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Design and Selection of High Entropy Alloys for
Hardmetal Matrix Applications Using a Coupled Machine
Learning and Calculation of Phase Diagrams Methodology

Joshua Berry,* Robert Snell, Magnus Anderson, Lewis R. Owen,
Olivier M. D. M. Messé, Iain Todd, and Katerina A. Christofidou*

1. Introduction

Since their introduction in 2004,[1,2] high
entropy alloys (HEAs) have come into
prominence particularly due to the oppor-
tunities that they offer for alloy design
and development, targeting previously
unexplored areas of compositional space.
Originally, HEAs were defined as a class
of alloys containing five or more elements,
in equiatomic concentrations.[1] However,
this was subsequently expanded to encom-
pass multiprincipal element alloys with
elemental concentrations in the range of
5–35 at%,[3,4] thereby increasing the poten-
tial for diverse HEA design.[5] HEAs are
often interchangeably referred to as multi-
principal element alloys, multicomponent
alloys, complex concentrated alloys, and
compositionally complex alloys.[6] For this
article, the termHEA will be used generally
to encompass all classes described above.

The popularity of HEAs in the material
science community has been rapidly
increasing over the past decade.[3,6–9]

Scientific interest in HEAs originates
from the number of possible composi-

tions[2,10,11] with the potential to tailor the mechanical, structural,
and functional properties, for example, their observed synergy of
strength and ductility.[5,12,13]However, within studies of the HEA
field exist several key biases. Prior to 2015, HEA studies focused
on the investigation of single-phase solid solution microstruc-
tures with crystallographically simple phases and exploring
microstructural evolution. This has resulted in an emphasis
on alloy families containing a limited range of 3d transition met-
als.[6,9] Co, Cr, Fe, and Ni are the most common HEA constitu-
ents, appearing in 85% of all HEA compositions published
before 2015.[8] Prioritization of single-phase solid solutions con-
trasts with conventional alloys, which typically utilize strengthen-
ing intermetallic or ceramic phases to obtain the optimal balance
of strength and damage tolerance.[7] Subsequently, an increasing
number of studies, particularly in the multiprincipal element
and complex concentrated alloy space, have targeted more
technologically relevant microstructures. (e.g., multiphase
HEAs,[14,15] with precipitation hardened microstructures,[16,17]

and eutectic compositions.[18,19] Nevertheless, around 70% of
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This study aims to utilize a combined machine learning (ML) and CALculation of

PHAse Diagrams (CALPHAD) methodology to design hardmetal matrix phases

for metal-forming applications that can serve as the basis for carbide rein-

forcement. The vast compositional space that high entropy alloys (HEAs) occupy

offers a promising avenue to satisfy the application design criteria of wear

resistance and ductility. To efficiently explore this space, random forest ML

models are constructed and trained from publicly available experimental HEA

databases to make phase constitution and hardness predictions. Interrogation of

the ML models constructed reveals accuracies >78.7% and a mean absolute

error of 66.1 HV for phase and hardness predictions respectively. Six promising

alloy compositions, extracted from the ML predictions and CALPHAD calcula-

tions, are experimentally fabricated and tested. The hardness predictions are

found to be systematically under- and overpredicted depending on the alloy

microstructure. In parallel, the phase classification models are found to lack

sensitivity toward additional intermetallic phase formation. Despite the dis-

crepancies identified between ML and experimental results, the fabricated

compositions show promise for further experimental evaluation. These

discrepancies are believed to be directly associated with the available databases

but, importantly, have highlighted several avenues for both ML and database

development.
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HEA microstructure studies investigate as-cast alloys, which do
not represent the equilibrium state and are not always indicative
of industry applications. Annealing tends to result in microstruc-
tures consisting of multiple solid solution and intermetallic
phases, even in cases where the as-cast microstructure was single
phase.[9]

In addition to these challenges and limitations, the great
opportunities offered by the emergence of HEAs are further
complicated by the lack of robust computational tools able to rap-
idly explore the compositional space for areas of interest. This in
turn offers an opportunity for the application of machine learn-
ing (ML) tools to accelerate and automate the compositional
exploration tasks. Application of ML in material science is not
a novel concept and has become accepted as a useful tool to help
automate material discovery.[20,21] Accordingly, a natural relation-
ship has emerged between ML and the HEA field. ML provides
an opportunity to explore the vast HEA compositional space,[22]

reviewing large amounts of data to discover patterns and trends,
and make predictions on unexplored HEA compositions.[23]

These predictions can be performed quickly, providing reproduc-
ible results, and aiding in alloy design and development, with the
capability for future scaling.[24]

Several studies of the application of ML to HEAs have been
published, mostly aiming at the design of new compositions
for structural applications through the determination of alloy
microstructures and properties.[23,25–27] Most studies utilize
existing ML algorithms and architectures, including support
vector machines, artificial neural networks, gradient boosting,
k-nearest neighbors, and random forest (RF).[28–30] ML can be
trained from available HEA data to make direct predictions on
the phase formation and mechanical properties of HEA compo-
sitions.[20,23] New data and features can also be directly added to
update and refit the model if they become available.[31] Despite
the apparent “black box” nature of ML algorithms, multiple tech-
niques such as permutation importance and SHapley Additive
exPlanations (SHAP) can be utilized to explain both the global
model methods and local individual predictions respectively,
as well as assist in interpretability of feature importance.[24]

Future experimental testing can then assess the alloys suitability
for application and validate the ML predictions.

Despite the distinct advantages discussed, there are drawbacks
to the application of ML in the HEA field. First, the success and
development of ML within the HEA field is intrinsically linked to
the experimental exploration of the compositional space.[20]

Hence, the investigation of HEA systems sampling a wide range
of the compositional space is needed for the generation and
growth of robust experimental HEA databases. Diverse and
expansive databases are required to effectively train the super-
vised ML algorithms, but HEA databases typically only contain
anywhere from a few hundred, to a thousand experimental data
points.[22] Hence, the amount of training data is typically insuf-
ficient for most algorithms and many HEA ML studies report
that, the unavailability of HEA data for training is a major limi-
tation of the models.[32] In addition, the data that are available are
typically imbalanced, a direct consequence of the focus on a spe-
cific family of elements. Imbalanced data can negatively impact
ML predictions by biasing models toward the majority class.
Solutions such as oversampling to increase the amounts of
the minority class or downsampling to reduce the amount of

the majority class often result in additional drawbacks, such
as reduction in the useful training dataset. The second major dif-
ficulty with the application of ML to HEAs, is the need to produce
physically meaningful descriptors to best represent the alloys.[22]

ML depends upon the mathematical representation of the mate-
rials, their features, which serve as the inputs to the algorithm.[20]

Good features should describe the alloys such that the chosen
algorithm selects the key information to make predictions from
it.[33] Additionally, ML calculations are particularly vulnerable to
overfitting. Overfitting occurs when an ML algorithm too closely
matches the training dataset and may be unable to effectively
make predictions on unseen data.[21]

A common theme that emerges from these studies to address
the lack of phase data is the use and integration with CALcula-
tion of PHAse Diagrams (CALPHAD) based techniques and
predictions.[22,31,34,35] CALPHAD offers a tool that allows the
calculations of several microstructural indicators from thermody-
namic principles as well as, in some limited cases, and with vary-
ing levels of success, the calculation of material properties such
as yield strength. These data can be combined with experimental
results to enhance the volume of data available for improved ML
implementation. Alternatively, CALPHAD outputs are often
used as input features for the ML algorithms. However, the
accuracy of CALPHAD depends strongly on the reliability of
the thermodynamic databases[36] and integrating CALPHAD data
with experimental data could bias the outcome of ML predic-
tions. CALPHAD also offers a tool primarily for the prediction
of equilibrium phases and as such, in cases where manufactur-
ing methods result in nonequilibrium structures, e.g., for coat-
ings, CALPHAD can yield unreliable data. Furthermore, the
generation of a database using the CALPHAD method is both
time consuming and computationally expensive.

