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Background: Artificial intelligence (AI) has numerous
applications in pathology, supporting diagnosis and
prognostication in cancer. However, most AI models
are trained on highly selected data, typically one tis-
sue slide per patient. In reality, especially for large
surgical resection specimens, dozens of slides can be
available for each patient. Manually sorting and
labelling whole-slide images (WSIs) is a very time-
consuming process, hindering the direct application
of AI on the collected tissue samples from large

cohorts. In this study we addressed this issue by
developing a deep-learning (DL)-based method for
automatic curation of large pathology datasets with
several slides per patient.
Methods: We collected multiple large multicentric
datasets of colorectal cancer histopathological slides
from the United Kingdom (FOXTROT, N = 21,384
slides; CR07, N = 7985 slides) and Germany (DACHS,
N = 3606 slides). These datasets contained multiple
types of tissue slides, including bowel resection
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specimens, endoscopic biopsies, lymph node resec-
tions, immunohistochemistry-stained slides, and tis-
sue microarrays. We developed, trained, and tested a
deep convolutional neural network model to predict
the type of slide from the slide overview (thumbnail)
image. The primary statistical endpoint was the
macro-averaged area under the receiver operating
curve (AUROCs) for detection of the type of slide.
Results: In the primary dataset (FOXTROT), with an
AUROC of 0.995 [95% confidence interval [CI]:
0.994–0.996] the algorithm achieved a high classifi-
cation performance and was able to accurately pre-
dict the type of slide from the thumbnail image alone.
In the two external test cohorts (CR07, DACHS)

AUROCs of 0.982 [95% CI: 0.979–0.985] and 0.875
[95% CI: 0.864–0.887] were observed, which indi-
cates the generalizability of the trained model on
unseen datasets. With a confidence threshold of 0.95,
the model reached an accuracy of 94.6% (7331 clas-
sified cases) in CR07 and 85.1% (2752 classified
cases) for the DACHS cohort.
Conclusion: Our findings show that using the low-
resolution thumbnail image is sufficient to accurately
classify the type of slide in digital pathology. This can
support researchers to make the vast resource of
existing pathology archives accessible to modern AI
models with only minimal manual annotations.

Keywords: colorectal cancer, deep learning, digital pathology, quality control

Introduction

Over the course of time, we have observed a continu-
ous increase in the amount of digital histopathology
image data that is readily available. Furthermore,
there has also been an exponential growth in the
number of new artificial intelligence (AI) approaches
using deep learning (DL) in digital histopathology of
cancer.1–4 AI has been applied to numerous tasks
based on information that can be extracted from his-
tology slides, including cancer detection,5,6 predicting
the origin in cancer of unknown primary,7 survival
prediction,8–10 genetic subtyping,4,11,12 and prediction
of treatment response.13 These methods are valuable
research tools, which are also being incorporated into
clinical routines as diagnostic algorithms approved by
regulatory entities. While a substantial number of
published studies have only relied on 100s or 1000s
of digitized whole-slide images (WSIs), there are cur-
rently large academic and commercial consortia that
aim to expedite the digitalization and accessibility of
hundreds of thousands of pathological slides.3,14

The majority of published studies were carried out
on highly selective image collections, where only one
WSI is assumed to be representative of the entire
patient case. In reality, in many cases the histopatho-
logical analysis is not limited to a single slide for a
given patient.15,16 For example, colorectal cancer
(CRC) resection specimen cases routinely comprise
over 25 slides, and this number can increase when
the tumour is large, numerous lymph nodes are iden-
tified, or immunohistochemistry (IHC) is required.17

Although crucial, these slides are usually not labelled

and it is not routinely reported which slides contain
which tissue types. As a result, dozens of unlabelled
slides are usually available for a single patient. WSIs
have been used for a multitude of research applica-
tions such as molecular subtyping,12,18–20 survival
prediction,21,22 response prediction,23 or to identify
risk factors for lymph node metastasis,24 but a man-
ual selection step by an expert pathologist is usually
required to select WSIs that contain the desired tissue
type (tumour tissue, normal tissue, lymph node tis-
sue, IHC, etc.) and are of good quality. Previous work
has shown that “search and retrieve” approaches can
be implemented by extracting visual features from
high-resolution tiles generated from WSI.25 However,
this is computationally expensive. Pathologists can
often identify the tissue slides without the aid of a
microscope, by simply observing a glass slide with the
naked eye. For instance, in CRC pathology human
experts can easily distinguish tumour slides from
lymph nodes or normal mucosa just by looking at the
glass slide without any magnification. While it has
been shown that DL models can efficiently identify tis-
sue characteristics, such as lymph nodes using low-
resolution images,26 there is still a clear need for
automated curation of large histopathological data-
sets via an algorithm that can efficiently recognize
and classify different tissue types to presort large col-
lections of WSIs for subsequent DL applications. It is
only via the availability of such systems that
advanced AI algorithms may be deployed in a fully
automatic way in routine diagnostic workflows.
Therefore, we hypothesized that DL can assist the

