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Lung ultrasound (LUS) has emerged as a safe and cost-effective modality for assessing lung health, particularly
during the COVID-19 pandemic. However, interpreting LUS images remains challenging due to its reliance on
artefacts, leading to operator variability and limiting its practical uptake. To address this, we propose a deep
learning pipeline for multi-class segmentation of objects (ribs, pleural line) and artefacts (A-lines, B-lines,
B-line confluence) in ultrasound images of a lung training phantom. Lightweight models achieved a mean
Dice Similarity Coefficient (DSC) of 0.74, requiring fewer than 500 training images. Applying this method
in real-time, at up to 33.4 frames per second in inference, allows enhanced visualisation of these features in
LUS images. This could be useful in providing LUS training and helping to address the skill gap. Moreover,
the segmentation masks obtained from this model enable the development of explainable measures of disease
severity, which have the potential to assist in the triage and management of patients. We suggest one such
semi-quantitative measure called the B-line Artefact Score, which is related to the percentage of an intercostal
space occupied by B-lines and in turn may be associated with the severity of a number of lung conditions.
Moreover, we show how transfer learning could be used to train models for small datasets of clinical LUS
images, identifying pathologies such as simple pleural effusions and lung consolidation with DSC values of
0.48 and 0.32 respectively. Finally, we demonstrate how such DL models could be translated into clinical
practice, implementing the phantom model alongside a portable point-of-care ultrasound system, facilitating
bedside assessment and improving the accessibility of LUS.

1. Introduction

segmentation tasks, where each pixel in an image is assigned a class [6—
8]. Additionally, transfer learning may help DL models to achieve

Artificial intelligence (AI) has significant potential in the healthcare
industry, where data could be used to reduce costs, whilst improving
patient care [1]. Early uses of Al in healthcare were aimed at supporting
clinical decisions [2], before rapidly expanding into a wide range of
applications, such as management and interpretation of patient data,
predictive medicine, and allocation of health service provision [3].
Deep learning (DL), a subset of AI and machine learning (ML), uses hi-
erarchical combinations of learnable feature extractors to automatically
build high-level representations of data [4]. The most common DL tech-
niques for vision problems are based on convolutional neural networks
(CNNs), such as the U-Net architecture [5], which are often used for
segmenting biomedical images. Recently, variants of the original U-Net,
such as those which incorporate attention gates or vision transformers
have been demonstrated to achieve positive results in semantic image

better performance when there are limited images in a dataset [9,10],
leveraging the knowledge gained by a model trained on one dataset
to inform the training of a model on a related dataset [11]. In the
medical imaging domain, semantic segmentation networks have mainly
been used with radiography datasets from magnetic resonance imaging
(MRI) or X-ray Computed Tomography (CT) scanners, with significantly
fewer from ultrasound [12]. The primary function of these networks is
to efficiently segment features to aid in diagnosis, prognosis, or assist
with image-guided therapies and/or interventions.

Lung ultrasound (LUS) is a technique that can be used to investigate
the health of a patient’s lungs in a range of clinical settings [13-15].
LUS is straightforward to perform but requires experienced ultrasound
practitioners due to a steep learning curve for correct image interpre-
tation [16-18]. This is because, unlike most soft tissue imaging with
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c) ‘B-line’ Confluence

Fig. 1. A representation of lung ultrasound (LUS) artefacts and corresponding example B-mode images of these artefacts acquired using a lung phantom model. (a) Ultrasound
waves are reflected at the pleura, creating horizontal reverberation artefacts (CA-lines‘) in a healthy lung. (b) As the amount of fluid increases, vertical artefacts (’B-lines‘) become
more prevalent. (c) In more serious cases, B-lines can merge together and become confluent.

ultrasound, it relies on the observation and interpretation of ultrasound
artefacts [19] (Fig. 1). A healthy lung would predominantly be air-
filled and due to the high acoustic impedance mismatch between tissue
and air, it results in near complete back reflection of the ultrasound
waves. These reflected waves can reverberate between the ultrasound
transducer and the pleural line, which produces B-mode images with
characteristic hyperechoic horizontal lines at regular intervals. These
horizontal artefacts appear parallel to the pleural line and are com-
monly referred to as ‘A-lines’ [20] (Fig. 1a). As the pathological state of
the lung deteriorates, there is a decrease in the presence of air, replaced
by fluid or other biological material. It is thought that as the air spaces
in the lung are replaced with less attenuating medium the ultrasound
field penetrates deeper into the lung, causing the greater appearance
of vertical artefacts including ‘B-lines’ and ‘white lung’ artefacts [21].
B-lines are highly heterogeneous in their appearance, however, these
vertical artefacts generally appear as discrete, vertical, hyperechoic,
artefacts, which originate at the pleural line [20]. Recent work suggests
that B-lines may result from the internal reflection of ultrasound by
semi-aerated alveoli, acting as acoustic traps [22](Fig. 1b). In severe
pathology cases, discrete B-lines can merge together and become con-
fluent (‘confluent B-lines’), even covering the entire intercostal space
as a ‘white lung’ artefact (Fig. 1c), which may be accompanied by a
consolidation, where fluid build-up allows for direct imaging of the
lung parenchyma [23]. Other indications include pleural effusions,
where fluid built up in the pleural space can be directly imaged with
ultrasound. Simple pleural effusions commonly present as a homoge-
neous anechoic region of fluid, while complex pleural effusions appear
heterogeneous, representing a region of turbid fluid which may contain
particles, debris, or clotted blood [24].

