
This is a repository copy of A quality diversity study in EvoDevo processes for engineering 
design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/210793/

Version: Accepted Version

Proceedings Paper:
Buchanan Berumen, Edgar orcid.org/0000-0001-6587-8808, Hickinbotham, Simon John 
orcid.org/0000-0003-0880-4460, Dubey, Rahul orcid.org/0000-0003-1524-7797 et al. (4 
more authors) (2024) A quality diversity study in EvoDevo processes for engineering 
design. In: IEEE World Congress on Computational Intelligence 2024. IEEE World 
Congress on Computational Intelligence 2024, 30 Jun - 05 Jul 2024 IEEE , JPN 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A quality diversity study in EvoDevo processes for

engineering design*
*Note: Sub-titles are not captured in Xplore and should not be used

Anonymous Authors

Abstract—For a long time engineering design has relied on
human engineers manually crafting and refining designs using
their expertise and experience. In Bio-inspired Evolutionary
Development (EvoDevo), generative algorithms are employed
to investigate a broader design space that may go beyond
what human engineers have considered. Previous literature has
demonstrated the use of quality and diversity (QD) algorithms
in evolutionary aproaches to drive the process to better quality
solutions. This paper provides a study to understand the effects
of using QD algorithms in EvoDevo processes for engineering
design. This paper also analyses the impact of using different
behavioural characterisations (BC) in the performance of the
quality of the solutions found. The results demonstrates that
quality and diversity algorithms can find better solutions than
other EAs for engineering design problems. It was also found
that the characterisation of the BC is important to get the best
results.

Index Terms—evodevo, generative design, structural engineer-
ing, quality diversity, neural networks

I. INTRODUCTION

Evolutionary Developmental (EvoDevo) algorithms add a

developmental component (Devo) to traditional evolutionary

algorithms (Evo). Recent work has utilised the EvoDevo pro-

cess in the engineering context to produce sets of engineering

designs. Previous work [1] demonstrated the design of bracket

components using developmental or growth processes. Previ-

ous work [1] demonstrated the use of EvoDevo to improve the

design of bridge-like structures.

In contrast to traditional Evo processes, the population is

a set of “designers” that optimize the same starting structure,

or seedling, during the growth process. The designer in this

context takes the form of an artificial gene regulatory network

(GRN). The structure is composed of cells, and the same copy

of the GRN resides in each cell of the structure. The GRN

takes as an input the state of a cell itself and changes to the

cell are taken from the GRN output (s). These changes occur

at every Developmental step. After the Developmental process

finishes, the fitness information is feedback to the Evo process

to evolve the GRNs. This evolved GRN can be subsequently

used for a similar problem with different conditions and the

growth process will create potentially a new design for the

new conditions.

In previous work, the seedling was hand-designed by the

user However, recent work found that the shape of the

seedlings has an influence on the performance of the EvoDevo

Funding information will be provided after paper acceptance

process where seedlings with relatively good performance

could lead to sub-optimal designs and sub-optimal seedlings

could yield subjectively better designs and this lead to the

question regarding how to design the most appropriate seedling

for a given class of tasks. The authors proposed three solutions

and one of them was to use Quality Diversity algorithms (QD)

[2] to design the seedlings.

This paper explores this same problem but from a different

perspective. QD algorithms are used to evolve the final designs

with the expectation that these algorithms would explore

a broader space and with this avoid local optima regions.

This paper also questions if the definition of Behavioural

Characterisation (BC) (size and features) at different levels of

abstraction has an influence on the performance of QD algo-

rithms. In addition it explores the effectiveness of considering

negative quality regions in the BC.

The motivation for using QD within an EvoDevo algorithm

for design is similar to that for using QD in evolutionary

robotics applications [3]–[5]: the space of possible designs

is very large and highly heterogeneous, so driving diversity

in the population is a potential means to overcome local

optima. Thus, it is important to demonstrate that QD has a

beneficial contribution to evolution and then to show how

such an approach can be configured and tested. In particular,

the measure of BC has many potential formulations and it

needs to be shown how to select an appropriate one. Finally,

diversity measures may push a significant proportion of the

population into an unproductive region of the design space,

and mechanisms for limiting this potential outcome need to

be explored.

The null hypotheses to be tested in this paper are the

following:

1) The definition of the BCs design has no statistically

significant influence on the results.

2) The consideration of quality-only regions when design-

ing BC has no significant difference when compared

with regions that include sub-optimal quality regions.

3) The performance of QD algorithms is not statistically

significantly different than a multi-objective algorithm

when applied to EvoDevo processes.

The key contributions of this paper are two-fold. 1. This

is the first implementation of QD algorithms inside EvoDevo

processes, and with this, the process exhibits better perfor-

mance for the problem given in this paper (in this case

a Warren truss). 2. The demonstration and comparison of



TABLE I: Experimental parameters. * This grid size is used

for the Devo BC as one of the dimensions cannot be higher

than 10 due to the nature of that dimension.