curation of large collections of WSI at a low
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resolution, using only the “thumbnail” images. We
developed and validated DL-based models to classify
large and unsorted collections of WSIs—in our case,
CRC cases—into tissue slide categories. We externally
validated the performance of the model in two addi-
tional CRC datasets to provide definitive evidence for
the generalizability of the model beyond the dataset it
was initially trained on. To further investigate the
performance of the model, we used relevant explain-
ability methods like gradient-weighted class activation
mapping (Grad-CAM) to gain insights into the fea-
tures and regions of the input images that the model
is relying on for its predictions. Additionally, we ana-
lysed the misclassified cases from a pathological point
of view to define limitations of the model and poten-
tial areas for improvement.

Materials and Methods

E T H I C S S T A T E M E N T

This study was carried out in accordance with the
Declaration of Helsinki. The collection of the tissue
samples for the cohorts FOXTROT-CRC and CR07-
CRC was granted by the Northern and Yorkshire
Research Ethics Committee (Jarrow, UK; Unique Ref-
erence Number: 07/MRE03/24).27,28 The analysis of
the second testing cohort DACHS-CRC (an epidemio-
logical study which is led by the German Cancer
Research Center, DKFZ, Heidelberg, Germany) was
approved by the Ethics Committee of the Medical Fac-
ulty, University of Heidelberg under 310/2001.29–31

The overall analysis was approved by the Ethics Com-
mittee of the Medical Faculty of Technical University
of Dresden (BO-EK-444102022).

P A T I E N T C O H O R T S

In this study we analyzed digital WSIs from three
large multicentric patient cohorts (Figure 1A-F). All
WSIs were stored in the SVS format. Details and clini-
copathological characteristics of all the samples are
shown in Table 1. We used the “Fluoropyrimidine,
Oxaliplatin, and Targeted Receptor pre-Operative
Therapy for colon cancer cohort” (FOXTROT,
N = 1006 patients, N = 21,384 WSIs, Figure S1)32

cohort as a training set and then used “Medical
Research Council CR07” (CR07, N = 608 patients,
N = 7985 WSIs, Figure S2)28 and “Darmkrebs: Chan-
cen der Verh€utung durch Screening” study (DACHS,
N = 2448 patients, N = 3606 WSIs, Figure S3)29

cohorts as external test sets. All three cohorts repre-
sent multicentre, large-scale clinical trials / cohort

studies. Histopathology slides for each cohort were
mostly created using routine diagnostic pipelines at
each specific trial centre. For the FOXTROT cohort,
90% of slides were created locally and 10% were cre-
ated centrally at St. James University Hospital in
Leeds, UK. For the CR07 cohort, 74% of slides were
created locally and 26% were created centrally at St.
James University Hospital in Leeds, UK. For the
DACHS cohort, all tissue was processed at the individ-
ual trial centres. For all cohorts, slides were scanned
using Leica Aperio slide scanners. Slides for FOXTROT
and CR07 were scanned at St. James University Hos-
pital in Leeds, UK. For DACHS, slides were scanned at
the Tissue Bank at the National Center for Tumour
Diseases (NCT) in Heidelberg, Germany.
From each WSI, we generated a low-resolution

thumbnail image at a fixed resolution of 32 micro-
metres per pixel using an automated script. Thumb-
nails were saved in the JPEG format. Low-resolution
thumbnail images were then resized to 224 9 224
pixels with zero padding to preserve proportions. No
other preprocessing steps were applied to the images.

C L A S S I F I C A T I O N O B J E C T I V E A N D G R O U N D T R U T H

L A B E L S

We aimed to train a DL model that is capable of clas-
sifying colorectal WSIs into seven sample categories
including (1) tumour tissue (T), (2) nontumour tissue
(NT), (3) lymph node (LN), (4) biopsy and endoscopic
resection (BE), (5) fat, (6) IHC, and (7) tissue microar-
ray (TMA) (full descriptions for each category can be
found in Table S1). All classes except IHC represented
slides stained with haematoxylin and eosin (H&E).
During annotation, we removed cases that were too
heavily artefacted or didn’t fit into any of the defined
classes. During model deployment, the class “Unde-
cided” was assigned to a WSI if the prediction score
of the classification model was below a defined confi-
dence threshold. Due to the large size of the training
cohort (FOXTROT), ground-truth labels were gener-
ated in a semisupervised way (Figure 1D). Two
observers, a trainee pathologist (K.J.H.) and J.N.K.
manually labelled a random subset (41%) of all FOX-
TROT WSIs. This subset had 8814 WSIs
(N = 5961 T, N = 1105 NT, N = 296 LN, N = 207
BE, N = 105 fat, N = 1008 IHC, N = 132 TMA). We
used this accurate and error-free annotated subset of
data to train a very simple convolutional neural net-
work (CNN). The characteristics of this model can be
found in the “Implementation and parameters” sec-
tion. We used this simple classifier to generate noisy
labels for the rest of the training cohort (59% of