To date, a number of studies have investigated the application
of DL to LUS, including image classification, artefact detection, and
segmentation [10,25,26]. Among these, several have investigated the
frame-wise classification of B-lines. In 2020, a study classified the pres-
ence, or absence of B-lines with 93% sensitivity and 96% specificity,
additionally measuring B-line severity (multi-class image classification
on a scale of 0-4) [27]. While this approach showed promise, it
lacks transparency in terms of explaining the model’s prediction pro-
cess, thereby limiting its trustworthiness for computer-assisted diagno-
sis [28]. Other studies have attempted to count and localise B-lines [29,
30]. In 2020, van Slaun and Demi used DL for automatic detection
and localisation of B-lines images from phantoms and patients, with
the potential for real-time implementation at an inference framerate
of 276 frames per second (FPS) [30]. In this method, localisation was
obtained using gradient-weighted Class Activation Maps (grad-CAM),

which lack fine-grained detail compared to segmentation and have
been shown to perform poorly in cases with multiple occurrences of
the same class [31]. This may be important in the common case of
multiple B-lines in a single image. Furthermore, since the appearance
of B-lines is highly dependent on ultrasound imaging parameters [32,
33], and B-lines can merge together, B-line counting is unreliable in
practice [34].

In 2018, Kulhare et al. trained a single-shot object detector for local-
isation of vertical artefacts (B-lines and confluent B-lines), horizontal
artefacts (A-lines), pleural line, pleural effusion, and lung consoli-
dations in B-mode images [35]. While this method achieved >85%
sensitivity and specificity in all classes except B-lines, object detection
provides only bounding boxes for features, limiting its usefulness for
improving visualisation and feature quantification. Conversely, seg-
mentation allows precise delineation of features and may be more
useful in severity assessment. In 2020, Roy et at. segmented healthy
lung features and markers of disease in LUS, using this to produce
an early method of severity assessment [36]. Others have segmented
specific artefacts and anatomy, such as Xue et al. who segmented the
pleural line, A-line, B-line, and lung consolidation with a mean DSC
of 0.44 [37] and Gare et al. who segmented A-line, B-line and pleural
line using a pre-trained U-Net model to achieve a mean intersection
over union of 0.63, excluding the background class [38].

To date, much of the literature in DL for LUS has focused on clas-
sification and secondary localisation of individual features, with few
attempting the more challenging and information-rich task of multi-
class anatomical and artefact semantic segmentation. Of the studies
using segmentation, even fewer consider real-time performance, which
is important since LUS is a highly dynamic and investigative imaging
technique. Many of the existing DL approaches also rely heavily on
large labelled datasets, which can be difficult to obtain in practice [25,
39]. In this work, we train DL models for the semantic segmentation
of artefacts (A-lines, B-lines, confluent B-lines) and anatomy (ribs,
pleural line) in phantom images, using fewer than 500 images in
training. We optimise these models for segmentation performance and
inference time, demonstrating the real-time performance of our models
in live imaging with a Point-of-Care Ultrasound (PoCUS) system. To
supplement this, we investigate the feasibility of transfer learning to
train a clinical model with less than 60 images, improving model con-
vergence. We discuss how such models enhance visualisation, enable
automatic quantification of features, and may help address the skill gap
in LUS interpretation by improving education and minimising operator
variability in image interpretation [20,40-42].
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2. Methods
2.1. Image datasets

A commercial lung ultrasound model training phantom (CAE Health-
care Inc., Blue Phantom COVID-19 Lung Ultrasound Simulator) was
used as a controlled platform to investigate LUS segmentation. This
anthropomorphic half-chest model was designed to provide a realistic
platform to assess features from healthy to severely damaged lungs and
has been suggested as a useful training tool for learning the patholog-
ical signs and progression of COVID-19 [43]. Anatomical landmarks
of the phantom include the chest wall, ribs, lungs and pleural lining.
Under ultrasound examination, it can demonstrate A-lines, B-lines, and
B-line confluence in different regions as well as replicating lung sliding
with an electric pump.

