10-fold cross-validation.  

 

2.6. Validation 

k-fold cross-validation (k = 10) was used to evaluate the performance of the SOM and the machine 

learning algorithms. Cross-validation is a resampling procedure that has been widely used in 
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machine learning to estimate the skill of a model on unseen data (Bengio and Grandvalet, 2004). 

k-fold cross-validation involves randomly splitting the original sample data into k groups of 

approximately equal size. One group out of the k groups is held out to validate the model, and the 

remaining k-1 groups are used to train the model. The training and validation are repeated k times 

to calculate the performance of the model on the validation data set. The value of k = 10 was used 

for the cross-validation; this value has been proven to produce validation results that suffer neither 

from excessively high bias nor from very high variance (James et al., 2013).  

 

The performance of the models was evaluated using the Area Under the Receiver Operating 

Characteristic (AUROC). The Receiver Operating Characteristic (ROC) curve is constructed by 

plotting the model’s true positive rate (sensitivity) against the false positive rate (1-specificity) at 

various threshold settings. AUROC is a performance metric for discrimination; it indicates a 

model’s ability to discriminate between positive and negative cases (Brown and Davis, 2006). An 

AUROC of 1.0 corresponds to a perfect performance; the lower the AUROC, the worse the 

performance. In general, AUROC above 0.5 indicates good performance, whereas AUROC below 

0.5 indicates poor performance. The model with the highest AUROC value was selected as the 

optimal model. 

 

3. Results 

3.1. Detected stress and non-stress responses to urban environment: Perceived and 

Physiological 

All participants reported their perceived stress and non-stress locations. The path was labelled 

using the commonly perceived stress and non-stress reported by the participants, as shown in Fig. 
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4(a). The proportion of the perceived stress along the path is presented in Table 3. The participants 

perceived 32.26% of the path as non-stress, 67.74% of the path as stress, 29.20% of the path as 

low stress, and 38.54% of the path as high stress. Although there is somewhat commonality in the 

participants’ perceived stress and non-stress, their responses could be a mixed up of stress due to 

spatial factors (e.g., spatial configuration), temporal factors (e.g., noise level and weather) or 

individual factors (e.g., health condition and previous experience). Therefore the perceived 

response is complemented with physiological response to minimise the impact of stress and non-

stress due to random or personal factors and maximise the impact of stress and non-stress due to 

spatial factors.  

 

Table 3. Perceived stress distribution on the path. 

Segment Total distance (m) Non-stress (m) Stress (m) Low stress (m) High stress (m) 

A 85.65 0 85.65 43.01 42.64 

B 72.60 72.60 0 0 0 

C 100.77 0 100.77 49.76 51.01 

D 15.45 0 15.45 15.45 0 

E 68.47 0 68.47 0 68.47 

F 78.48 0 78.48 57.98 20.50 

G 127.87 111 16.87 0 16.87 

H 19.88 0 19.88 0 19.88 

Total 569.17 32.26%* 67.74%* 29.20%* 38.54%* 

Note. * = Percentage of the total path; m = metre. 

 

A Wilcoxon signed-rank test was conducted to ascertain the differences in their physiological 

responses to path segments perceived as stress and non-stress. It was observed that some 

participants (e.g., participant 4) experienced a statistically significantly (p < .05) higher 

physiological response to part segments perceived as stress (median = 1.987) than part segments 

perceived non-stress (median = 1.132). Whereas other participants (e.g., participant 10) 

experienced a statistically significantly (p < .05) lower physiological response to part segments 
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perceived as stress (median = 1.487) than part segments perceived non-stress (median = 1.929). 

Akin to previous studies (Chrisinger and King, 2018; Birenboim et al., 2019; Lee et al., 2020; 

Saitis and Kalimeri, 2021), this result shows that either high or low physiological response is 

indicative of stress and non-stress environmental condition. Hence locations on the path with 

clusters of high statistical significant physiological responses (hot spots) and clusters of low 

statistical significant physiological responses (cold spots) were determined using spatial clustering 

analysis, specifically hot spot analysis. 