To explore alternative uses of CALPHAD and ML in alloy
selection, this study aims to establish an alloy design methodol-
ogy that utilizes simple ML architectures trained on experimental
databases. CALPHAD is instead integrated as a postprocessing
tool to provide further insights into alloy phase formation,
enabling alloy downselection.

To establish this novel methodology, a case study within the
HEA field was chosen, centering on the development of hardmetal
matrix phases for metal-forming applications that could serve as
the basis for further carbide reinforcement to derive improved per-
formance. This case study emphasizes hardness for improved wear
resistance and a face-centered cubic (FCC) phase to maximize duc-
tility as body-centered cubic (BCC) phases are typically observed to
display a higher hardness,[37] but exhibit lower ductility compared
to FCC phases.[7,12,38] For the purposes of this case study, single-
phase solid solutions were deemed most beneficial to reduce the
number of interfaces present. This case study was simplified to
predictions of only phase formation and hardness to enable the
easy assesment and demonstration of ML performance.

2. Aim of Work

The aim of this work was to develop a robust methodology, pre-
sented in Figure 1, for the investigation of HEA compositional
space, for the design of structural alloys. The methodology was
applied to the design of hardmetal matrix compositions as a case
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study for the development of phase and hardness prediction
models. An RF ML architecture was trained from available exper-
imental HEA phase formation and mechanical property data to
make high-throughput predictions on the phase formation and
hardness of potentially suitable unseen HEA compositions.
Additionally, the CALPHAD method was used as a postprocess-
ing technique to interrogate the ML predictions of phase forma-
tion for the downselection of novel and potentially suitable HEA
compositions for experimental assessment. Consequently, six
alloy compositions were selected from the high-throughput anal-
ysis for experimental evaluation to assess their suitability for the
use case selected, validate the ML methodology, and explore fur-
ther modifications to enable increased complexity to be built into
the models. Albeit a derivative first step to allow the development
of algorithms and architectures, this methodology presents an
opportunity for the design and development of novel alloy com-
positions for a host of different structural and functional
applications.

3. Machine Learning

Several studies utilizing ML for the design of HEAs have been
reported in the literature and the reader is referred to the com-
prehensive reviews by Liu et al.[39,40] Arróyave[41] also provided a
detailed discussion on ML for phase prediction and stability. The
majority of early ML studies focus on the prediction of a single
property, either phase formation or hardness. For example,
Huang et al.[21] trialed three different ML models, k-nearest
neighbors, support vector machines, and a neural network to pre-
dict phase formation from a database of 401 alloy compositions.
Good performance was achieved, with the neural network pro-
ducing a prediction accuracy in excess of 80% on average.
However, the phase prediction in this study is simplified to clas-
sification into three classes consisting of solid solution, interme-
tallic, or solid solution plus intermetallic. Similarly, Kaufmann
et al.[31] applied an RF model to predict phase formation from
a database of 1798 alloy compositions. A novel model confidence

measure was applied to assess model performance, achieving

75% confidence in model predictions. But, only 134 of the data
points were experimentally determined, utilizing DFT to supple-
ment the available data with a further 1664 compositions. For

prediction of HEA hardness, Yang et al.[42] again trialed several
ML algorithms and determined support vector machines to be

the best model on their dataset of 370 data points. High model
prediction performance with a root mean square error (RMSE) of
75 and coefficient of determination of 0.94 was reported. Beniwal

et al.[43] apply an ensemble of 165 artificial neural networks to
predict hardness of HEA systems from a dataset of 218 data
points constructed by Gorsse et al.[44] Good model performance

was reported with a mean absolute error (MAE) of 82.8 HV and
the nature of model predictions was probed further, investigating
the impact of each feature on predicted hardness over continu-

ous composition variations.
In addition to the models constructed with a single target out-

put described above, many studies have begun to utilize ML to
predict multiple outputs of microstructural andmechanical prop-

erties for the design of new structural HEAs. For example,
Huang et al.[45] compared five common ML algorithms for hard-
ness and solid-solution single-phase formation, with RF produc-

ing the best performance on a dataset of 106 alloy compositions.
Good model performance was achieved and ten alloys were
experimentally fabricated to validate the model predictions.

However, this study limited the experimental search to two
HEA systems to simplify the alloy fabrication process.

Furthermore, both Jain et al.[46] and Shen et al.[47] utilize ML
to predict both phase formation and hardness. Jain et al.[46] uti-
lized two different models, an extra trees classifier and artificial

neural network, trained on 1120 and 99 data points to predict
phase formation and hardness, respectively. In contrast, Shen
et al.[47] employed an XGBoost model to predict both phase for-

mation and hardness from a dataset containing over 500 data
points. Good model performance was achieved by both with
phase prediction accuracies around 90% and higher, and

MAEs less than 35HV.

Figure 1. A schematic of the alloy design methodology used in this study, utilizing both ML and CALPHAD for compositional downselection.
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The literature outlined above indicates that successful ML
models, comprising architectures from support vector machines
to artificial neural networks, on a range of data and input fea-
tures, can be constructed to predict microstructural and mechan-
ical properties of HEAs. The purpose of the study herein was
twofold. First, to compare and evaluate two models constructed
with the same ML algorithms from two distinct experimental
HEA databases for phase prediction. Second, utilizing the same
data source and model architecture to compare phase and hard-
ness prediction models. Interpretability metrics were extracted to
understand the equivalence of feature importance between the
two models.

3.1. Database Selection

Two independent experimental HEA databases were selected to
train and test the RF model. The database produced by Gorsse
et al.[44] “Database on mechanical properties of high entropy
alloys and complex concentrated alloys,” contains experimental
data collected from studies on 370 alloys and was chosen for
its unique inclusion of mechanical property information. A cor-
rigendum was published for this database with a new dataset that
both corrects errors and includes previously omitted data.[48] The
updated dataset was used in this study. The second database, pro-
duced by Machaka et al.[49] “Machine learning-based prediction
of phases in high-entropy alloys: A data article,” was selected as at
the time of this study it was the most recently published
HEA dataset and contains data on 1360 alloys with extensive
phase formation information, albeit lacking in property data.

3.2. Data Cleaning and Processing

The database produced by Gorsse et al.[44] contained 123 compo-
sitions with missing hardness data. Following the approach by
Huang et al.[45] and Wen et al.[33] to maximize the amount of
training data available for hardness predictions, an empirical
relationship, given by Equation (1), was utilized to extrapolate
hardness values from the yield strength provided in the database,
where σy denotes the yield strength and HV denotes the

Vickers hardness. This relationship between yield strength
and hardness has been shown to be approximately obeyed by
BCC HEAs.[33,45,50] Despite application of this relationship, 28
compositions still had missing hardness data. The average of
the hardness values available in the dataset was imputed for these
compositions. The Machaka et al.[49] database contained extensive
phase formation data for every composition, but seventeen com-
positions had to be omitted from the data used to train the ML
model. Data were omitted where the compositions were outside
the compositional space considered for the case study herein.

The Gorsse database is important as it contains both mechan-
ical property data and a richer description of the constituent
phases, but contains no processing information; while the
Machaka database contains sporadic processing information,
but no mechanical property data and a more simplified descrip-
tion of the phases present. Given these limitations, in the current
study it was deemed appropriate to include all the available data.
Ideally, a subset of the data accounting for processing history
would be chosen to train the ML. However, the databases

available and used in this study are insufficiently complete to
enable such a reduction in training data. This highlights a defi-
ciency in the databases currently available. Development and
expansion of future databases should be focused on including
a more holistic processing history, enabling manufacturing to
be taken into account in the implementation of ML.