B-mode ultrasound videos of the lung phantom were acquired using
clinical ultrasound systems (GE Healthcare, Logiq S8 & E10) using both
a convex curved-array transducer (GE Healthcare, C1-6), and a linear
transducer (GE Healthcare, 9L) with a focal depth of 2.5-3 cm (focussed
on the pleural line), imaging depth of 10-15 cm, and a mechanical
index (MI) in the range of 1.2-1.3. A total of 297 two-second video
clips were recorded by a senior sonographer, performing sagittal scans
through the anterior and lateral lungs, similar to a standard clinical
examination [24]. To avoid systematic biases and maximise image
diversity, approximately 560 images were randomly sampled from the
videos for annotation.

The VGG Image Annotator (VIA) tool [44] was used to label all
images, with polygon annotation of objects and artefacts in the image.
To make these labels compatible with semantic segmentation, polygons
were converted to segmentation masks using contour filling (OpenCV).
For the phantom dataset images were annotated for 5 classes of ob-
ject/artefact: Rib, Pleural line, A-line, B-line, and B-line confluence.
Five individuals with varying levels of ultrasound experience (ranging
from none to > 15 years of active research in the field) independently
labelled 100 images each. Additionally, a senior sonographer labelled a
further 64 images, with a peer review of the labels to ensure consistency
between groups. This dataset is accessible online, https://doi.org/10.
5518/1485.

Additionally, a retrospective clinical dataset of anonymised ultra-
sound images was requested from Leeds Teaching Hospitals Trust.
These images were recorded between March 2020 and March 2021
in hospitals across the Leeds Teaching Hospital Trust and included
patients diagnosed with COVID-19 pneumonia. A variety of point-
of-care ultrasound systems and transducers were used to collect the
images.

A total of 57 images were selected for annotation from 41 patients
across 8 different hospitals. As the images were fully anonymised, it was
impossible to split data at the patient level, so data was split randomly
to minimise bias. Since these images were taken from patients with
severe COVID-19 pneumonia, most contained examples of lung consol-
idation and/or simple pleural effusion, with no A-lines or individual
B-lines present. Additionally, only two images contained clear examples
of confluent B-lines which is too few for model training. Therefore,
the classes identified for transfer learning were Ribs, Pleural line, Lung
consolidation, Simple pleural effusion, and Complex pleural effusion.
These images were labelled by two experienced sonographers and cross-
verified for accuracy. This anonymised clinical dataset will be made
available on reasonable request.

2.2. Models and training

2.2.1. Model architecture and augmentations

A lightweight version of the U-Net architecture [5] was devel-
oped for image segmentation to provide a balance between model
speed and accuracy (https://github.com/ljhowell/LUS-Segmentation-
RT). This was also compared with other variants of the U-Net including
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Residual U-Net, Attention U-Net, U-Net++, Inception U-Net, SE U-Net,
and Dense U-Net [12]. These models all rely on an encoder—decoder
structure for segmentation, using skip connections to improve infor-
mation flow and better preserve both local detail and global context,
improving prediction accuracy [5]. In the encoder, the input image
is progressively downsampled, with intermediate convolutional blocks
which capture information in the image as an increasing number of
feature maps. The decoder then upsamples the feature maps back to
the original image size over several steps, collating the information
as it passes through more convolutional blocks before mapping it to
a segmentation mask in the output layer, where each pixel in the mask
is assigned a class.

The lightweight implementation of the U-Net model used in this
study, keeps the core structure of the base U-Net, with two convolu-
tional blocks in each of the four layers of the encoder and decoder, with
32, 64, 128, and 256 filters respectively. Alongside 3 x 3 convolutions,
batch normalisation [45] and dropout layers (20%) [46] were added
into the convolutional blocks to reduce overfitting and improve gen-
eralisability, especially when the dataset size is limited. Additionally,
Leaky Rectified Linear Unit (Leaky ReLU) activation functions were em-
ployed to introduce non-linearity into the data transforms, and enhance
training stability by addressing the issue of vanishing gradients [47].
Finally, bi-linear upsampling (un-pooling) was used instead of decon-
volution in the decoder to help minimise computational complexity and
reduce the number of learnable parameters.

To improve the model’s ability to generalise to unseen data, an
ultrasound-specific augmentation pipeline was used during the training
phase (Fig. 2). This included geometric transformations (horizontal axis
flip, random rotation) and ultrasound-specific augmentations (gain,
time gain compensation, and depth). Geometric transformations in-
creased data diversity, while ultrasound-specific image augmentations
were designed to improve model robustness to changes in common
imaging settings. To replicate the effect of changing gain, an augmenta-
tion was created to adjust the image brightness and contrast by a factor
in the interval of +25 to —25 %. For the depth control, an augmentation
was applied to randomly crop, centre, and pad images such that the
scale and extent were modified similarly to depth adjustment. Finally,
for time gain compensation (TGC) the brightness along the vertical
axis was altered using shifted Gaussian functions at eight depths, the
amplitude of which was sampled from a normal distribution.