Parameter Value

Emitters 4
Grid size 50x50 (250x10*)
Sigma 0.8

Generations 100
Population 100
Devo steps 10

Sample size 15

performance with different BC when applied in EvoDevo and

the results in this paper indicate that it is important to consider

the information from the growth process itself to find better

solutions.

II. EXPERIMENTAL METHODOLOGY

The Evolutionary Developmental algorithm EvoDevo used

is similar to [1] and parameters can be found in table I. The

structure explored in this paper is a Warren truss as illustrated

in figure 1. The vertices in the bottom are fully constrained

to prevent movement, the left vertex has a pinned support and

the vertex on the right has roller support, and a load of 300N

is applied in the middle bottom vertex.

Fig. 1: Seedling. The bottom vertices of the seedling are fixed,

the left vertex is pinned and the right vertex is supported by a

roller. The load of 300N is applied to the vertex in the middle

of the structure.

The evolutionary algorithm evolves the GRNs in this case

implemented as evolvable neural networks. These GRNs reg-

ulate the growth of each cell, in this case a triangle, in

the structure. The structure grows from a starting structure

(seedling) to the final design after a pre-determined number

of growth steps. The GRN is able to change the cross-sectional

area of the edges of the triangle and the locations of the

vertices that are not loaded or supported. All the edges in the

seedling have a starting cross-sectional area of 10mm2 and

the change range is [2.5, 10]mm2. Each vertex can be moved

up to 1 mm in the x and y directions for each of the total 10

growth steps.

In order to test hypothesis 3, two algorithms are evalu-

ated: multi-objective (MO), using the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [6] algorithm; and the QD

algorithm Covariance Matrix Adaptation MAP-Elites (ME)

[7].

For the first algorithm, MO, the two objectives to minimise

are volume and deflection at the final design of the growth

process. Assuming that the structure has m edges, the volume

objective is the sum of the volume for each edge in the

structure and is calculated using equation 1:

V =
∑

m∈M

AmLm (1)

where A and L represent the cross-sectional area and length

respectively for member m. Assuming that there are n vertices,

the deflection objective measures the maximum deflection of

any vertex in the structure as shown in equation 2 when a

load is applied to the structure. The magnitude of deflection

is estimated using Finite Element Analysis (FEA) software [1].

D = max[d0, ..., dn] (2)

For the second algorithm, ME, the quality metric and be-

haviour characterization need to be defined. The quality metric

is the normalised equal-weighted sum of the two objectives

used in MO: volume and deflection. The normalization is

relative to the seedling. The behaviour characterization (BC)

is a descriptor used to quantify and incentivise the diversity of

solutions in QD algorithms. In this paper, four different two-

dimensional BC are analysed for each layer of abstraction to

test hypothesis 2: genotypic, phenotypic, developmental and

performance. The BC are described next, values can be found

in table II and examples of landscapes are shown in figure 2.

• Genotypic (Gen): This BC captures information from

the GRN in this case a feed-forward fully-connected

neural network. The first dimension is the number of

active connections out of 84 total connections and the

second dimension is the weighted sum of all the active

connections.

• Phenotypic (Phe): This BC takes information from the

structure itself where the BC is the mean concentration

of strain energies in the x and y axis estimated by the

FEA across all the edges.

• Developmental (Devo): This BC concerns the growth

process. The first dimension, referred to as reward, is the

addition of the quality scores at each step and relative

across the previous growth step. The second dimension

indicates the growth step where the highest quality score

was found during the Devo process.

• Performance (Perf): This layer is the objectives used for

MO: volume and deflection.

For the BCs, different values were chosen to test hypoth-

esis 2 with the objective of identifying whether the range of

values used as BC has an influence on the performance of

the algorithm. For this, three different sets of values were

evaluated for each BC with the exception of Gen and Phe



TABLE II: Behavioural characterisations (BC)

BC Features Dims 1 Dims 2 Dims 3

Gen
Connections number [0, 84] [26, 62] -
Aggregated weights [-84, 84] [-60, 60] -

Phe
Mean-strain-x [0, 32] - -
Mean-strain-y [0, 9] - -

Perf
Volume (mm

3) [500, 2600] [500, 1265] [600, 1265]
Deflection (mm) [0.1, 1.1] [0.1, 0.808] [0.2, 0.808]

Devo
Aggregated reward [-0.5, 0.5] [0.0, 0.5] [0, 0.45]
Peak step fitness [0, 9] [0, 9] [0, 9]

where the size cannot be reduced further without excluding

positive values. More information on this and the reasoning

for selecting the specific values shown in table II are described

in section III-B.

The results shown in this paper are analysed with three

different metrics: improvement relative to the seedling, the

Pareto-agnostic hypervolume and the QD-metric. The im-

provement relative to seedling is the quality metric described

and converted to a percentage for human readability. The

hypervolume metric (HV) [8] is used to assess the Pareto front

produced by each strategy where high values of HV represent

larger Pareto fronts and the seedling is used as the reference

point. The QD score [9] measures the total addition of elite

fitness across the entire archive of solutions.