σy MPað Þ ≈
1

3
H MPað Þ ¼

9.81

3
HV Hvð Þ (1)

3.3. Machine Learning Input Features

The training of the ML models and their use in the prediction of
hardness and phase formation of new HEA compositions were
based upon the physical properties of the constituent elements of
the alloys. Properties such as atomic radii and valence electrons
and bulk elemental properties, such as melting temperature and
Young’s modulus, were used. These physical properties were
transformed into features that mathematically describe the alloy
and were thought to be relevant to phase formation and hardness
within HEAs. Feature selection is critical in ML studies in mate-
rials science to producemeaningful and interpretable predictions.
Hence, ten independent features were selected from the relevant
literature, detailed in Table 1, calculated through an assortment of
Hume–Rothery rules, Gibbs free energy rules, and valence elec-
tron criteria. These features have previously been shown to be
useful in identifying key areas of compositional space. For exam-
ple, Guo et al.[51] demonstrated that valence electron concentra-
tion effectively discriminated between FCC and BCC phase
formation within HEAs. As CALPHAD is being used as a down-
selection method, features derived from CALPHAD calculations,
commonly used in ML HEA studies, have been excluded in this
work, e.g., the solidus and liquidus temperatures of the alloys.[31]

A subset of these features was trialed in different combinations to
assess their impact on the predictive capability of the models. It
was found that utilizing the full feature space detailed in Table 1,
resulted in improved prediction accuracy, while importantly, the
correlation matrix (discussed later in Section 4) did not reveal
excessive correlations between features that may result in overfit-
ting. Consequently, in themodels trained herein, all features were
retained. In subsequent sections, the importance and correlation
between the individual features are discussed.

3.4. Machine Learning Model Selection

The critical factor in the model selection process is the availability
of data[52] and it is common practice for ML studies to compare
multiple models to find the optimal model for the available
data.[46,47] For example, Bundela and Rahul[53] investigated the
performance of a number of different ML models for the predic-
tion of mechanical properties on the same database, produced by
Gorsse et al.[44] utilized in this study. Concluding that an artificial
neural network performs well on the experimental data, but ulti-
mately finding that an XGBoost model performs best. In this
study, an RF architecture was ultimately selected because it
was found to outperform the XGBoost proposed by Bundela
and Rahul, in addition to other models, such as simple linear
regression and support vector machines, on the chosen datasets.
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This is likely caused by the different methodology of data clean-
ing and the chosen input features used in this study. Deep learn-
ing and neural networks were not selected, due to the limited
number of data available being unsuitable for training and vali-
dation of these model architectures,[52] and their increased com-
plexity compared to RF for little gain in prediction accuracy.[54]

The RF was also chosen for its ease of construction, interpretabil-
ity,[55] ability to perform both classification and regression
tasks,[56] and its previous successful application in material sci-
ence studies.[31,45,57] The capability to perform both classification
and regression tasks was crucial to both classifying phase forma-
tion of compositions and predicting alloy hardness through
regression analysis. RF combines many individual and uncorre-
lated decision trees that are constructed and run in parallel with
no interaction. Each tree generates an output for the prediction. In
regression analysis, the vote of each decision tree is averaged to
produce the final prediction of the model. In contrast, for classifi-
cation analysis, the majority vote from all the decision trees is
taken as the final output of the model.[24,58] The RF model used
in this study was created using the scikit-learn ML toolkit in
Python.[59] Fivefold shuffled cross-validation was also imple-
mented to enable optimization ofmodel hyperparameters and pro-
vide a greater insight into model performance. Optimizing model
hyperparameters to, for example, control the growth of trees in the
forest is particularly useful for small databases to minimize the
likelihood of overfitting. Additionally, a certainty metric for RF pre-
dictions, proposed by Kaufmann et al.[31] was employed to provide
further insight into model prediction confidence.

3.5. Random Forest Hyperparameters

Hyperparameters are settings that control the learning process of
the ML model during training. These parameters can be finely

tuned and optimized to improve the performance of the model.
Each type of ML algorithm has different hyperparameters that
impact the learning process in different ways. In the case of
RFs, for example, these include the number of decision trees
in the forest, how deep each tree is, and the maximum number
of features considered when performing a split inside the tree.
To determine the optimal hyperparameters, a randomized hyper-
parameter fivefold cross-validation grid search was performed
across a range of values. The algorithm selects a new combina-
tion of hyperparameter values on each iteration to construct the
RF. To evaluate the random hyperparameter search, the best
model produced by the random search was compared to the base
model to see if there was an improvement in performance. If
there was no improvement in performance the range of hyper-
parameters was adjusted and the random grid search run again.
When a satisfactory improvement in performance was found,
then these hyperparameters were implemented into the final
ML algorithm.

3.6. Model Training Process

Three individual RF models were produced and trained from the
two available databases. From the Gorsse et al.[44] database, a clas-
sification model for phase prediction and a regression model for
hardness prediction were developed, denoted model X and
model Y, respectively. From the Machaka et al.[49] database,
another classification model for phase prediction was developed,
denoted model Z. Based on the information available in both
databases, model X considers 15 different phase outcomes
whereas model Z considers 7 different phase outcomes, detailed
in Table S1, Supporting Information.[44,49] Unlike the majority of
phase prediction models presented in the literature that only con-
sider binary or tertiary classification tasks, the models trained

Table 1. A table of the features used to mathematically describe the alloy compositions, enabling the ML models to make predictions on their phase
formation and hardness.

Parameter symbola) Parameter name Equation References

δ Atomic size difference
δ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n
i¼1 ci 1�

r i
r

� �

2
q

[72,75,76]

γ Atomic packing parameter γ ¼ ωS=ωL,

ωx ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxþrð Þ2�r2

rxþrð Þ2

q

[75]

Δχ Electronegativity difference Δχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n
i¼1 ci χ i � χð Þ2

p

[77]

VEC Valence electron concentration VEC ¼
P

n
i¼1 ci VECð Þi [51,78]

e/a Number of itinerant electrons per atom e
a ¼

P

n
i¼1 ci

e
a

� �

i
[25,51,78]

ΔHmix Enthalpy of mixing ΔHmix ¼ 4
P

n
i¼1,i<j cicjΩij [79–81]

ΔSmix Entropy of mixing ΔSmix ¼ �R
P

n
i¼1 ci ln ci [7,80]

Tm Weighted melting temperature Tm ¼
P

n
i¼1 ci Tmð Þi [82]

Ω Yang parameter Ω ¼ TmSmix
jHmix j

[82]

Δε Young’s modulus asymmetry
ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n
i¼1 ci 1� Ei

E

� �

2
r

[83]

a)Quantities denoted with a bar indicate that it is the average value, while quantities with an i indicate the i’th element. c represents the atomic fraction of the element, r denotes

the atomic radii, and E represents the Youngs modulus. R is the molar gas constant. For γ, ωx denotes the solid angles around the largest and smallest atoms, represented by

subscript L and S, respectively. In ΔHmix , Ωij is the enthalpy coefficient for elements i and j, respectively.
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herein have an increased number of outcomes. It is therefore
anticipated that the classification models from this work will
result in lower prediction accuracies in comparison to binary
and tertiary classification tasks.[29,31,45,54,56,60]

Cross-validation was implemented to provide an accurate
assessment of the performance of the RF models. The data were
split into five equal and randomized folds, with each being used
once as the testing set while the others were used for training.
After cross-validation and assessments of the model’s perfor-
mance, the models were retrained using the whole database,
enabling training on the maximum amount of data available
to improve their performance. A measure of the prediction con-
fidence, developed by Kaufmann et al.[31] for RF classification
algorithms, was applied in this study. The model’s confidence
in its prediction was calculated as the ratio of the number of deci-
sion trees inside the forest that voted for the final phase predic-
tion of that composition, against the total number of trees.
Hence, the more trees that vote for a phase, the more confident
the model is in its prediction of that phase. This confidence mea-
sure was not applied to the hardness prediction model Y, as it is
not suitable for an RF regression model. Instead, the coefficients

of determination, R2 and the RMSE, were used to assess the error
and confidence in the regression model.

3.7. Generation of Virtual Candidate Search Space

After the model training process, a virtual candidate search space
was created for the ML to make predictions on the phase forma-
tion and hardness of a large number of HEA compositions.
Elements were selected that were included in the chosen data-
bases based on domain knowledge to promote FCC phase forma-
tion, as defined in the design criteria. Additionally, the elements
were selected for minimizing cost and maximizing raw element
abundance, not considering recycled sources. The process for
generating the candidate search space followed the sequence
described below: 1) Definition of key elements relevant to the
case study and design application: Fe, Ni, Co, Al, Ti, W, Cr,
Mn, Hf, Nb, Mo, and Ta. 2) Consideration of every possible
equiatomic permutation of these elements in a five-element sys-
tem without repetition, in this case for a total of 792 composi-
tions. 3) Creation of every possible compositional permutation
of these five element systems between a minimum of 5 at%
and a maximum of 45 at% elemental weighting, with a granular-
ity of 5 at%, yielding a total of 2 238 193 compositions.