Pre-processing was kept to a minimum to reduce the computation
time during model inference. Images and masks were cropped to the
approximate scan area (i.e. removing scan descriptors), resized to
256 x 256x1 and then normalised to the range 0-1.

2.2.2. Training and evaluation

Prior to training with the LUS phantom data, an independent 20%
testing dataset was split from the training data to allow a fair assess-
ment of model performance. This split was conducted at the lowest
level (video level), reducing the likelihood of similar images appearing
in both datasets, hence minimising the risk of information leakage.
Additionally, a 20% validation set was used to monitor performance
during model training and regulate the learning process. All reported
scores are given as the average test set score + the standard deviation
for 5 splits.

A dynamic approach to training was used, utilising the Adam op-
timiser [48] with an initial learning rate of le-4, which decreased
upon a plateau of the validation loss, with early stopping to pre-
vent overfitting. A Combo loss function which combined the Dice loss
and cross-entropy loss was used, weighted 2:1 in favour of the Dice
term [49]. This helps to address the class imbalance (most pixels
belong to the background class) whilst maintaining training stability.
Augmentations were applied ‘on the fly’, meaning that each training
image had random augmentations applied each epoch, maximising data
diversity. All training was conducted on a single graphics processing
unit (GPU) (NVIDIA RTX 3080 laptop), using CUDA 11.4, cuDNN 8.4.1
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Fig. 2. Examples of lung ultrasound B-mode images from a model phantom (top row) and the same images with applied augmentations (bottom row) including horizontal flip,

random rotation, gain, time gain compensation (TGC), and depth augmentations.

and models implemented in TensorFlow 2.9.1 for Python 3.9. Software
implementation for network training and validation is made freely
available online.

Models were evaluated using an independent test dataset not seen
by the network during training. The per class and average Dice sim-
ilarity coefficient (DSC) were used to quantify the similarity between
the predicted masks (X) and manually labelled masks (Y). The DSC is
given by the equation

_21XnY|

DSC= ——
IX1+1Y]

@
where N represents the intersection operator.

To demonstrate the real-time application of our model, the trained
network was used to segment a live image feed from a cart-based
point-of-care ultrasound system (GE Healthcare, Venue Fit R3). The
LUS phantom was imaged using a convex curved-array transducer
(GE Healthcare, C1-5-RS) and frames were streamed to the PC via an
HDMI to USB 3.0 capture interface (Magewell, MAG-32060). These
frames were pre-processed, segmented by the U-Net model, and the
segmentation masks overlaid onto the B-mode image to be displayed
on a screen using OpenCV for Python (Fig. 3).

2.2.3. Transfer learning

We explored the feasibility of transfer learning to train U-Nets for
segmentation with clinical LUS. By choosing to refine the pre-trained
LUS phantom model instead of training a new model from scratch,
we leveraged the generic LUS features learned by the network to help
the model learn to recognise new features in clinical LUS images. We
trained this clinical model to segment five classes, including ribs and
pleural line (common to both the phantom and clinical datasets), lung
consolidation, simple pleural effusion, and complex pleural effusion
(unique to the clinical dataset).

To this effect, we froze the encoder and bottleneck of the pre-trained
phantom model and then fine-tuned the weights in the decoder and
output layers. This approach ensured that the representations contained
in the encoder and bottleneck were not destroyed during training,
allowing the features learned to be used to make predictions on the new
dataset. The training pipeline was similar to that of the phantom mode
but with a 10% test dataset and no validation set due to the limited
dataset size and a smaller learning rate of 5e-5 to mitigate overfitting
risks.

3. Results

Training on a single GPU took approximately 12 min with 450
images. As expected, we observed a decrease in the training and

Table 1

Scores for segmentation of the thyroid phantom are given as the mean + standard
deviation across five training repeats. Timing performance metrics were calculated
during real-time experiments and averaged across several hundred frames.