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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FOXTROT). In this stage, all the noisy labels assigned
by DL were manually checked and corrected by the
two observers. As a result of this procedure, we were
able to more quickly and efficiently annotate 21,384
WSIs in the training cohort (i.e. FOXTROT). Labels
for CR07 were manually generated by a trainee
pathologist (K.J.H.) for every single image. Available
categories in the CR07 cohort are T (N = 3130

WSIs), NT (N = 397 WSIs), LN (N = 2800 WSIs), BE
(N = 268 WSIs), fat (N = 1036WSIs), and IHC
(N = 354 WSIs). Labels for DACHS were available in
the original study database, where they had been
added by pathologists of the National Center for
Tumour Diseases (NCT) biobank at the Institute of
Pathology of the University of Heidelberg, Germany.
For DACHS, only the categories T (N = 2319) and

Figure 1. Cohort description and experimental design. (A) Internal and external validation cohorts characteristics. (B) Classic training over-

view. (C) SSL training overview. (D) Workflow for semiautomatic label generation. (E) Classic training and validation experiment workflow.

(F) SSL training and validation experiment workflow. BE, biopsy & endoscopic resection; IHC, immunohistochemistry; LN, lymph node; NT,

nontumour tissue; SSL, self-supervised learning; T, tumour tissue; TMA, tissue microarray.
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NT (N = 1287) were present in the dataset. A very
important aspect of the DACHS cohort is that ~82%
of the WSIs contain very clear ink marks. Our pur-
pose in selecting this cohort was to test the sensitivity
of the model to possible artefacts on the WSIs.

E X P E R I M E N T A L D E S I G N A N D D L T E C H N I Q U E S

We employed two experimental strategies: Strategy
#1, supervised learning in which the full training
cohort was used (Figure 1E). Strategy #2, supervised
learning in which only a very small subset of labelled
data from the training cohort were used during train-
ing. For this strategy, the number of instances in the
training set was limited to 2, 4, 8, 16, 32, and 64
samples per class. For both strategies, we ran two
experiments: Experiment #1, an “internal classifica-
tion experiment” on the FOXTROT cohort only, in
which we used threefold crossvalidation to assess
within the cohort classification performance. Experi-
ment #2, for which we retrained a classifier on the
FOXTROT cohort and then externally tested the

performances in CR07 and DACHS. Finally, we
employed two different techniques for each experi-
ment: Technique #1, classical transfer learning, in
which a CNN model that was pretrained on the Ima-
geNet database was retrained on the task at hand
(Figure 1B). Technique #2, self-supervised pretrain-
ing, in which a pretrained CNN was first trained on
FOXTROT in a self-supervised way (without labels)
and later on retrained in a supervised way (with
labels) (Figure 1C,F). Altogether, two strategies for
two experiments and two techniques yielded eight
separate experimental runs.

I M P L E M E N T A T I O N A N D P A R A M E T E R S

For the noisy label generating model we trained an
ImageNet-pretrained Resnet18 network for a maxi-
mum number of 100 epochs with a batch size of
128, a learning rate of 10�4, and a weight decay of
10�4 as per the default settings obtained in previous
research projects.33 Early stopping was used with a
minimum number of epochs of 30 and a patience
value of 10.
Afterwards, for supervised training, we also trained

an ImageNet-pretrained Resnet18 network, now
using the fully curated labels, with the same parame-
ters mentioned for the noisy label generating model.
For self-supervised training we used SimCLR,34 a
method for contrastive self-supervised learning (SSL).
We trained this network for 500 epochs with a batch
size of 256, a learning rate of 10�4, and a weight
decay of 10�5. Augmentations for contrastive SSL
were applied to the images, as described previously35

(Table S2). SSL was conducted using Python’s Lightly
package to set up the SSL method, including image
augmentations, and Python’s PyTorch Lightning
package for model training. No further hyperpara-
meter tuning was performed.