4. Machine Learning Performance, Outputs, and
Discussion

Fivefold cross-validation assessments of the performance of the
RF models after the training process were conducted to under-
stand how the model would perform on the training data.
Accuracy, precision, recall, and F1 scores were all calculated to
assess model performance for the phase classification task,
the results of which are shown in Table 2.[61,62] Performance
scores >78% and >82% for classification models X and Z,
respectively, indicate that the models successfully predict phase
formation on the validation data from the dataset. Furthermore,
it suggests that the models do not suffer from overfitting,

enabling potential generalizability to predictions on unseen
compositions within the virtual candidate search space.
In contrast to the phase classification models, numerically and
physically meaningful values for accuracy of the hardness regres-
sion model (Model Y) could be obtained. The MAE, R2, and
RMSE were utilized to evaluate the error between the predicted
value produced by model Y and known value of hardness from
the database. The results of these performance assessments,
determined for the hardness predictions of model Y are also dis-
played in Table 2. These indicate a good fit and correlation
between the predictions and experimental data within the data-
bases used for training the models.

Figure 2 depicts the correlation between the predicted hard-
ness and database hardness in the testing dataset. The majority

Table 2. A table of the metrics calculated to assess performance of the
classification models at phase prediction. Model X was trained on the
Gorsse et al.[44] database and model Z on the Machaka et al.[49] database.

Performance metrica) Equation Model X Model Z Model Y

Accuracy A ¼ TPþTN
TPþTNþFPþFN

78.7% 82.2% –

Precision P ¼ TP
TPþFP

80.9% 82.9% –

Recall R ¼ TP
TPþFN

78.7% 82.2% –

F1 Score F1 ¼ 2� P�R
PþR

76.9% 81.8% –

MAE MAE ¼ 1
N

P

N
i¼1 jyi � ŷij – – 66.1 HV

Coefficient of

determination
R2 ¼ 1�

P

i
ðyi�ŷiÞ

2

P

i
ðyi�yÞ2

– – 73.7%

RMSE
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

N

i¼1
ðyi�ŷiÞ

2

N

q

– – 92.6 HV

a)True positives (TP) are the data points that are correctly predicted by the model for

a class. False negatives (FN) are data points that are incorrectly predicted as a

different class by the model. False positives (FP) are data points that are a

different class but are predicted to be the class under consideration. True

negatives (TN) are data points that are a different class to the one under

consideration and are predicted to be a different class, thus the class being

considered is not involved. y denotes the true value, ŷ represents the predicted

value, y represents the mean of the true data, and N is the number of data points.

Figure 2. A plot of the known alloy hardness in HV from the Gorsse
et al.[44] database against the hardness predicted by model Y across all
folds of the cross-validation testing.
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of points lie close to the diagonal red solid line that represents per-
fect agreement, again showing the good correlation between pre-
dicted and database hardness values. A linear fit of the predicted
hardness against the database hardness is denoted by the black solid
line. The closer the diagonal red solid line is to the linear fit of the
black solid line, the lower the systematic error of the model.

The Pearson’s correlation coefficient (PCC) of the input
features, denoted by r, Equation (2), was also calculated for both
databases to measure the linear correlation between any two of
the features, highlighting any interdependencies

r ¼

P

n
i¼1 xi � xð Þ yi � yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n
i¼1 xi � xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n
i¼1 yi � yð Þ2

q (2)

where x and y denote two of the features and x and y represent
the mean of the two features, respectively. PCC values can range
fromþ1 to�1, with positive values indicating a positive relation-
ship between the variables and negative values indicating a
negative relationship. Commonly in correlation analysis, if the
correlation coefficient between two features is >0.80, then this
is considered a very strong correlation[63,64] and the feature that
ranks the highest in the feature importance is retained, while the
other feature is eliminated from the model.[65,66] However, ML
studies in the HEA space typically allow for much stronger fea-
ture correlations before eliminating features from the model,
such as r> 0.95.[21,26,33,45,54,66]When analyzing the results of cor-
relation analysis between features utilized by the ML model, con-
text is critical to understand the extent and impact of the
correlation. Domain knowledge is useful in helping understand
and interpret correlations in a more meaningful way. It can be
seen from the PCCmatrices in Figure 3, that the features used in
this study are correlated to varying degrees. In both correlation
matrices, the pair of features having one of the highest degrees of
correlation are δ and γ with values of 0.77 and 0.62 for models
based on the databases by Gorsse et al.[44] and Machaka et al.[49]

respectively. This was anticipated as both features relate to the
distribution of atomic radii of the alloys’ constituent elements.
However, based on the levels of correlation observed it was deter-
mined suitable to retain both features for training of the ML
model. Δχ and Δε were the next strongest positively correlated
features from the two databases, 0.72 and 0.65 across the
Gorsse et al.[44] and Machaka et al.[49] databases, respectively.
Interestingly, comparing across the literature, a broad range of
correlation values have been reported for these features.
Huang et al.[45] reported a value comparable to this study of
0.71 for the correlation of Δχ and bulk modulus asymmetry
(a similar correlation would be expected for Δε[67]). In contrast,
Chen et al.[64] reported a correlation value of 0.11, although this
may be the result of considering a single HEA system. The stron-
gest negative correlation occurs between valence electron con-
centration (VEC) and Δε, �0.68 and –0.62 across the Gorsse
et al.[44] and Machaka et al.[49] databases, respectively. This
observed correlation agrees with the negative correlation of
�0.71 reported by Chen et al.[64] The negative correlation

observed between VEC and e=a was unexpected as both features

describe electronic structure and hence, they would be expected

to positively correlate. However, both VEC[51] and e=a
[25] have

been shown to be effective in the prediction of HEA phase

formation, thus they were both retained within the models.
The feature correlations observed across the two databases are
comparable and hence it would be expected that the features would
have similar impacts on prediction of phase formation and hard-
ness across the ML models constructed from these databases.

To interpret and understand the ML, permutation feature
importance was utilized. Permutation feature importance is a
global ML interpretation technique that describes the average
behavior of the model to show general mechanisms and trends,
by measuring the increase in prediction error as the model’s
parameters are permutated. A feature is considered important
if randomly shuffling its values increases the error of the model,
as in this case, the model relies upon this feature to make its
predictions. In contrast, a feature is considered unimportant if
shuffling its values does not significantly impact the model’s
error.[24] Hence, permutation importance analysis highlights the
key features influencing phase and hardness predictions in HEAs.

The results of the permutation feature importance assessment
in this study are shown in Figure 4. VEC is considered the most
important feature for phase prediction in both classificationmod-
els, X and Z. In addition, VEC is also an important feature in
model Y, for hardness predictions, an encouraging result due
to the dependence of hardness on underlying phase constitution.
This agrees strongly with literature, with several reports finding
VEC to be the most important feature in the determination of
phase formation in HEAs.[28,33,56,60] Furthermore, the impor-
tance of VEC in phase formation has previously been established
by Hume–Rothery, who found that similar crystal structures are
formed if the VEC of two intermetallic compounds are compa-
rable.[68,69] In addition, Guo et al.[51] demonstrated that higher
values of VEC lead to FCC phase formation and lower values
of VEC lead to BCC phase formation. Notably, model X is found
to be more strongly affected by VEC than model Z, likely reflect-
ing the experimental databases used. The Gorsse et al.[44] data-
base used for model X includes more complete phase
information, whereas the Machaka et al.[49] database used for
model Z, often groups intermetallic phases and HCP solid
solutions together into simpler phase classes, as described in
Table S1, Supporting Information. Furthermore, the relative size
of the databases, with the Machaka et al.[49] database being sig-
nificantly larger than the Gorsse et al.[44] database, will likely
reduce the individual feature dependence of the derived models.
In contrast to VEC, Δχ, is found to have little impact on the pre-
dictions of all three models, shown last in all permutation feature
importance assessments. For the hardness predictions of regres-
sion model Y, Δε is shown to be significantly the most important
feature, but in contrast, it is not considered important by the
two-phase classification models X and Z.