Metric Score
Background 0.98 + 0.001
Ribs 0.80 + 0.01
Dice similarit Pleural line 0.81 + 0.01
coefficient (D}SIC) Adine 0.63 + 0.03
B-line 0.72 + 0.01
B-line confluence 0.73 + 0.09
Mean (ex. background) 0.74 + 0.02
Accuracy (%) Pixel-wise accuracy 95.7 + 0.34
Timing Inference 30.0 + 2.77
performance Pre-processing 3.36 + 0.72
(ms) Displaying 16.8 + 0.39
Inference framerate 33.4 + 2.86
Framerate (FPS) Total framerate 20.0 = 1.22

validation losses as the model learns, converging on a point of stability
with a negligible generalisation gap between training and validation
loss (Fig. 4a). Model performance improved with an increase in the
number of training images until around 300 images, after which we
saw no significant improvement (Fig. 4b). Additionally, we found mod-
els trained with ultrasound-specific augmentations consistently outper-
formed those without, with a DSC increase of 0.04 + 0.01. The accuracy
and DSC for the model trained on the full dataset (450 images) can
be seen in Table 1. A comparison with state-of-the-art U-Net variants
was also conducted, but we found no benefit to accuracy (Fig. A.11) or
speed (Fig. A.12) when using these more complex architectures with
our dataset.

Qualitative examples of U-Net segmentations are presented in
Fig. 6a-l. The ribs and the pleural line were generally segmented
accurately, even in cases where the pleural lining was thickened and
irregular (a-1). B-lines were detected in the majority of instances (c-
h, k); however, the extent to which they extended axially in the
predictions was occasionally less than that of the manually-labelled
images due to lower signals at greater depths (d, k). Most A-lines,
including partially obscured ones, were detected by the model (a-f, h,
1), although A-lines further from the pleural line had a lower likelihood
of being segmented (d). B-line confluence was segmented accurately
in most images (i, j), although, in some cases, confusion between
individual B-lines and B-line confluence led to the misclassification of
certain regions (1).

These observations were supported by an assessment of the pixel-
wise agreement between the manually-labelled and model-predicted
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Fig. 4. (a) Lightweight U-Net Training loss and DSC during model training. (b) Mean DSC for models trained with 100 to 450 images, with and without image augmentations.

Error regions show the best and worst scores over five training runs.

masks. The normalised confusion matrix for precision (Fig. 5) shows
that of the manually-labelled images, 86.8% of pixels labelled as ribs,
85.4% of pleural line, and 72.2% of B-line confluence were predicted
correctly by the model. However, only 57.7% of A-line and 57.9% of
B-line pixels were correctly predicted. We can see that the majority of
pixel-wise errors are false negatives, but some false positive predictions
occurred where A-line pixels are predicted as B-line or B-line confluence
(likely due to overlapping of A-lines and B-lines) and B-line confluence
pixels are predicted as B-line.

Using the predicted segmentation masks, metrics related to the
size and shape of objects in the image can also be considered. Here,
we defined a semi-quantitative measure for the fraction of the inter-
costal window taken up by B-lines named the B-line artefact score
(BLAS), showing how it can be automatically calculated during real-
time imaging. To measure this, the intercostal region of interest (ROI)
was determined as the area between the ribs and bounded by the
bottom of the pleural line, extending to the maximum depth of the
detected B-lines. The B-line fraction (percentage of pixels classified
as B-line or B-line confluence) was then quantified in the ROI, with

respect to depth (Fig. 7). From this, the percentage of the intercostal
space occupied by vertical artefacts (B-lines or confluent B-lines) was
calculated using Simpson’s Rule on the B-line fraction to give a BLAS in
the range 0-1. Empirically, BLAS values less than 0.5 generally suggest
one or a few B-lines, values between 0.5 and 0.9 suggest multiple B-
lines or some B-line confluence, and values greater than 0.9 indicate
white lung artefact. Calculating the ROI dynamically for each image
helped to ensure that the BLAS is independent of the imaging angle,
depth and extent of the vertical artefacts. This is significant since B-
lines cannot be defined by their spatial extent and may not extend to
the bottom of the image [20]. Further improvements such as using a
trapezoidal or sector-shaped ROI may be more appropriate for curved
array transducers.

A Bland-Altman plot was used to assess the agreement between
measurements of the BLAS by manual segmentation vs automatic seg-
mentation (Fig. 8). In the phantom test dataset, the mean difference
in BLAS was minimal (less than 0.01), indicating little or no systematic
bias. The majority of points fall within the limits of agreement (+0.29),
defined by the mean plus or minus 1.96 times the standard deviation of



L. Howell et al.

Background ESENAS 0.1% 0.1% 0.5% 0.5%

Ribs -13.2% 0.0% 0.0% 0.0% 0.0%

Pleural line -12.6%

A-line -32.7% 0.1% 0.0% BYSFS 6.3% 3.4%
B-line -37.9% 0.0% 0.8% 0.6% BYARA 2.9%

Confluence -22.9% 0.0% 0.4% 0.2% 4.2% PR

0.0% 0.0% 1.2% 0.7%

Manually labelled

$
)
®
®
%@

>
S @ . ,
& RPN ¥ ¥ F
R \eé &
F <
Model predicted

Fig. 5. Confusion matrix for semantic segmentation of LUS phantom images,
normalised to give the pixel-wise precision.

the differences, suggesting agreement between the two methods, partic-
ularly for cases where the BLAS was greater than 0.9. Investigation of
outliers revealed individual cases where a significant difference existed
between the manually-labelled and model-predicted masks. Further
research would be needed to evaluate the clinical significance of this
approach.