 

The collective physiological responses were georeferenced to the corresponding GPS positions 

(Latitude and Longitude) for the entire path. The threshold distance for conceptualisation the 

spatial relationships determines the scale of the analysis, and influences the spatial clustering 

analysis (Mitchel, 2005). To determine the appropriate threshold distance, the authors measured 

the spatial autocorrelation for a series of distances and inspected their corresponding z-scores. A 

statistically significant high z-scores indicate the distances where spatial processes promoting 

clustering are most pronounced (Mitchel, 2005). The highest z-score (p < 0.01) was obtained at 11 

m. Using Getis-Ord Gi* statistics with the scale of analysis set to 11 m, a hot spot analysis was 

conducted to determine the specific locations on the path that stimulated a common physiological 

reaction for the participants. The hot spot analysis result is presented in Fig. 4(b). A total of 1105 

and 2178 sample points were determined as a hot spot and cold spot, respectively, at a 95% 

confidence level. In other words, these hot and cold spots were the results of older adults’ 

physiological responses to spatial factors at a 95% confidence level. The 1105 and 2178 spatial 

significant sample points corresponding to the perceived responses were used to determine the 

stress and non-stress locations on the path in order to further analyse the spatial attributes—here, 
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the visuospatial configurations—stimulating such stress and non-stress responses. The hot spots 

and cold spots within the perceived stress path segments (i.e., 2161 points of spatial significant 

stress samples) were distributed approximately across seven locations on the path (i.e., S1 to S7) 

as shown in Fig. 4(c). The hot spots and cold spots within the perceived non-stress path segments 

(i.e., 1122 points of spatial significant stress samples) were distributed approximately across six 

locations on the path (i.e., N1 to N6) as shown in Fig. 4(d). 

 

 

Fig. 4. (a) The commonly perceived stress and non-stress response by the participants. (b) Spatial 

significant clusters of high (hot spot) and low (cold spot) physiological responses of the 

participants. (c) The distribution of spatial significant stress locations on the path. S1 to S7 

correspond to spatial significant stress locations based on physiological-perceived responses. (d) 

The distribution of spatial significant non-stress locations on the path. N1 to N6 correspond to non-

stress locations based on physiological-perceived responses. 
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3.2. Influence of visuospatial perception on physiological response 

Older adults’ visuospatial perceptions (i.e., the values for all isovist indicators) were spatially 

matched with the spatial significant stress samples (2161 sample points) and non-stress samples 

(1122 sample points). A Wilcoxon signed-rank test was conducted to determine whether there is a 

significant difference in their visuospatial perceptions during stress and non-stress physiological 

states. The results indicate that all isovist indicators were statistically and significantly different 

under the two different physiological states with a 95% significance level. This is an indication 

that the isovist indicators somewhat influenced the participants’ stress and non-stress physiological 

states.  

 

Principal component analysis (PCA) was conducted on the spatially significant matched samples 

of isovist indicators and physiological responses for each field of view to determine whether the 

variation retained in the first two principal components contains relevant information about the 

samples. Before PCA was conducted, the data for each isovist indicator was mean centred and then 

divided by the standard deviation of the isovist indicator (data normalisation). This way, each 

isovist indicator has zero mean and unit standard deviation to ensure that the PCA is based on how 

much variation the isovist indicators explain to improve numerical stability. The biplots of the two 

largest principal components for 90° field of view, 120° field of view, and 180° field of view are 

shown in Fig. 5(a), Fig. 5(b), and Fig. 5(c), respectively. From the biplots, it can be observed that 

the two largest principal components (i.e., PC1 on the x-axis and PC2 on the y-axis) for all the 

fields of view explain more than 80% (i.e., the sum of PC1 and PC2) of the variability in the data. 

The biplot reveals that non-stress responses are characterised by increasing values of area, 

perimeter, occlusivity, minimum and maximum visibility, while stress is somewhat characterised 
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by increasing values of jaggedness and compactness. However, note that the PCA is only providing 

information on the global structure of the data; therefore, further data exploration was conducted 

using SOM and machine learning to understand the local structure of the data. 