SHAP is a local interpretation method that can be used to
explain individual predictions by determining the contribution
of each feature.[70] SHAP summary plots combine feature impor-
tance and feature effects[24] and are shown in Figure 5 for each
model, respectively. Each point in the plots represents a SHAP
value for a feature and prediction for an individual composition.
Overlapping points are jittered in the y-axis to provide an illus-
tration of the distribution of SHAP values per feature. A positive/
negative SHAP value indicates a positive/negative impact on
model predictions, associated with the likelihood to predict
FCC phase formation and values of hardness, both for the
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classification and regression tasks, respectively.[42,71] Hence, the
wider the horizontal distribution of points, the greater the influ-

ence of that feature on the models’ predictions. Additionally, fea-
tures are ordered on the y-axis by their importance for

predictions. The color of the points denotes the value of the

feature in question. Red indicates a larger feature value, while
blue indicates a smaller feature value.[24]

Equivalent conclusions to the PCC and permutation impor-

tance in Figure 3 and 4, respectively, can be drawn from the

SHAP summary plots shown in Figure 5. All three models place

A

B

Figure 3. A correlation map between the ten features used as mathematical descriptors for the ML models. The value in the grid shows the PCC between
the different features and the color intensity is proportional to the magnitude of the PCCs. A) From the Gorsse et al.[44] database; B) From the
Machaka et al.[49] database.
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a high importance on VEC. Large VEC values produce large pos-
itive SHAP values for FCC phase prediction and large negative
SHAP values for hardness prediction. Indicating that for compo-
sitions with a larger VEC value, the ML is more likely to predict
FCC phase formation and lower values of hardness. This shows
strong agreement with the formation of FCC phases at higher
values of VEC, resulting in lower values of hardness, as harder
BCC and intermetallic phases are less likely to form.[22,51,54,72]

Figure 4. Plots of the permutation importance of the ten features used
as mathematical descriptors for the ML models. A) From classification
model X; B) From classification model Z; C) From regression model Y.

A

B

C

Figure 5. SHAP value distribution plots of different compositions,
showing the importance and effects of different features. A) From model
X on FCC phase formation; B) From model Z on FCC phase formation;
C) From model Y on hardness predictions.
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This is encouraging that the ML models are producing outputs
with sensible dependencies based on empirical physics under-
standing. In contrast, ΔSmix is placed toward the bottom of all
three SHAP summary plots. Model Y places low importance
on the configurational entropy in the prediction of alloy hard-
ness, producing a 0.30% decrease in model performance under
permutation analysis, as shown in Figure 4b. In contrast, for
models X and Z, it is shown to have a slightly more significant
and also comparable impact. A 2.47% and 2.94% decrease in
model performance under permutation analysis are shown in
Figure 4a,c. Models X and Z predicting phase formation are
trained from different databases but perform comparably.
Both databases[44,49] used in this study have comparable numbers
of compositions forming solid solutions, around 60%. In this
case, the calculation of the configurational or mixing entropy
is based upon ideal randomly distributed solid solutions and
is often not representative of the total entropy. Excess vibrational,
magnetic moment, and electronic effect terms can contribute sig-
nificantly to the total entropy and impact the role of entropy on
phase selection within HEAs.[9]

4.1. High-throughput Machine Learning Predictions and

CALPHAD Analysis

All three RF models were used to make high-throughput predic-
tions on the phase and hardness of a series of unseen HEA com-
positions, with the goal of downselecting a small sample of
compositions for experimental testing, to further validate and
refine the models. The results of these high-throughput predic-
tions were collated and subsequently abridged. To satisfy the
design criteria outlined for the case study considered herein,
CALPHAD analysis was employed to enable further downselec-
tion of alloys for experimental fabrication from the ML outputs.

To meet the design criteria of the chosen case study, as a first
step, all compositions where classification models X and Z did
not both predict FCC phase formation were eliminated. A total of
24 613 HEA compositions were predicted to form an FCC phase
by both models X and Z. CALPHAD calculations of the equilib-
rium phase formation of the remaining HEA compositions at
1000 °C were also obtained using the TCNi8 database within
the Thermo-Calc software package and automated using
TQ-Fortran. CALPHAD calculations are known to be less
accurate at “low” temperatures, predicting often kinetically inhib-
ited or unrealistic intermetallic phase formation. In addition, cal-
culations at temperatures over 1000 °C may eliminate a number
of compositions if the solidus temperature of the material is low.
1000 °C was therefore chosen as a compromise temperature
between accuracy of CALPHAD predictions and practicability
of the chosen case study, with 1000 °C representing a sensible
operating limit. TCNi8 was utilized in this study as an FCC crys-
tal structure was targeted and hence it was considered to be the
most relevant database, providing more holistic information for
the systems under consideration. Compositions were sorted by
FCC phase fraction formation and subsequently, ML-predicted
hardness. The twelve hardest FCC-predicted compositions (by
all models and CALPHAD) are shown in Table 3. Due to com-
positional similarities, the compositions highlighted in bold in
Table 3 and labeled A–C, were chosen as the most interesting

to experimentally investigate. In addition, the three highest hard-
ness alloys, as shown in Table 4 and labeled D–F, irrespective of
CALPHAD-predicted phase formation, were selected for experi-
mental testing to enable an improved understanding of the per-
formance of the regression model constructed. It is worth noting
that the higher hardness as predicted by model Y in Table 4 is
likely due to the alloys not being FCC based, as indicated by the
CALPHAD predictions, despite being projected to form a single-
phase solid solution FCC by ML models X and Z.

This methodology, first applying ML and subsequently down-
selecting using CALPHAD, has a number of key benefits.[62]

Performing CALPHAD analysis of over 2 million compositions
considered by the ML in this study is computationally impractical
and time intensive. Initial application of ML dramatically reduces

the number of compositions that need to be considered and
hence the computational time. Applying CALPHAD data as
an input to the ML model raises the issue of training the model
on calculated data as opposed to experimentally determined data.
While CALPHAD offers a remarkable tool for alloy design, it is
well documented that calculation accuracies are lower for com-
positions away from established alloy systems. This is due to the
construction of the databases being built from binary and ternary
systems as well as the lack of full characterization of such systems
across the relevant compositional space. Furthermore, CALPHAD
provides calculations of equilibrium phases only. Therefore, cau-
tion is necessary as for manufacturing purposes reaching equilib-
rium phases can be unrealistic. Hence, CALPHAD can bias the
results against compositions that are kinetically sluggish, but
would otherwise be suitable for application. While this latter point
is not applicable to the chosen case study, the use of ML is envis-
aged to progressively evolve for increasingly more complicated

case studies, where equilibrium and indeed the use of CALPHAD
may in fact be inadvisable. Therefore, in this case study
CALPHAD was used simply as a downselection tool only.

Table 3. Table of the hardest alloy compositions according to model Y,
also predicted to display single-phase FCC formation by models X and Z,
and CALPHAD equilibrium phase fraction calculations. The compositions
highlighted in bold and labeled A–C were chosen as the most interesting to
experimentally investigate.