S T A T I S T I C S A N D E X P L A I N A B I L I T Y

The primary endpoint was the area under the
receiver operating curve (AUROC). We assumed that
an AUROC of above 0.90 would represent a very
good classifier. Specifically, we used the macro-
averaged AUROCs, where the AUROC for each class
is calculated separately and then the average is taken
across all classes. The 95% confidence intervals (CIs)
of the AUROC values were calculated using the quan-
tiles obtained through 1000-fold bootstrapping with
resampling. We also calculated the overall accuracy
of the network with fixed classification thresholds of
0.5 and 0.95 applied to the output neurons. These

Table 1. Clinicopathological features of all cohorts

FOXTROT CR07 DACHS

Origin United
Kingdom

United
Kingdom

Southwest
Germany

Dataset type Clinical trial Clinical trial Cohort study

Trial centres 85 80 22

Number of
patients
with tissue
available (%)

1006 (95.5) 608 (45.1) 2448 (99.6)

Number of WSIs 21,384 7985 3606

WSI format SVS SVS SVS

Ground truth
labels
generated by

Partly manually,
partly

semi-automatic

Full manual
annotation

Full manual
annotation

Mean age
(years) [�SD]

63.0 [�9.7]* 65.1 [�9.2] 68.5 [�10.8]

Female, n (%) 673 (63.9)* 179 (29.4) 1012 (41.3)

Male, n (%) 380 (36.1)* 429 (70.6) 1436 (58.7)

Clinicopathological data were provided by the respective study

principal investigators.

n, number of cases; SD, standard deviation; WSI, whole slide

image.

*Age and gender data refers to the whole FOXTROT cohort. Sub-

set data were not available for this study.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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thresholds resulted in a new category for the classifi-
cation named ‘Undecided’. To provide explainability
for the model’s decisions, we applied Gradient-
weighted Class Activation Mapping (GradCAM)36 to
the images to visualize pixels that were important for
classification.

H A R D W A R E

All experiments were run on a desktop workstation
running Windows Server 2019 with 64 GB of RAM
and a Nvidia RTX A6000 graphics processing unit
(GPU).

C O D E A V A I L A B I L I T Y

All source codes and trained models for DL are open
source and available at https://github.com/
KatherLab/thumbnail-classification. A script for auto-
mated thumbnail generation is available at https://
github.com/KatherLab/preprocessing-ng.

Results

D L R E A C H E S H I G H T I S S U E C L A S S I F I C A T I O N

P E R F O R M A N C E B A S E D O N T H U M B N A I L I M A G E S

First, we assessed the predictability of tissue classes
from thumbnail images in a multiclass classification
approach. Our baseline approach, internal crossvali-
dation on the FOXTROT cohort (N = 21,384 slides),
with a standard transfer learning approach, yielded
a near-perfect AUC of 0.995 [95% CI: 0.994–0.996]
(Figure 2A and Figure 2F) and accuracy of 99.8%
and 99.9% for predefined classification thresholds of
0.5 and 0.95, respectively. The number of classified
cases—meaning cases that were classified by the
model with a prediction probability above the
chosen threshold—was 21,384 (100% of all cases)
for the 0.5 confidence threshold and 21,336
(99.78% of all cases) for the 0.95 confidence thresh-
old. Thus, most cases were still confidently classified
by the classifier, even when considerably raising the
confidence threshold for classification (Table 2,
Table S3).

D L C L A S S I F I C A T I O N S G E N E R A L I Z E W E L L T O

E X T E R N A L C O H O R T S

Next, to assess how well the model generalizes, exter-
nal validation was conducted on independent CRC
cohorts, namely, CR07 (N = 7985 slides) and DACHS
(N = 3606 slides). The model performance reached
accuracies of 91.7% (Figure 2B) and 94.6% (Figure
2C) on the CR07 cohort, and 78.0% (Figure 2D) and
85.1% (Figure 2E) on the DACHS cohort for the pre-
defined classification thresholds of 0.5 and 0.95,
respectively. Macro-averaged AUROC for the CR07
cohort was 0.982 [95% CI: 0.979–0.985] (Figure 2F)
and 0.875 [95% CI: 0.864–0.887] (Figure 2G) for
the DACHS cohort. Similar to the results obtained in
the internal crossvalidation experiment, a decrease in
the number of classified cases for CR07 was also
observed when applying the 0.95 confidence thresh-
old with 7331 (91.81%) classified cases compared to
7948 (99.54%) for the 0.5 classification threshold.
For DACHS, the number of classified cases was 2752
(85.1%) for the 0.95 classification threshold and
3560 (98.72%) for the 0.5 classification threshold.
Based on these results, the model performs well even
when deployed on datasets from different institutions.
Remarkably, model performance remained good even
on the DACHS cohort, which, as we mentioned ear-
lier, contains heavy ink marks on many of its slides,
further showing that our models are quite robust to
slide artefacts and other confounders.