To demonstrate live segmentation, the best model was implemented
alongside the PoCUS system to image the LUS phantom and overlay
masks in real time during scanning (Fig. 9). Segmentation showed
recognition of most features, despite the domain shift to a different
ultrasound scanner and transducer to that used in model training.
Images from the PoCUS system showed greater speckle noise than those
in the training dataset, yet the model could still accurately segment
the ribs, pleural line and most A-lines, B-lines and B-line confluence. In
some frames, the model struggled to segment the full extent of B-lines
with depth, and some B-lines were misclassified.

In benchmark tests, the lightweight U-Net model achieved an in-
ference framerate of 33.4 + 2.86 FPS. However, in real-time exper-
iments, the average framerate lowered to 20.0 + 1.22 FPS. As a
result, some frames were dropped, but the overall speed remained
acceptable for real-time visualisation and the framerate variance was
not noticeable to the eye. This discrepancy stems from the additional
time required for pre-processing and image visualisation, where on
average, pre-processing took 3.36 ms, model inference took 29.9 ms,
and displaying the image took 16.8 ms. To enhance performance,
hardware-accelerated rendering could be used to reduce the display
time, or alternatively, further optimisation of the network architecture
could be explored.

Finally, we investigated the feasibility of transfer learning to re-train
our phantom model to segment clinical LUS images. This approach
proved valuable as the clinical dataset had very limited images for
training, but the domain was similar to that of the phantom model.
The limited clinical LUS images were found to be too few to train a U-
Net model from scratch, with poor convergence in initial experiments.
Transfer learning improved convergence and allowed reasonable fea-
ture recognition of the pleural line, lung consolidations, and simple
pleural effusions in some examples (Fig. 10a-d), but ribs and complex
pleural effusions were generally poorly segmented (e-f). Predictions
on the clinical dataset were generally of poorer quality than those
with the phantom dataset, likely due to the limited size and larger
variability in the observed anatomy, pathology and types of scanners
in the clinical dataset. Variations in the quality of clinical images
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also meant that some were reported to be diagnostically ambiguous
(f) by the two expert annotators, highlighting the difficulty of the
task and introducing additional uncertainty to the segmentation labels.
Furthermore, since we could not monitor training with a validation
dataset there was a possibility of overfitting and more data would be
needed to fully assess the effectiveness of transfer learning. The per
class DSC for simple pleural effusion, lung consolidation, and pleural
line are 0.48, 0.32, and 0.25 respectively, however, the model was
unable to reliably segment the ribs (DSC = 0.01) or complex pleural
effusion (DSC = 0.01). This is reflected in the mean DSC (across classes
excluding the background) of 0.20 + 0.08 as measured with the limited
test dataset.

4. Discussion

ML and DL present an exciting opportunity to assist in the interpre-
tation of LUS [10], and other pathologies imaged using ultrasound [50].
Automatic segmentation of anatomical features and artefacts in LUS
B-mode images could aid interpretation, as well as provide new infor-
mation that could be used to monitor disease severity. To be successful,
these models must be both accurate and sufficiently fast to provide
feedback for the operator in real-time during scanning. However, due
to low signal-to-noise ratio, poor contrast, speckle noise, shadows, and
signal dropouts, ultrasound segmentation is a challenging task [51].
Perhaps for this reason, much of the previous work into applying Al
with LUS has focussed on image or video classification rather than
segmentation [26]. Of these publications, fewer still focus on real-time
performance or report the inference time of their models. Additionally,
there is an over-reliance in methods which rely on datasets of thousands
to hundreds of thousands of images [39]. This is particularly limiting in
densely-labelled segmentation, where obtaining large, representative,
and high-quality annotated datasets can be prohibitively expensive
and time-consuming, so approaches which rely on fewer images are
desirable [10,52].

In this study, multi-class segmentation of anatomical features (ribs
and pleural line) and artefacts (A-line, B-line, and B-line confluence) in
a LUS phantom was explored, considering both the speed and accuracy
of the model. A lightweight U-Net model was trained for this task,
which demonstrated a mean DSC >0.7 when trained with as few as 300
images. It was demonstrated that more complex U-Net variants did not
yield any significant benefit on this dataset, which could be attributed
to several factors including the limited number of training images and
the uncertainty introduced by ambiguities in labelling.