Sample
index

Alloy ML confidence
model X [%]

ML confidence
model Z [%]

ML hardness
model Y [HV]

A Cr20Mn20Fe10Ni45Hf5 47.0 41.5 483

– Cr20Mn15Fe15Ni45Hf5 43.0 42.5 479

B Ti10Cr10 Mn25Fe20Ni35 57.0 37.4 476

– Ti20Mn20Fe5Co10Ni45 43.0 38.6 474

– Ti20Mn25Fe5Co5Ni45 39.0 39.5 473

– Cr15Mn20Fe15Ni45Hf5 49.0 41.6 471

– Cr15Mn25Fe10Ni45Hf5 48.0 45.5 471

– Cr15Mn15Fe20Ni45Hf5 48.0 41.6 468

– Cr20Mn10Fe20Ni45Hf5 45.0 40.5 461

– Cr10Mn25Fe15Ni45Hf5 50.0 46.4 460

– Cr10Mn20Fe20Ni45Hf5 50.0 46.9 452

C Ti10Mn45Fe15Ni25Mo5 32.0 37.5 451
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Thus, the ML architecture can predict compositional hardness
from experimental data, save significant time over the CALPHAD
approach and can be quickly updated with new data, while provid-
ing reproducible and accurate predictions. Utilizing CALPHAD as
a postprocessing tool to interrogate a small subset of the ML pre-
dictions provides further detailed microstructural information for
alloy downselection, but importantly retains separation and allows
critical interrogation of predictions. In the absence of further
experimental data, CALPHAD provides a robust tool to enhance
the phase predictions obtained from the ML models to target
experimentation into both areas of agreement where technological
benefits can be derived, as well as areas of discrepancies where
improved experimental data can be of great importance.

5. Experimental Section

To validate the ML model and assess the suitability for the design
use case of the downselected alloy compositions in Tables 3
and 4, the HEA systems were synthesized via arc melting in
an inert Ar atmosphere. Button ingots of 30 g were produced
for each composition from high purity (>99.5% by mass) bulk
raw elements. To achieve alloy melt homogeneity, the ingot was
inverted and remelted for a minimum of seven melting cycles
with the same arc current intensity. The ingots were melted
and solidified in a water-cooled Cu crucible, resulting in faster
cooling rates than other typical casting methodologies. Due to
the low evaporation point of Mn in comparison to the melting
point of some of the refractory elements included in the alloy
compositions, extra Mn (in the range 10–20%) was added to
account for the anticipated losses during the manufacturing pro-
cess. Differential scanning calorimetry (DSC) measurements of
the as-cast alloys were conducted using a TA Instruments SDT
Q600, to determine suitable temperatures for homogenization
heat treatments. Samples were heated at a rate of 20 °Cmin�1

to a maximum temperature of 1450 °C and held at this tempera-
ture for two minutes before a controlled cool at the same rate to
400 °C, holding for two minutes. Two cycles of this heating and
cooling regime were performed. Plots of the DSCmeasurements
can be found in Figure S1, Supporting Information. Two sepa-
rate homogenization regimes were identified based upon the
DSC data, 1000 °C and 1150 °C for 48 h, for alloys A–C and
D–F, respectively, followed by air cooling. These temperatures
were selected to be as close to the solidus temperature of the
alloys as possible without the risk of incipient melting.

Specimens from each as-cast and heat-treated condition were
prepared for microstructural characterization by grinding with
P400 – P2500 grades of SiC paper and polishing to a 1 μm finish
using a diamond. Imaging and compositional characterization

were performed using scanning electron microscopy (SEM) cou-
pled with energy-dispersive X-ray spectroscopy (EDX) on an FEI
Inspect F50 and JEOL 7900 F operated at 20 keV and equipped
with a Bruker XFlash 6 solid-state EDX detector. Additional
phase characterization of each as-cast and heat-treated condition
in bulk alloy formwas performed using X-ray diffraction (XRD) on
a Panalytical Aeris diffractometer using Ni-filtered Cu Ka
radiation. Patterns were recorded in the 10° < 2θ< 100° range
at 0.02° increments and were analyzed using the full-pattern
Pawley fitting procedure[73] in TOPAS-academic. Characteri-
zation of alloy hardness in both as-cast and homogenized condi-
tions was performed using microindentation hardness on a
Durascan 70 G5 by applying a 1 kgf load with a 15 s dwell time
for a series of ten indentations, in accordance with ASTM E384.[74]

6. Experimental Results and Discussion

The bulk elemental compositions following the arc-melting fab-
rication procedure were confirmed by averaging large-area EDX
scans. The results of this and comparison to the nominal com-
positions from the ML virtual candidate search space are detailed
in Table 5. In the majority of cases, the bulk elemental compo-
sitions are within �4% of the target concentrations for each ele-
ment. However, for some elements, in particular for the Mo, Cr,
and Mn, there is often a significant difference between the target
and the fabricated compositions. This is due to the higher melt-
ing points of Mo and Cr and the low evaporation temperature of
Mn compared to the other elements in the alloy systems leading
to evaporation of Mn and possible lack of melting of Mo and Cr.
The phase formation in the experimentally fabricated composi-
tions was also evaluated through both the ML and CALPHAD
and was found to produce the same predictions as the nominal
compositions. Therefore, it was deemed suitable to use these
alloy compositions for further experimental evaluation to assess
the fidelity of the models utilized.

6.1. Microstructural Analysis of As-cast and Homogenized

Material

Microstructural analysis of the alloy compositions was performed
by SEM to determine the phases present and their relative
chemistry. Backscattered electron (BSE) micrographs of the
alloy compositions in the as-cast state are presented in
Figure 6. Following the rapid solidification from the arc-melting
process, all alloys exhibited a large-grained microstructure with
high contrast due to both crystal orientation and compositional
variation. SEM-based EDX maps, Figure S2–S13, Supporting

Table 4. Table of the hardest alloy compositions according to model Y, also predicted to display single-phase FCC formation by models X and Z,
irrespective of CALPHAD equilibrium phase fraction calculations.

Sample index Alloy ML confidence
model X [%]

ML confidence
model Z [%]

ML hardness
model Y [HV]

CALPHAD phase CALPHAD phase fraction

D Al20Ti5Co30Ni30Nb15 26.0 26.0 587 C14 Laves, BCC, and FCC 42.5%, 41.0% and 16.5%

E Al30Ti20Fe30Ni15Mo5 40.0 39.0 584 BCC and C14 Laves 60.8% and 39.2%

F Al30Ti20Cr10Fe5Ni35 47.0 41.0 583 BCC 100%
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Information, highlight clear elemental segregation within the
grains, indicating dendritic solidification in all alloys. In all cases,
no evidence of single-phase solid-solution formation was found,
with all alloys displaying a multiphase microstructure.

To remove or mitigate the microsegregation observed due to
the rapid solidification of the casting process, alloys A–C were
homogenized at 1000 °C for 48 h and alloys D–F were homoge-
nized at 1150 °C for 48 h, followed by air cooling. BSE
micrographs of the alloy compositions in the homogenized con-
dition are presented in Figure 7. The SEM-based EDX maps,

Figures S2–S13, Supporting Information, highlight clear ele-
mental segregation within the grains between the matrix and pre-
cipitating phases. As with the as-cast state, there is no evidence of
single-phase FCC solid solution formation in any of the fabri-
cated compositions. However, there is a clear change in micro-
structure due to the homogenization process for all alloys. In all
cases, the homogenization process was sufficient to remove seg-
regation within the solidifying phases and ensure chemical equil-
ibration of the composition of each phase. The skeletal
interdendritic solidification in alloys in the as-cast state was also

Table 5. Table comparing the downselected alloys nominal composition generated as part of the virtual candidate search space to the experimentally
fabricated composition.

Sample indexa) Nominal alloy composition Experimental alloy composition ML confidence
model X [%]

ML confidence
model Z [%]

ML hardness
model Y [HV]

A Cr20Mn20Fe10Ni45Hf5 Cr22.3Mn17.9Fe10.2Ni44.8Hf4.8 42.0 41.5 477

B Ti10Cr10Mn25Fe20Ni35 Ti10.0Cr9.6Mn27.0Fe19.6Ni33.8 60.0 43.5 478

C Ti10Mn45Fe15Ni25Mo5 Ti10.3Mn45.9Fe15.5Ni26.0Mo2.3 37.0 48.0 429

D Al20Ti5Co30Ni30Nb15 Al19.9Ti5.0Co30.4Ni30.1Nb14.6 24.9 30.9 586

E Al30Ti20Fe30Ni15Mo5 Al29.7Ti20.6Fe30.3Ni14.6Mo4.8 40.7 40.0 586

F Al30Ti20Cr10Fe5Ni35 Al29.6Ti20.5Cr11.4Fe5.2Ni33.3 42.7 41.0 590

a)ML confidence and hardness predictions shown are performed using the experimental alloy compositions.