D L S H O W S R O B U S T R E S U L T S W H E N T R A I N E D O N

S M A L L T R A I N I N G S U B S E T S

Furthermore, we investigated the performance of our
models on the given task when trained on a compar-
atively smaller dataset. For this, we trained a super-
vised model with small subsets of the original dataset
for training (2, 4, 8, 16, 32, and 64 samples per
class). Overall accuracy remained above 0.5, with
accuracies of 58.4% (0.5 threshold; 30.22% cases
classified) and 99.4% (0.95 threshold; 0.80% cases
classified) for internal validation on the FOXTROT
cohort, 58.2% (0.5 threshold; 28.98% cases classi-
fied) for external validation on CR07, and 58.8% (0.5

Figure 2. Performance on all datasets. Confusion matrices and receiver operating characteristic (ROC) curves. (A) Interval validation on

FOXTROT, threshold 0.5. (B) External validation on CR07, threshold 0.5. (C) External validation on CR07, threshold 0.95. (D) External vali-

dation on DACHS, threshold 0.5. (E) External validation on DACHS, threshold 0.95. (F) ROC curves for internal validation on FOXTROT. (G)

ROC curves for external validation on CR07. (H) ROC curves for external validation on DACHS. BE, biopsy & endoscopic resection; IHC,

immunohistochemistry; LN, lymph node; NT, nontumour tissue; T, tumour tissue; TMA, tissue microarray.
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threshold; 10.37% cases classified) for external valida-
tion on DACHS, even when the network was given
only two cases of each class for training (Table 3).
For few-shot experiments with these very small train-
ing datasets, the model accuracy for higher thresh-
olds, such as 0.95, fluctuated significantly, since the
number of confidently classified cases—with predic-
tion values higher than the set threshold—was very
small (one for CR07 and zero for DACHS for the
n = 2 case). However, model performance continually
improved with more training data. When trained on
the maximum number of 64 cases per class, perfor-
mance rose significantly, showing high classification
accuracies of 89.5% (96.72% classified cases) and
97.1% (57.75% classified cases) for FOXTROT 87.0%
(94.60% classified cases) and 97.2% (44.18% classi-
fied cases) for CR07. Accuracy for DACHS also
increased to 68.7% (91.18% classified cases) and
85.9% (21.27% classified cases), respectively.
Together, these data highlights how models can be
trained on relatively small amounts of data while still
retaining good classification performances, even when
working with low-resolution thumbnails.

S E L F - S U P E R V I S E D L E A R N I N G

Additionally, we explored training the model in a self-
supervised way with the aim of improving model per-
formance even further. With the inclusion of an SSL
step into our workflow, the model showed similar per-
formance to the classic approach. Overall accuracy for
testing on the complete datasets was very high, with
accuracies of 99.8% (99.99% classified cases) and

99.9% (99.78% classified cases) for FOXTROT, 91.4%
(99.70% classified cases) and 94.6% (91.98% classified
cases) for CR07, and 79.5% (98.89% classified cases)
and 85.5% (78.87% classified cases) for DACHS for
both confidence thresholds, respectively (Table 2,
Table S4). Similarly, when tested on the few-shot
learning task, performance was comparable to the clas-
sic approach, with an overall accuracy that remained
above 0.5. Furthermore, when the network was given
only two cases of each class for training on the given
classification task, we were able to observe improved
classification results when compared to the classic
approach for CR07 and DACHS, with accuracies of
64.5% (34.06% classified cases) and 100% (0.65%
classified cases) for FOXTROT, 57.6% (30.77% classi-
fied cases) and 100% (only one classified case) for
CR07, and 67.7% (24.24% classified cases) and 100%
(only one classified case) for DACHS. Once again, when
trained on 64 cases per class for the classification task,
performance rose to 86.0% (97.54% classified cases)
and 94.0% (66.89% classified cases) for FOXTROT,
83.4% (96.46% classified cases) and 92.8% (58.66%
classified cases) for CR07, and 75.7% (93.70% classi-
fied cases) and 87.8% (42.98% classified cases) for
DACHS. In general, the SSL approach showed at least
parity to the classic approach for all conducted experi-
ments. All data can be found in Table 4.

I D E N T I F I C A T I O N O F P O S S I B L E R E A S O N S F O R

M I S C L A S S I F I E D S A M P L E S

In order to gain insight into the misclassified cases,
we analysed the cases that were misclassified by our

Table 2. Strong supervision experiments using all the samples

Model
pretraining Test strategy AUROC [95% CI]

Accuracy %,
threshold 0.5

N above
Threshold

cases for 0.5
Accuracy %,
threshold 0.95

N above
Threshold

cases for 0.95 # total slides

ImageNet Cross-validation
on FOXTROT

0.995 [0.994–0.996] 99.8 21,384 99.9 21,336 21,384

External test on CR07 0.982 [0.979–0.985] 91.7 7948 94.6 7331 7985

External test on DACHS 0.875 [0.864–0.887] 78.0 3560 85.1 2752 3617

Pathology
SSL

Crossvalidation
on FOXTROT

0.999 [0.999–1.000] 99.8 21382 99.9 21,337 21,384

External test on CR07 0.982 [0.978–0.985] 91.4 7961 94.6 7345 7985

External test on DACHS 0.871 [0.860–0.883] 79.5 3566 85.5 2844 3617

For each approach—one using a standard pretrained Resnet-18 model and one using a Resnet-18 model that was pretrained on the FOX-