 

 

Fig. 5. PCA biplot of spatially significant matched samples of isovist indicators and physiological 

responses. (a) 90° field of view. (b) 120° field of view. (c) 180° field of view. (d) PCA biplot label 

for stress and non-stress physiological responses. PC1 = principal component 1; PC2 = principal 

component 2. 
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The optimal hyperparameter settings for the SOM are reported in Table 4. Note that the isovist 

indicators were normalised. The learning process for 90° field of view, 120° field of view, and 

180° field of view dataset are shown in Fig. 6(a), Fig. 6(d), and Fig. 6(g), respectively. Fig. 6(a), 

Fig. 6(d), and Fig. 6(g) show the mean distance to the closest unit decreased during the learning 

process, stabilised at a very small value and reached a minimum plateau. A small value of mean 

distance is an indication that the weight vector of a node is similar to the input data 𝒙𝑖 (isovist 

indicator) and corresponding label 𝒚𝑖 (physiological response) represented by that node. The 

marginal improvement in the mean distance after the first 60 iterations proves the convergence of 

the SOM. Fig. 6(b), Fig. 6(e), and Fig. 6(h) present the count plot for 90°, 120°, and 180° fields of 

view, respectively. The count plot shows the number of input data points in each node. The 

neighbourhood distance plots in Fig. 6(c), Fig. 6(f), and Fig. 6(i) for 90°, 120°, and 180° fields of 

view, respectively, shows further clustering in the data. Areas of low neighbour distance (dark 

regions) indicate the group of nodes with similar properties, and the further apart nodes (light 

regions) indicate natural borders in the map. 

 

Hierarchical clustering analysis was conducted to show the clustering information in the SOM. 

The clustering shows a clear boundary of isovist indicators resulting in non-stress and stress 

physiological responses. The SOM with cluster boundaries for 90° field of view, 120° field of 

view, and 180° field of view analyses are presented in Fig. 7. The SOM shows the level of isovist 

indicators (Fig. 7[a], Fig. 7[d], and Fig. 7[g]) that influence older adults’ physiological response 

(Fig. 7[b], Fig. 7[e], and Fig. 7[h]). The cluster of participants influence by a specific isovist 

indicator (s) is shown in Fig. 7(c), Fig. 7(f), and Fig. 7(i) for 90°, 120°, and 180° fields of view, 

respectively. 
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Fig. 6. SOM architecture. 
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Table 4. Optimal hyperparameters settings for SOM and SOM validation result. 

 Field of view 

Hyperparameters 90° 120° 180° 

Grid size 3×4 3×4 3×4 

Topography Hexagonal Hexagonal Hexagonal 
User weights 0.8 0.2 0.8 

Distance weights 2.444 2.444 2.444 

Neighbourhood function Bubble Bubble Bubble 

Distance function Tanimoto Tanimoto Tanimoto 

Training length 100 100 100 

Learning rate (initial, final) 0.05, 0.01 0.05, 0.01 0.05, 0.01 

10-fold cross-validation    
   AUROC 0.960 0.931 0.937 

   Sensitivity 0.843 0.767 0.790 

   Specificity 0.929 0.939 0.934 

Note. AUROC = area under the receiver operating characteristic 

 

The SOM reveals the local structure of the data. For instance, participant 1’s experience is best 

captured by node 5, node 6, and node 9 for 90°, 120°, and 180° fields of view, respectively. 

Participant 1 experienced stress when there is a high level of maximum visibility, a medium level 

of compactness and low levels of area, minimum visibility, perimeter, occlusivity, and jaggedness 

for 90° and 180° fields of view. However, a small increase in minimum visibility and area resulted 

in a non-stress physiological response when the field of view is 120°. None of participant 8’s data 

was captured in nodes 9 and 6 (90° fields of view), implying that the levels of isovist indicators in 

these nodes have no influence on participant 8. The male participants (participants 3, 5 and 10) 

samples dominated the count in node 1 (90° fields of view), indicating that minimum visibility, 

maximum visibility, area, perimeter and occlusivity (in order of importance) influence their 

physiological response. 
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Fig. 7. Influence of isovist indicators on participants physiological stress. (a), (d), and (g) is a “fan 

diagram”, each node of the “fan diagram” consist of individual fans, which represents the 

magnitude of each input variable (i.e., the isovist indicator) in the weight vector. (b), (e), and (h) 

is read in conjunction with (a). It shows the isovist indicator levels eliciting a specific physiological 

response. (c), (f), and (i) show the participants sample data that were clustered into a specific self-

organising map (SOM) node. The SOM consist of 12 nodes. 

 



 35 

3.3. Most influential isovist indicators of physiological response  

The hierarchy of influential isovist indicator (s) subsets is provided in Fig. 8. Minimum visibility 

was the most influential under 90°, 120° and 180° fields of view. Most of the machine learning 

models achieved higher performance when only the most influential isovist indicator is used to 

discriminate between stress and non-stress physiological responses. Minimum visibility, 

occlusivity, perimeter, and isovist area (for 90° field of view); minimum visibility, occlusivity, 

isovist area, and compactness (for 120° field of view); and minimum visibility, isovist area, and 

occlusivity (for 180° field of view) appeared in most of the influential isovist indicator (s) subsets. 