Figure 6. BSEmicrographs of samples in the as-cast state showing two and three-phase dendritic microstructures. Samples are labeled A–F) according to
Table 5.
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observed to break down in most cases in the as-homogenized
samples in favor of discrete particles. Importantly, all composi-

tions were found to be multiphase even after the homogeniza-

tion/solution heat treatments.
Elemental partitioning information was obtained, and phase

identification was performed through EDX and XRD techniques

respectively. A summary of the data extracted from the EDX and
XRD analysis is given in Table 6. Results presented in Table 6

agree with the SEM observations as discussed above.

6.2. Mechanical Property Analysis of As-cast and Homogenized

Material

Mechanical properties of the alloys were assessed by microinden-

tation hardness testing, as outlined in Section 5. Results of the
microindentation hardness assessments of the alloys in both the

as-cast and homogenized condition are presented in Figure 8. In
all cases for alloys A–C, predicted to form single-phase FCC

solid-solutions by both ML and CALPHAD, but experimentally

Figure 7. BSE micrographs of samples in the homogenized state according to the heat treatments outlined in Section 5, showing two and three-phase
dendritic microstructures. Samples are labeled A–F) according to Table 5.

Table 6. Summary of the EDX and XRD analysis of the alloy systems in the as-cast and homogenized state. EDX elemental maps and an example XRD
pattern overlaid with a Pawley fit can be found in the Supporting Information.

Sample indexa) Experimental alloy composition EDX analysis XRD analysis

A Cr22.3Mn17.9Fe10.2N Light contrast=Ni, Hf rich FCCþHfNi5þ BCC

Dark contrast= Cr, Fe rich

Ni44.8Hf4.8 Light contrast=Ni, Hf rich FCCþHfNi5þ BCC

Dark contrast= Cr, Mn, Fe rich

Dark precipitates= Cr rich

B Ti10.0Cr9.6Mn27.0 Light contrast=Ni and Ti rich* FCC

Dark contrast= Cr, Mn, Fe rich

Fe19.6Ni33.8 Dark contrast= Cr, Mn, Fe, Ti FCCþ BCCþNi3Ti

Light precipitates= Ti richb)

www.advancedsciencenews.com www.aem-journal.com
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Table 6. Continued.

Sample indexa) Experimental alloy composition EDX analysis XRD analysis

C Ti10.3Mn45.9Fe15.5 Light contrast= Fe, Mo rich FCCþNi3Tiþ Fe2Mo (C14 Laves)

Mid contrast=Ni, Ti rich

Dark contrast=Mn, Fe rich

Ni26.0Mo2.3 Light contrast= Ti, Fe, Mo FCCþ Fe2Mo (C14 Laves)

Mid contrast= Ti rich

Dark contrast=Ni, Mn

D Al19.9Ti5.0Co30.4 Light contrast= Co, Ni, Nb rich FCCþ TiAl (B2)þ (CoNi)2Nb (C14 Laves)

Mid contrast= Al, Co, Ni, Nb

Dark contrast= Al and Ti rich

Ni30.1Nb14.6 Light contrast= Co, Nb, Ni Ni(TiAl) (B2)

Dark contrast= All

Additional Co, Nb rich phase

E Al29.7Ti20.6Fe30.3 Light contrast= Al, Ti, Mo rich BCC or B2þ Fe2Ti (C14 Laves)

Dark contrast=Ni rich

Ni14.6Mo4.8 Light contrast= Al, Ti, Mo rich BCC or B2þ Fe2Ti (C14 Laves)þ AlMo3

Dark contrast= Al, Ti, Fe, Ni

Light precipitates=Mo rich

F Al29.6Ti20.5Cr11.4 Light contrast= Al, Ti, Cr BCC or B2þ TiCrAl (C14 Laves)þ AlCr2

Mid contrast= Cr rich

Dark contrast= Al, Ti rich

Fe5.2Ni33.3 Light contrast= Al, Ti, Ni rich BCC or B2þ TiCrAl (C14 Laves)þ AlCr2

Mid contrast= Cr rich

Dark contrast= Al, Ti rich

a)The unshaded rows denote the alloy in the as-cast condition while gray shaded rows indicate the alloy in the homogenized condition. b)The Ti-rich phase in alloy B was

confirmed to be a Ni3Ti eta phase by EBSD analysis.

Figure 8. A bar chart showing the comparison between the ML-predicted, as-cast, and homogenized microindentation hardness in HV of the six alloys
fabricated in this study. Error bars on the predicted hardness values represent the MAE score of the ML regression model. The error bars on the experi-
mentally measured as-cast and homogenized samples represent the standard deviation. The results of the hardness analysis are included in Table S2,
Supporting Information.
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observed to display multiple secondary phases, the ML-predicted
hardness is significantly higher than that of both the as-cast and
homogenized conditions. However some agreement within the
range of uncertainty of the experimentally determined values was
observed. Furthermore, a marginal increase in hardness was
exhibited from the as-cast to the homogenized state for all three
alloys, which was found to be consistent with the observed
changes in microstructure. In all cases for alloys D–F, predicted
to form single-phase FCC solid solutions by the ML but not
CALPHAD, the ML-predicted hardness is observed to be signifi-
cantly lower than the measured hardness in both the as-cast and
homogenized form. In addition, a drop in hardness from the as-
cast to the homogenized condition is observed in all cases for
these alloys. This apparent reduction could be due to a decrease
in the intermetallic phase fraction, or morphological changes as
the alloys move from a skeletal structure to discrete particles.
However, given that the changes are within the measurement
error, this was not investigated further.

7. Discussion

7.1. Phase Formation Results Discussion

It is clear from the experimental results, shown in the BSEmicro-
graphs of Figures 6 and 7, that all alloys fabricated did not exhibit
a single-phase FCC solid solution, with significant intermetallic
formation observed. In fact, only four out of the six compositions
exhibit an FCC phase, with the other two showing BCC or B2
matrix phases, clearly demonstrating the inaccuracies in the
phase prediction of the ML classification models. Alloy B is
observed to form the lowest fraction of intermetallic phase
and this is also reflected in the confidence measure of the ML
phase predictions, scoring one of the highest FCC phase
prediction confidences for the downselected alloys. In general,
for the alloy systems downselected to be experimentally analyzed,
the confidence measure of the ML phase predictions is low.
Pushing toward alloy systems with higher hardness was priori-
tized over alloy systems likely to produce a single-phase FCC
solid-solution, but at a significantly lower hardness. If only com-
positions predicted to form an FCC phase with confidence>90%
in both models X and Z are considered, then of the 24 613 pre-
dicted to form an FCC phase by the ML, only 443 would satisfy
these criteria and all are predicted by CALPHAD to form a single
FCC phase. Furthermore, all 443 of these alloys are a composi-
tional variation of CrMnFeCoNi, as expected, as this system dom-
inates the literature with respect to FCCHEAs. In addition, these
compositions have a significantly lower hardness predicted by
the ML than those downselected for experimental testing, with
an average predicted hardness of only 105 HV. Hence, high-
hardness-predicted compositions were prioritized at the expense
of high confidence in prediction of a single-phase FCC solid-
solution to enable further exploration of HEA compositional
space. To assist in alloy downselection, equilibrium phase frac-
tion calculations at 1000 °C were performed using CALPHAD
and the TCNi8 database on the compositions predicted to form
single-phase FCC by both models X and Z. To draw effective
comparisons between the experimentally fabricated alloys and
CALPHAD, a long duration exposure at 1000 °C and subsequent

quench would be required. However, CALPHAD predictions of
the same alloy systems as a function of temperature still do not
correctly identify the microstructure of the alloy compositions, as
described in Table 6, and in most cases predict more complex
intermetallic phases that are not observed in the microstructure.