TROT dataset using a self-supervised learning (SSL) approach—three experiments were conducted. First internal validation on FOXTROT,

then external validation on CR07 and DACHS. AUROC and accuracy values are given for each experiment for two different confidence

thresholds, alongside the number of cases that were confidently classified by the model for each experiment.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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classic approach model when applied to the CR07
dataset (0.5 confidence threshold; 662 cases; 8.3%
misclassification rate). The most prevalent reason for
misclassification (31.47% of misclassified cases) was
the occurrence of key features of multiple classes
within the image, which makes classification into one
distinct class difficult. Most cases in this category
were slides that contained mainly adipose tissue, but
also included small lymph nodes that reasonably
could be classified as “fat” as well as “lymph node”.
Other examples included slides that contained inva-
sive tumours but also prominent lymph nodes. These
cases were then often classified as “lymph node” even
though a human pathologist would in all cases clas-
sify these slides as “tumour tissue”, since that is the
more clinically relevant class. The second most

prevalent reason was misclassification (27.08%),
which describes cases where, after a second review,
the ground truth generated by the human pathologist
was not correct. In most of these cases the model
actually classified the cases correctly, but usually
these cases also contained key features of multiple
classes, which made finding a clear ground truth diffi-
cult. Misleading features accounted for 18.31% of
misclassified cases. This category contains any slides
with tissue features that apparently were misinter-
preted by the model. For example, some cases in this
category contained mucosa-associated lymphoid tis-
sue alongside normal intestinal mucosa, which the
model apparently interpreted as an invasive tumour,
therefore labelling the case “tumour tissue”. In other
cases, tissue marking dye used to highlight resection

Table 3. Few-shot learning

Test strategy

Number of
items per
each class AUROC [95% CI]

Accuracy %,
threshold 0.5

N above-threshold
cases for 0.5

Accuracy %,
threshold 0.95

N above-threshold
cases for 0.95

Cross-validation on
FOXTROT
(number of total
slides = 21,384)

2 0.907 [0.904–0.909] 58.4 6462 99.4 172

4 0.934 [0.932–0.936] 69.8 12,388 92.9 519

8 0.978 [0.977–0.979] 84.1 16,632 99.0 1367

16 0.980 [0.979–0.981] 83.2 19,038 96.6 5612

32 0.988 [0.987–0.989] 85.9 20,343 96.4 9747

64 0.991 [0.990–0.992] 89.5 20,682 97.1 12350

External test on
CR07 (number of
total
slides = 7985)

2 0.840 [0.832–0.847] 58.2 2314 0 1

4 0.858 [0.852–0.865] 65.4 4501 75.0 48

8 0.947 [0.942–0.952] 80.8 5769 98.8 163

16 0.956 [0.951–0.960] 81.2 6828 96.4 1408

32 0.966 [0.962–0.969] 82.3 7353 96.5 2492

64 0.976 [0.972–0.979] 87.0 7554 97.2 3528

External test on
DACHS (number
of total
slides = 3617)

2 0.655 [0.641–0.669] 58.8 374 — 0

4 0.647 [0.618–0.654] 50.3 1848 100 1

8 0.689 [0.673–0.705] 65.6 2078 100 17

16 0.715 [0.699–0.732] 63.3 3070 86.0 444

32 0.803 [0.789, 0.818] 72.4 3189 89.5 550

64 0.774 [0.759, 0.790] 68.7 3288 85.9 767

Model pretrained on ImageNet. Few-shot learning experiments were conducted using two cases as a minimum and 64 cases as a maximum

number of cases for model training. First internal validation on FOXTROT, then external validation on CR07 and DACHS. AUROC and

accuracy values are given for each experiment for two different confidence thresholds, alongside the number of cases that were confidently

classified by the model for each experiment.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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margins was confused for invasive tumour growth.
Slide artefacts made up 14.98% of all misclassified
cases. These include ink markings, air bubbles, dust,
and other contaminants. Staining issues are also
included in this category. A small number of misclas-
sified cases (8.17%) was due to tissue structures the
model was not familiar with for a certain class.
Among others this includes cases where normal intes-
tinal mucosa was cut at an angle, leading to tissue
architectures that differ from the norm or tumour
cases where the tumour seemed to be surrounded by
connective tissue from all sides (Figure 3). In sum-
mary, we were able to describe five different types of
possible reasons that provide a likely explanation to
why each case was misclassified.
To further provide explanations for the model’s