The level of influence is presented alongside the dominant pattern observed in the PCA and SOM 

in Table 5. 

 

 
 

Fig. 8. Hierarchy of influential isovist indicator (s) subsets with corresponding performance when 

tested on machine learning algorithms with 10-fold cross-validation. 
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Table 5. Isovist indicators influence on physiological response  

 90° field of view 120° field of view 180° field of view 

Isovist indicator Non-stress Stress Non-stress Stress Non-stress Stress 

Area ↑4 ↓4 ↑3 ↓3 ↑2 ↓2 

Perimeter ↑3 ↓3 ↑6 ↓6 ↑4 ↓4 

Occlusivity ↑2 ↓2 ↑2 ↓2 ↑3 ↓3 

Compactness ↓6 ↑6 ↓4 ↑4 ↓4 ↑4 

Jaggedness ↓7 ↑7 ↓7 ↑7 ↓7 ↑7 

Maximum visibility ↑5 ↓5 ↑5 ↓5 ↑4 ↓4 

Minimum visibility ↑1 ↓1 ↑1 ↓1 ↑1 ↓1 

Note. ↑ = increase in isovist indicator; ↓ = decrease in isovist indicator; 1 = most influential; 7 = 

least influential. 

 

4. Discussion 

The result from the PCA, SOM, and machine learning algorithms show that minimum visibility, 

occlusivity, and isovist area have the most significant influence on physiological responses among 

older adults at individual and group levels. In the prospect-refuge theory, minimum visibility is 

the visual indicator for “refuge”. This implies that older adults’ physiological responses are 

strongly influenced in an environment with refuge value. Occlusivity is another indicator of refuge; 

occlusivity is the second most influential predictor of physiological response. However, when this 

refuge element is present, older adults displayed a preference for a high minimum visibility length 

and high occlusivity, which results in a non-stress response, while a low minimum visibility length 

and low occlusivity result in a stress response. Hong Kong has a high refuge value because its 

spatial configuration is enclosed by high-density and high-rise buildings. This explains why 

‘refuge’ emerged as the most significant element in a visuospatial configuration. For older adults 

to experience a non-stress physiological response in a high refuge value environment such as Hong 

Kong, the spatial configuration should have more open edges (increased occlusivity) and a longer 

minimum nearest distance to physical boundaries (increased minimum visibility). This finding is 

quite interesting because it does not conform to the refuge theory (enclosure evokes a sense of 
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safety) because having more open edges and visibility increases the chances of being seen by other 

people. It is plausible that these isovist indicators (i.e., minimum visibility and occlusivity) 

captured the claustrophobic element in older adults’ reaction, where a visuospatial configuration 

that is too enclosed triggers claustrophobic tendencies, causing an increase in physiological stress.  

 

While the claustrophobic tendency explains the reason for such a physiological response, there 

might actually be more to it than that. A spatial configuration with more open edges (high 

occlusivity) tends to promise more information (mystery). Older adults are even more likely to 

experience non-stress physiological responses due to an increase in mystery when the field of view 

is between 90° and 180°. Therefore, creating a visuospatial configuration with high mystery might 

as well reduce the tendency of feeling claustrophobic among older adults.  

 

Isovist area is another influential determinant of physiological response; its influence increases 

with an increasing field of view. The behavioural and experience relevance of the isovist area 

corresponds to “prospect” in the prospect-refuge theory. The perimeter and maximum visibility 

length also quantify the prospect theory. Older adults experienced a non-stress physiological 

response when the environment offers a configuration conducive to attaining a larger view, while 

a physiological stress response is experienced when the view is small. According to the prospect 

theory, being able to “fetch” information from all spaces at an observation point in a large space 

induces a sense of security. This explains why older adults experienced a non-stress physiological 

response when prospect elements (isovist area, perimeter, and maximum visibility length) 

increase. 
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Isovist area, compactness and maximum visibility became increasingly influential when the field 

of view increases. This could be because the distribution of visuospatial information increases with 

an increasing field of view. The complexity and mystery in the environment become more relevant 

when the field of view increases which can either cause humans to display preference or aversion 

depending on the varying proportions of the elements in the spatial configuration. Specifically, 

older adults experienced physiological stress when spatial complexity increases (i.e., increased 

compactness); this physiological stress due to complexity is even more likely when the field of 

view increases. A more critical look into the local structure of the data in the SOM shows that 

weakness in any specific quality (e.g., lack of prospect elements due to layout restrictions) can be 

compensated for with the strength in others (e.g., increasing the value of mystery) when designing 

spatial layouts that stimulate a specific physiological effect.  