7.2. Hardness Results Discussion

In general, the ML model incorrectly predicts the observed hard-
ness of the experimentally fabricated alloys, although there is
some agreement within errors, as seen in Figure 8. Further
scrutiny of Figure 8 reveals distinct patterns and systematic
errors in the ML hardness predictions. Alloys A–C are found
to be systematically overpredicted. In contrast, for alloys D–F,
there is significant underprediction of the hardness compared
to the experimentally measured values in both the as-cast and
homogenized state. The relative overprediction for alloys A–C
compared to the underprediction for alloys D–F is less pro-
nounced. In most cases, taking into consideration the measure-
ment errors, the as-cast and homogenized values are comparable,
with the notable exception of alloy B, where the precipitation of
Ni3Ti was found to increase the hardness following homogeni-
zation. It is encouraging that the hardness regression model Y
captures a difference for the dicrete alloy classes from the input
features, even though this difference is not captured by the phase
model. Nevertheless, the ML did accurately capture the correct
trends, with the alloys experimentally determined to display
an FCC matrix phase and a secondary intermetallic phase
predicted to be a lower hardness than those observed to form
BCC and B2 intermetallic-based microstructures.

The disparity between the ML hardness and measured hard-
ness for alloys D–F occurs because these alloys have been down-
selected as they were predicted to be the highest hardness alloys
to form a single-phase FCC solid solution. As highlighted by the
SHAP summary plots in Figure 5 and the permutation feature
importance plots in Figure 4, all models place a very high impor-
tance on VEC and models Y and Z place very high importance on
Δε. It is expected that Δε would be related to alloy hardness and
indeed the SHAP summary plots show that larger values of Δε
lead to the model predicting higher values of hardness, Figure 5c.
Similarly, in model Z, smaller values of Δε are less likely to pre-
dict FCC phase formation, Figure 5b. Furthermore, larger values
of VEC are shown to be more likely to predict FCC phase forma-
tion and a lower alloy hardness, Figure 5. Hence, although the
classification and regression models are not coupled, the model
interpretation metrics discussed in Section 4, reveal that similar
emphasis is placed on input features in all models. Therefore, it
would be expected that if the classification of MLmodel predicts a
single-phase FCC solid solution, then the parallel regression ML
model would also predict a lower hardness. Consequently, as the
alloys are not in fact single-phase FCC solid solutions and are in
some cases not based on an FCC matrix at all, it would be
expected that they would display a significantly higher hardness
than that predicted by the ML model. Similarly, the maximum
single-phase FCC hardness recorded in the training database
was 537 HV. Thus, the ML model would not be expected to
extrapolate much beyond this maximum value and certainly
would not predict hardness values in excess of 650 HV, such
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as those exhibited experimentally for alloys D–F. The overpredic-
tion observed for alloys A–C is in contrast to the observed micro-
structure of the alloy. It would be expected that as the model
predicts single-phase FCC formation, the presence of secondary
intermetallic, seen in the BSE micrographs in Figures 6 and 7,
would lead to an increase in alloy hardness over the predictions.
Instead, the opposite trend is observed.

The combined under- and overprediction of the hardness val-
ues from the ML regression model Y, compared to the measured
values, are believed to be in part due to the experimental HEA
mechanical properties database used in this study to train the
model. The database contains only 366 values, including values
calculated through an empirical relationship with yield strength
and imputed values. Of these entries in the database, there are
significantly more BCC-forming compositions than FCC,
constituting 30.3% and 18.0% of the database respectively.
Furthermore, additional analysis of the 66 FCC-labeled compo-
sitions revealed that the distribution of hardness values had a
mean of 237 HV but a median of 189HV, a lower quartile of
132HV, and an upper quartile of 295 HV. In fact, of the 66
FCC-labeled compositions, only 15 were found to be quoted
as having a hardness of >400HV. Additionally, there is an
absence of data in the region 320<HV< 420. This could poten-
tially indicate that the compositions with higher hardness were
mislabeled as single-phase FCC in their respective publications
and may have instead exhibited the formation of intermetallic
phases.

7.3. Future Research Directions

As demonstrated and discussed above, the accuracy and confi-
dence of predictions of FCC phase formation by the ML models
constructed in this study are lacking. In addition, the hardness
model overpredicts in the case of alloys A–C and underpredicts
for alloys D–F. Therefore, there is significant potential for
improvement of the prediction capability. The simplest and most
obvious is the availability of additional high quality and quantity
data on the microstructural and mechanical properties of HEAs
away from the more commonly studied CrMnFeCoNi composi-
tional space. Following this, if the available data are increased,
new complex models such as neural networks can be considered
for application to this case study and beyond. In this work, more
complex models were not considered due to the small amount of
available training data being unsuitable for their construction.
Additionally, a smaller compositional granularity can be consid-
ered for the virtual candidate search space to minimize the space
between compositions and more effectively identify phase tran-
sitions from the ML outputs. However, this reduced composi-
tional granularity comes at the cost of more time-intensive
computation. Finally, in terms of improving the ML model,
the feature space can be refined to include new features
that better describe both mechanical properties and phase forma-
tion of HEAs.

Additionally, for the purpose of alloy discovery, to meet the
proposed design case in this study, more alloy systems predicted
by this model can be selected for experimental analysis. This will-
determine their suitability to meet the application design criteria
and understand the combined ML and CALPHAD predictions.

Despite the erroneous ML predictions and the large uncertainties
obtained throughout this study, the alloys that have been
experimentally evaluated have resulted in compositions that
offer promise for the intended application. Further work on
these alloys will seek to evaluate carbon reinforcement to both
suppress detrimental brittle intermetallic phase formation and
improve mechanical properties, enhancing their applicability
to the design case.

8. Conclusions

The study aimed to apply a ML methodology to the design of
hardmetal matrix compositions for metal-forming tooling appli-
cations. This was simplified to two key design criteria, that of
high hardness and a single-phase FCC structure as a proxy
for ductility and toughness. Hence, a series of RF ML models
have been constructed and trained from experimentally deter-
mined public databases on the phase and hardness of HEAs
to enable predictions of these properties in unexplored compo-
sitional spaces. In contrast to the majority of literature,
CALPHAD was not used to supplement data or as an input to
the models. Instead, CALPHAD was utilized to provide further
microstructural investigation following the ML and aid in down-
selection of suitable alloy compositions for experimental analysis.
Six compositions were chosen to be fabricated and their micro-
structural and mechanical properties were investigated to enable
assessment of their ability to meet the design criteria and assess
the performance of the ML predictions. These six compositions
consisted of the three unique alloy systems predicted to be the
hardest single-phase FCC by the ML and the three hardest com-
positions predicted by both the ML and CALPHAD to form a
single-phase FCC microstructure.

Interrogation of the ML models constructed for phase and
hardness prediction revealed a strong dependency on features
such as VEC and Δε influencing the prediction outcomes,
despite the models not being coupled. This was an encouraging
result, indicating that the hardness regression model could cor-
rectly capture microstructural parameters in subsequent predic-
tions. This was further reinforced by the experimental results
obtained. Although none of the alloys that were experimentally
evaluated comprised a single-phase FCC structure, three alloys
demonstrated an FCC matrix with the remaining alloys relying
primarily on a BCC or B2 phase acting as the matrix. This appar-
ent microstructural change was captured by the hardness model
that was found to systematically overpredict the hardness of the
FCC-matrix alloys and underpredict the BCC/B2-matrix alloys.

In contrast to the satisfactory outcomes of the hardness regres-
sion model, the phase prediction classification models were
found to be inaccurate compared to the experimental microstruc-
tural assessments. The discrepancy between experiment and pre-
diction was believed to be primarily due to the databases used in
the ML training. The imbalanced data contained within the data-
bases, coupled with the bias of FCC compositions toward the
CrMnFeCoNi system, resulted in predictions herein having
reduced confidence indicators when downselected with
increased hardness being prioritized.

However, despite the experimental and predicted discrepan-
cies, the methodology employed identified compositions that
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are suitable for further experimental evaluation toward the
intended use case. Furthermore, the construction of the models
and their rigorous analysis have revealed several areas for
improvement for both the ML architectures as well as highlight-
ing the need for reliable, extensive, and expansive databases.
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the author.
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