decisions and also to corroborate which factors

contributed to misclassification of images, we decided
to explore visual explanations by applying Gradient-
weighted Class Activation Mapping (GradCAM) to the
images. GradCAM overlays a heatmap onto the origi-
nal image, highlighting individual pixels and regions
that were important for the model’s classification
decision. For example, size and shape appeared to be
important in both the accurate classification and mis-
classification of biopsy and lymph node images. Grad-
CAM revealed the models’ ability to detect cancer cell
invasion into subepithelial tissue as well as identify-
ing tissue regions where normal epithelium transi-
tions to invasive cancer. Additionally, GradCAM also
highlighted some of the models’ weaknesses. For
example, subtle colour deviations within the tissue
could sometimes lead to misclassification. GradCAM
was also able to visualize when the model

Table 4. Few-shot learning

Test strategy
Number of items
per each class AUROC [95% CI]

Accuracy %,
threshold 0.5

N above-threshold
cases for 0.5

Accuracy (%),
threshold 0.95

N above-threshold
cases for 0.95

Crossvalidation On
FOXTROT
(number of total
slides = 21,384)

2 0.890 [0.887, 0.892] 64.5 7284 100 138

4 0.948 [0.946, 0.949] 63.3 9698 88.2 331

8 0.971 [0.970, 0.972] 77.7 16,117 95.9 1526

16 0.982 [0.980, 0.982] 83.1 19,052 95.3 5086

32 0.969 [0.966, 0.973] 80.6 20,239 94.4 10422

64 0.991 [0.990, 0.991] 86.0 20,858 94.0 14303

External test on
CR07 (number of
total
slides = 7985)

2 0.799 [0.792, 0.806] 57.6 2457 100 1

4 0.889 [0.884, 0.894] 59.5 3408 74.3 35

8 0.943 [0.938, 0.947] 77.0 5648 95.5 290

16 0.955 [0.951, 0.959] 78.5 6835 93.5 1246

32 0.969 [0.966, 0.973] 80.6 7441 93.7 3237

64 0.975 [0.972, 0.978] 83.4 7702 92.8 4684

External test on
DACHS (number
of total
slides = 3617)

2 0.659 [0.645, 0.674] 67.7 874 100 1

4 0.718 [0.703, 0.735] 63.5 1467 100 3

8 0.728 [0.712, 0.745] 68.9 2401 94.9 39

16 0.792 [0.776, 0.807] 72.2 3066 90.7 343

32 0.865 [0.853, 0.877] 79.6 3490 94.5 1268

64 0.823 [0.810, 0.836] 75.7 3379 87.8 1550

Model pretrained using pathology SSL. Few-shot learning experiments were conducted using two cases as a minimum and 64 cases as a

maximum number of cases for model training. First internal validation on FOXTROT, then external validation on CR07 and DACHS.

AUROC and accuracy values are given for each experiment for two different confidence thresholds, alongside the number of cases that

were confidently classified by the model for each experiment.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology

10 L Hilgers et al.

 13652559, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/his.15159 by T

est, W
iley O

nline L
ibrary on [26/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



misinterpreted certain tissue features for features from
a different class (Figure 4).
In conclusion, this shows that while our models

performed very well, there are still limitations to tis-
sue classification. This is particularly true for border-
line cases, where even finding a clear ground truth
can be difficult, given that tissues are usually very
complex in their structure and often may contain
characteristics of multiple classes.

Discussion

A R O L E F O R L O W - R E S O L U T I O N “ T H U M B N A I L ”

I M A G E A N A L Y S I S I N C O M P U T A T I O N A L

P A T H O L O G Y

Computational pathology studies almost exclusively
address the classification of WSIs at high magnifica-
tion. Due to the gigapixel size of images at this

Figure 3. Misclassified cases. (A) Pie chart showing the distribution of reasons for misclassification (standard approach model deployed on

CR07. Classification threshold 0.5. Number of misclassified cases N = 662). (B) Marking dye confused for invasive tumour cells. (C) Invasive

tumour was not detected because of staining issues. (D) Large endoscopic resection tissues and prevalent invasive tumours lead to misclassifi-