 

4.1. Comparison with similar studies 

Previous researchers (as shown in Table 6) that have studied this topic mainly focused on younger 

adults with an average age of about 25 years. These studies were conducted in Switzerland, 

Germany and Hong Kong. Interestingly, there are some differences and commonalities between 

the impact of visuospatial configurations on younger adults and older adults.  

 

Study 1 and Study 5 finds that younger adults prefer urban spaces that are enclosed in order for 

them to feel safe. These findings on younger adults are contrary to the current finding on older 

adults; older adults feel claustrophobic (leading to physiological stress) when the urban spaces are 

too enclosed or when they are too close to a physical boundary (e.g., a wall). Older adults show a 

preference for spaces that are not too enclosed with more open edges in order for them to be seen 
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by other pedestrians. Study 3 and Study 4 reports that younger adults perceived spaces with high 

visibility and perimeter to be stressful because they can be seen from a larger area. In contrast, 

older adults experienced a non-stress physiological response when urban spaces have a larger view 

and perimeter because they are able to see all their surroundings which heighten the feeling of 

security. In summary, older adults prefer urban spaces where they can be seen, while younger 

adults prefer spaces where they cannot be seen. 

 

While Study 1 and Study 2 conclude that higher compactness causes positive emotions for younger 

adults, this current study indicates that higher compactness causes physiological stress for older 

adults. The results from Study 3 shows that younger adults are more likely to perceive an urban 

space with low complexity (measured using isovist vertices numbers) as stressful. However, Study 

5 presented that high complexity (measured using jaggedness) is related to younger adults’ 

negative emotions. In this current study, older adults felt stressed when complexity (measured 

using jaggedness) increases. 

 

While these differences are worth sharing, theoretically, it should be noted that the spatial layout, 

living arrangement, and cultural background in these countries are different, which can influence 

an individual’s response. Methodologically, all these studies, including the presented study, were 

limited to two dimensional isovist which omits other relevant spatial factors. Study 1, 2, 4 and 5 

used only physiological responses for their analysis and Study 3 used only perceived responses for 

their analysis. This study combined both perceived and physiological responses.  
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Table 6. Summary of previous studies. 

Study Background Visuospatial element Influence 

Study 1: 

Li et al. 

(2016) 

Participants’ mean age: 

25 (2.5 standard 

deviation) 

Experiment location: 

Zürich, Switzerland 

Data: Skin conductivity 

Compactness Higher compactness causes 

positive emotion 

Maximum visibility Higher visibility causes positive 

emotion 

Refuge value 

(minimum visibility 

or occlusivity) 

Enclosed urban spaces are very 

important in fostering a sense of 

security in pedestrians 

Study 2: 

Hijazi et 

al. (2016) 

Participants: Students 

and lecturers 

Experiment location: 

Zürich, Switzerland 

Data: Skin conductivity 

Occlusivity (60°) Significant for predicting 

negative emotional arousal 

Perimeter (360°) Significant for predicting 

negative emotional arousal 

Compactness (360°) Significant for predicting 

positive emotional arousal 

Perimeter (60°) Significant for predicting 

positive emotional arousal 

Occlusivity (60°) Significant for predicting 

positive emotional arousal 

Study 3: 

Knöll et 

al. (2018) 

Participants’ median 

age: 25 years (range 22 

to 35, 2.2 standard 

deviation) 

Experiment location: 

Darmstadt, Germany 

Data: Questionnaire to 

collect perceived urban 

stress 

Visibility Visibility is positively related to 

perceived urban stress 

Perimeter Perimeter is positively related to 

perceived urban stress 

Isovist vertices 

numbers (indicates 

the complexity) 

 

Isovist vertices numbers relate 

negatively to perceived urban 

stress 

Visibility and 

perimeter 

Vertices number 

Outdoor spaces visibility and 

perimeter, which describe the 

shape of space and vertices 

number, which indicates the 

complexity of a shape, are more 

important isovist characteristics 

to explain perceived urban 

stress. 