Most significantly, the subjective nature of annotation is known to
limit model performance in LUS [36,53]. In ML, data labels provided
by human experts are typically regarded as the immutable ‘ground
truth’ [28]. However, objects in ultrasound often cannot be precisely
delineated due to speckle noise and limited spatial resolution. This is
particularly pronounced for artefacts, which are dynamic, heteroge-
neous, and lack well-defined boundaries. Consequently, inter-annotator
agreement in LUS segmentation may be low [36,54,55]. This has
impacts on diagnoses, for example, since it is difficult to know if B-
lines are separate or confluent, scores based on counting B-lines are
ambiguous [34]. For these reasons, we refer to the labelled datasets as
‘manually-labelled’ rather than ground truth, acknowledging the uncer-
tainty associated with the labels. Nevertheless, this inherent variability
may increase the value of DL segmentation in practice, since clinically
verified models trained on data from several expert annotators may be
able to provide a second opinion without the confirmation bias of any
one individual.

A commonly overlooked issue in the literature is the sensitivity
of ML models to imaging parameters [20]. To help address this con-
cern, we incorporated ultrasound-specific augmentations into model
training, reducing the diversity requirements in the dataset. This helps
to improve generalisability and reduce the likelihood of overfitting,
which is particularly valuable when training with limited images. As a
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Fig. 6. Example LUS phantom images, overlaid with their manual label and corresponding model prediction. The colour overlay used is as follows, ribs: blue, pleural line: orange,

A-lines: green, B-lines: red, and B-line confluence: purple.

result, we observed a mean DSC increase of 6.1% compared to training
without augmentations.

Finally, many of the existing studies using Al to calculate prognostic
scores from LUS lack explainability, relying on ‘black box’ methods
which do not assist in the decision-making process or allow the clinician
to independently review the basis for the recommendations [10]. This
can form a major barrier to their adoption in practice, where trust can
play a significant role in whether a model is useful [56]. Approaches
such as grad-CAM [57] have been used previously in LUS to represent
areas of the image that are important to an image’s classification [36,
58], but do not fully explain model reasoning.

Although segmentation still relies on complex models, its results
are inherently intelligible and verifiable when segmentation masks are
overlaid with real-time images. Therefore, metrics based on segmen-
tation masks are more explainable and interpretable than those based
on image classifiers. Here we present one such metric, named the B-
line Artefact Score (BLAS), which is a simple semi-quantitative measure
of the percentage of each intercostal space occupied by B-lines. This
provides an indication of the number and appearance of B-lines in an
image, which is known to be associated with a number of respira-
tory diseases [59], including COVID-19 [21], where significant B-line
confluence marks the presence of pneumonia deterioration. Compared
to individual line counting, measuring the percentages of rib space
covered by confluent B-lines has been shown to be more reliable [34].

Our score can be calculated automatically over one or more respira-
tory cycles, with the maximum score displayed immediately on-screen.
This facilitates a rapid assessment of patients while eliminating the
ambiguity in counting individual B-lines and selecting the frame to
measure.

A similar method could potentially be used to assess pleural line
irregularities, which are the second most frequent finding associated
with COVID-19 diagnosis, or A-lines which are a marker of recovery
from COVID-19 [26]. Once validated on clinical data, such methods
could allow the automatic calculation of severity scores, such as those
proposed for COVID-19 pneumonia [60], allowing improved triage
and management of patients in clinical settings, or monitoring disease
progression. In this case, it must also be acknowledged that since the
appearance of artefacts varies with frequency, bandwidth, and beam
angle [61], predictions or diagnoses based on these measurements must
consider these as confounding factors [20].

To showcase the practical application of our models, their imple-
mentation alongside a point-of-care ultrasound system was demon-
strated. This showed the real-time overlay of segmentation masks onto
B-mode images at 20 FPS, which highlighted key features to the op-
erator during scanning. A user-friendly graphical interface allowed
clinicians to toggle the visibility of segmentation masks or adjust their
transparency, providing an alternative representation which aids fea-
ture visualisation. Although in this example a separate PC was used for
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processing the imaging feed, future implementations may consider how
DL methods could be integrated onboard or with embedded devices. For
example, tools such as TensorFlow Lite that optimise models for mobile
devices may allow lightweight models to be deployed with handheld
ultrasound, greatly expanding their usefulness at the bedside. Such
approaches have already gained commercial interest. For example, in
April 2023 an Al-enabled tool for scoring B-lines received FDA 510(k)
clearance for use with a handheld ultrasound device [62].