cation. (E) Tissue from the same patient as in (D) but classified differently.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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magnification, complex pipelines are usually used to
tessellate a gigapixel image, run predictions on indi-
vidual tiles, and aggregate predictions, often with
multiple instance learning (MIL).3 Such approaches
have also been used for “search and retrieval” prob-
lems in computational pathology.25 However, these
intricate workflows are highly computationally
expensive, and therefore costly. Furthermore, soft-
ware pipelines should follow the principle of Occam’s
razor: they should not be unnecessarily complex if a
simple workflow is sufficient. Here, we pursued a
much simpler approach: we used low-resolution
thumbnail images of whole slides to perform the
essential classification task of tissue classification. Sur-
prisingly, even very simple approaches such as the
thumbnail-based classification with few-shot learning
with simple transfer learning yielded a near-perfect
performance. Testing in external cohorts yielded a
slightly lower performance, for which a partial rem-
edy was the use of SSL to pretrain the models. Addi-
tionally, training and testing our models on datasets
from multicentre, large-scale clinical trials, showing
good performance across all cohorts, highlights the
robustness and flexibility of our models, even when
faced with the variability of real-world data.
Thus, we show that clinically relevant image classi-

fication tasks can be efficiently solved at very low res-
olution. Our approach also has significant potential
for implementation into clinical workflows. In the
busy histopathology department, our pipeline could

be used to presort slides by clinical relevance. For
example, in resection cases with a large number of
slides, this would allow the pathologist to direct their
immediate attention to images with higher diagnostic
importance, such as tumour.

L O W - R E S O L U T I O N P R E S O R T I N G O F S L I D E S I N

L A R G E C O H O R T S

The relevance of this text revolves around the signifi-
cant role that our proposed approach could play in
enhancing complex computational pathology bio-
marker studies. Currently, tasks such as molecular
subtyping4 pose a substantial challenge, and
researchers often need to manually preprocess and
select a single tumour-bearing tissue slide for further
investigation. This process is both time-consuming
and reduces the quantity of data that can be utilized
in these studies. Our approach seeks to automate the
preselection process of tumour-bearing tissue slides,
thereby significantly expanding the pool of available
data for these studies. It serves as a supportive tool to
improve the efficiency of complex biomarker research
by automating this preliminary task. This improve-
ment becomes critically important when dealing with
large clinical trials or clinical routine cohorts, which
may contain tens of thousands, if not more, slides
that require presorting. Automating this process
paves the way for more efficient extraction of compu-
tational pathology biomarkers from large datasets,

Figure 4. GradCam examples. (A,B) Correctly classified cases in external validation on CR07. (C,D) Misclassified cases in external validation

on CR07. LN, lymph node; NT, nontumour tissue; T, tumour tissue.

� 2024 The Authors. Histopathology published by John Wiley & Sons Ltd., Histopathology
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hence strengthening the potential of biomarker-based
clinical research.

L I M I T A T I O N S

Our approach has a number of limitations. For
instance, the way we created our ground truth labels
was very simplistic. We assumed that every image
belongs to exactly one class, but some slides con-
tained two classes, such as a lymph node next to the
primary tumour tissue. In such cases, tumour was
given priority when assigning a class, as this was
deemed the more diagnostically relevant. Addition-
ally, some of this uncertainty can indeed be attributed
to the complex architecture of these tissue samples,
with a single slide of colon resection containing a
plethora of different types of tissues. Together with
the variety of tissue compositions found throughout
the slides, this presents a challenging factor that ulti-
mately makes it infeasible for some cases to be
assigned a single class label. This limitation is aggra-
vated by the fact that our models are incapable of
multilabel classification, and will always output a sin-
gle label for each slide. Furthermore, artefacts, pen
markings, and other slide alterations are technical
issues that are frequently present in these data for-
mats, potentially limiting our approach. Establishing
new practices that can improve these technical and
human inaccuracies would inherently lead to even
more robust performances of these kinds of tissue
classification models. Nonetheless, we were able to
show that, even across different cohorts, the results
remained consistent, with only a moderate reduction
in classification accuracy. To address some of these
limitations we introduced a pretraining step using
SSL. In all instances, this approach demonstrated par-
ity to the classic approach and in certain cases even
slightly improved on the performance of the classic
model. Therefore, we would generally recommend the
use of an SSL pretrained model for these kinds of clas-
sification tasks.

F U T U R E W O R K

In the present study we have demonstrated that the
curation of large datasets can be accomplished
through the utilization of thumbnail representations
of WSIs and a CNN classifier. However, it should be
noted that this approach has only been trained and
tested within the context of CRC datasets. Therefore,
future research must focus on assessing the model’s
generalizability to other types of cancers. A key direc-
tion for subsequent studies would be to validate this

model across diverse cohorts of different cancer and
tissue types. By doing so, we can confirm the applica-
bility and robustness of this model beyond CRC,
enhancing its ability to be used in various cancer
research. Additionally, iterations of this model might
be useful for identifying the most representative cases
within a cohort in order to make clinical trials more
efficient or for multilabel classification of tissue slides.
Ultimately, the objective is to evolve this model into a
universal tool that can expedite the curation of large
datasets across all cancer and tissue types. By achiev-
ing this, we can significantly accelerate the proces-
sing time, a major bottleneck in medical AI research,
and make data more readily available for the broader
research community.
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