Study 4: 

Ojha et al. 

(2019) 

Participants’ mean age: 

Not provided 

Experiment location: 

Zürich, Switzerland 

Data: Skin conductivity 

Isovist area High value of isovist area 

resulted in an aroused 

physiological state 

Perimeter Data was collected, but result 

was not reported 

Compactness Data was collected, but the result 

was not reported 

Occlusivity Data was collected, but the result 

was not reported 

Isovist area (90°) Negatively related to negative 

emotion 
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Study Background Visuospatial element Influence 

Study 5: 

Xiang et 

al. (2020) 

Participants’ mean age: 

24.77 years (0.718 

standard deviation) 

Experiment location: 

Hong Kong 

Data: Skin conductivity 

Compactness Insignificant 

Isovist drift angle 

(90°) 

Negatively related to negative 

emotion 

Isovist drift 

magnitude (90°, 

120°, 180°) 

Negatively related to negative 

emotion 

Max-radial (90°, 

120°) 

Negatively related to negative 

emotion 

Occlusivity Insignificant 

Perimeter (90°, 

120°) 

Negatively related to negative 

emotion 

Jaggedness (90°, 

120°, 180°) 

Positively related to negative 

emotion 

Enclosure (refuge 

value) 

To avoid negative emotions, the 

space must be enclosed to 

guarantee a 

sense of security 

 

4.2. Limitations and future direction 

This study is not without limitations. The number of participants is relatively small, the data was 

collected on a predefined path (the path was subjectively selected), and the environmental walk 

lasted for a few days. The above limitations could affect the generalisation of the results. Limiting 

the path choice for older adults could affect how they interacted with the environment; in the real 

world, people usually have the option to decide what path to use. The above conditions were 

necessary to appropriately collect and match the visual perception data with the physiological 

response. Future data collection will be conducted in an elderly community where the paths are 

not so restricted. The collection of physiological responses (i.e., the first phase of the 

environmental walk) and perceived responses (i.e., the second phase of the environmental walk) 

were not concurrent, and post-rationalisation may have occurred. Future studies should consider 

synchronising both physiological and perceived stress data collection. For example, the 

participants can document their perceived responses with an elderly-friendly mobile application 
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while wearing a wristband-band type sensor. The physiological-perceived stress detection method 

in this study only reduced the effect of the temporal and individual factors, which means there is 

still a possibility that these factors influenced their stress and non-stress responses. Also, additional 

spatial attributes such as three-dimensional isovist, building surface characteristics and appearance 

(e.g., material, texture, and colour), and several urban metrics were not considered in the analysis 

but could influence stress responses. More complex issues such as what the participants actually 

see and whether they have any visual impairments need further deliberation to understand the 

influence of visuospatial properties on stress. It should be mention that a wearable 

electroencephalography (EEG) headset and an insole foot plantar pressure sensor were used during 

the data collection, but the results from these sensors were not informative enough, hence not 

considered in this study.  

 

Further research is being conducted to understand the influence of surface characteristics and 

appearance (e.g., material, texture, and colour) on older adults’ physiological stress. The 

generative potential of the multi-objective evolutionary algorithm will be exploited to generate 

geometrical designs with specific physiological effects that can fit into new or existing spaces in 

the urban environment. 

 

5. Conclusions 

This study aimed to understand the influence of visuospatial configurations of urban space on older 

adults’ physiological stress. Older adults’ physiological response (PPG) and perceived stress 

responses were analysed using spatial clustering hot spot analysis to detect stressful person-

environment interactions due to spatial factors. Two-dimensional isovist analysis was used to used 



 43 

quantify older adults visuospatial perception of the urban environment. The influence of urban 

visuospatial configurations on stress was established using principal component analysis, self-

organising maps and machine learning algorithms. The following conclusions were made. (1) 

Isovist minimum visibility, occlusivity, and isovist area are the most influential determinants of 

older adults’ physiological response. (2) Older adults experienced a non-stress physiological 

response when prospect elements (isovist area, perimeter, and maximum visibility length) 

increase. (3) Older adults feel stressed when the environment is too enclosed. (4) Isovist indicators 

can complement one another to achieve a specific physiological effect. (5) Older adults prefer 

urban configurations where they can be seen. Overall, the findings from this study can be used to 

inform urban design and planning. 
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