We also investigate the feasibility of transfer learning to train a
model for clinical LUS images. By using transfer learning we leveraged
the knowledge acquired from models trained on LUS phantom data to
segment pathological features present in patients with severe COVID-
19 pneumonia, such as lung consolidation and simple pleural effusions.
Previous studies have used similar methods for segmentation of the ribs
in LUS images, pre-training U-Net models on a large greyscale dataset
of natural images (real-world objects) prior to transfer learning [63].
However, pre-training on ultrasound images may help models to better

detect lung-specific patterns [10] and since phantom data is simple to
collect and is free of data governance issues, this may present a viable
alternative for model pre-training with transfer learning. While our
model’s DSC indicates it is unlikely to be suitable for implementation
in clinical practice, this should be considered a baseline for comparison
with future models. Here, training and evaluation of our models is
limited by the small size and large heterogeneity of the available data
and we are also unable to fully exclude residual information leakage in
our model. Nevertheless, this method shows promise for future work
in decision support and patient monitoring. With access to a larger
and more diverse labelled dataset, future models will improve LUS
interpretability in patients with varying disease severity.

Other limitations of this work include a lack of assessment for
intra-annotator variability, which could not be conducted since there
were no commonly labelled images available. Measuring this variability
improves understanding of the data characterisation and subjectivity
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Fig. 9. Real-time segmentation of anatomy and artefacts in a lung ultrasound phantom. Segmentation masks are overlaid onto B-mode images from a point-of-care ultrasound
system during scanning to assist with image interpretation. For a video recording please see the supplementary files of this article.
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Fig. 10. Example clinical LUS images, overlaid with their manual labels and corre-
sponding model prediction. The colour overlay used is as follows, ribs: blue, pleural
line: orange, lung consolidation: purple, simple pleural effusion: pink, and complex
pleural effusion: yellow.

from annotation [64], and should therefore be a priority in the cura-
tion of future datasets. Secondly, phantom segmentation uses images
from a single subject with clearly defined features, so translating the
methods employed here to clinical data, which typically exhibit a
wider range of patients and pathologies, may pose additional chal-
lenges and necessitate a larger and more diverse dataset for optimal
performance [28]. Transfer learning may assist in training such models,
but does not guarantee better performance [9] and still requires good-
quality labelled training data. This study found that transfer learning
from a model pre-trained with phantom data provided a practical
method to improve model convergence, but more clinical data was
needed to assess its impact on segmentation performance. Finally, it
would be useful to quantify the generalisability of our models to new
ultrasound systems and transducers and to assess whether the inclusion
of ultrasound-specific augmentations enhances robustness to changes in
imaging settings.

Future works could investigate the application of DL for real-time
multi-object LUS segmentation of clinical images, with the aim of
deploying models with portable or handheld scanners for training and
education, and longer-term in clinical decision support systems. This
could have an impact on the diagnosis and management of numerous
respiratory conditions [26], especially in low- and middle-income coun-
tries and rural areas, where cost-effective ultrasound systems are more
widely available than CT [65], but the expertise needed to interpret
them may be lacking [66]. More broadly, the methods for training
and validation proposed here could be used to develop models for
clinical examination of the thyroid, breast, heart or abdomen, among
others. This may be especially useful in a variety of settings where
real-time feedback is important, such as emergency assessment of
trauma with ultrasound [67], ultrasound-guided biopsies [68], or for
therapeutic systems such as ultrasound-guided focused ultrasound for
tissue ablation [69].

5. Conclusion

This study demonstrated the application of deep learning to real-
time, multi-class segmentation of objects and artefacts in lung ul-
trasound. Models trained with as few as 300 images were able to
segment the ribs, pleural line, A-lines, B-lines, and B-line confluence
in B-mode images of a COVID-19 lung tissue-mimicking phantom, with
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Fig. A.12. Comparison of the benchmark framerate for inference of various U-Net variants, trained on the phantom dataset (450 images). Error bars show the best and worst

scores over five training repeats.

an average DSC of 0.74 across the five classes. When overlaid onto
LUS B-mode images, segmentation masks offer an improved visual
interpretation of the image. This could be incorporated into training
systems for medical education of LUS in specialised programmes or
as part of training new clinicians [20], addressing the existing skill
gap in LUS. To maximise their clinical potential, these models must
be deployable on PoCUS systems and suitable for real-time inference.
We demonstrated the feasibility of this at 20 FPS, with the potential to
achieve >30 FPS with hardware-accelerated rendering. Furthermore,
segmentation masks provide an explainable method for scoring disease
severity, which has the potential to assist in the triage and man-
agement of patients for a variety of respiratory conditions. On this
theme, we propose a B-line artefact score (BLAS) which automatically
measures the percentage of the intercostal space occupied by vertical
artefacts (B-lines and confluent B-lines). Future work should consider
the translation of these methods to clinical data, considering transfer

10

learning as a viable method to build models which can assist in the
interpretation of LUS and reduce inter-operator variability associated
with this subjective imaging technique. For the LUS phantom dataset,
a comparison with state-of-the-art was also conducted (Fig. A.11). We
found no benefit in terms of DSC or inference time compared to our
lightweight U-Net (Fig. A.12).
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