It is important to clarify that this paper follows the ’A-

B’ convention to describe the strategy used to evolve the

designs where ’A’ stands for the algorithm used and ’B’ is

the BC used by the algorithm. For example, an experiment

using the ME algorithm with the ’Gen’ BC is shown as ’ME-

Gen’. In addition, every single strategy can evaluate the QD-

score relative to other BC landscapes when this happens the

algorithm is not mentioned and only the BC is shown (i.e.

’Gen’), this information is relevant in section III-D.

Two different statistical tests are used in this paper. The

Vargha-Delaney A-test [10] was used for the CMA-ME param-

eter calibration of the sigma, grid size and number of emitters

parameters (robustness analysis) and to identify the number of

samples (15) required to minimize the effects of uncertainty

and to increase confidence when analysing the results (consis-

tency analysis). Robustness analysis and consistency analysis

can be found in the supplementary material1

The Mann-Whitney U-test [11] is used to assess the hy-

pothesis that the samples from two groups are not mutually

independent. For this, a three-score system is used where *

represents p < 0.05, ** represent p < 0.01, *** represents

p < 0.001 and p is the probability.

The code and data can be found on-line2.

III. RESULTS

This section first provides a qualitative analysis of the four

different BC landscapes which describes their size and shape.

Then, the effects of selecting different range values for the BCs

using the HV as a metric are explored and the best strategies

1Supplementary material will be made available after paper-acceptance
2Code will be made available after paper-acceptance

are highlighted. Lastly, the performance using the QD score

of each strategy with each combination of BC is analysed to

identify the strategy that performs best across the different

BCs.

A. Qualitative analysis of the BC landscapes

The landscapes for each BC shown in figure 2 are taken

from one of the samples of evolving with MO, ME-Gen, ME-

Phe, ME-Dev and ME-Perf.

The Gen BC is shown in figure 2a and d. The first thing

to notice is that ME-Gen explores a wider space than MO.

However, ME-Gen still only explores a small portion of

the available search space. In addition, it appears that MO

converged to a global optima whereas this is not the case for

ME-Gen where it appears there are multiple local optima exist

in the quality domain. This might be because this BC is far

removed from the quality of the structure, therefore ME-Gen

is exploring regions of the Gen landscape that might not have

a great contribution to the quality.

The shape of the Phe-BC landscape (figure 2b and e) is

bell-like and an optimal gradient is located roughly at the

middle of the x-axis therefore highlighting that symmetrical

strain energy distributions seem to provide the better quality

solutions. In addition, strain energies located closer to 0 in the

y-axis provide the worst results. However, when comparing the

landscapes between MO and ME-Phe, it seems that there is no

great difference with the exception that ME-Phe finds better

quality solutions in some regions of the landscape.

The best solutions for the Devo BC (figure 2c and f) are

located in the upper-right region of the diversity map and

the shape is curve-like. This region maximizes the reward

and makes the growth process more efficient as the best

solution is found in the last developmental step. The curve-

like shape illustrates that some rewards are unreachable with

a low number of developmental steps. Roughly half the area

of this landscape contains negative rewards. ME-Devo seems

to exhibit a thicker curve than MO meaning the former is

exploring more regions of the landscape.

The Perf BC landscape (figure 2g and h) demonstrates the

regions of optimality and a Pareto front can be visualized. This

landscape contains negative values at the top-right corner. ME-

Perf explores more regions in the landscape than MO this is

more apparent in the top-right and bottom-left regions of the

landscape.

In conclusion, the BC significantly affects the shape of

the landscape and the distribution of quality designs. The



(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2: Example of the four BCs landscapes: Gen, Phe, Devo and Perf. Two different samples are shown for each evolutionary

strategy: MO and ME. The BC defines the shape and distribution of the quality of solutions. ME explore a wider region of

the space.

ME strategy explores a wider space than the MO strategy.

However, a question arises, are the negative quality and empty

regions worth considering in the BC to find the best designs

when using QD algorithms? This is explored in the next

section.

B. Analysing the BC ranges

Different values for BC ranges, table II, are analyzed to

identify if the negative quality regions are worth encapsulating

when designing the BC. The initial values, dims 1, were

chosen for the BCs for each layer to cover most of the available

landscape including positive and negative quality regions. The

values for dims 2 and dims 3 were chosen in regions where

positive quality designs were aggregated. It is important to

highlight that the grid size is not changed, therefore if the

range is reduced the granularity is increased for that region.

Figure 3a compares the QD score for each strategy at the



last generation. There is no statistical difference between ME-

Gen 1 and ME-Gen 2. This demonstrates that the BC range

reduction has no impact on the performance of this specific

BC.

ME-Devo 1 and ME-Devo 2 are *** significantly different.

This demonstrates that removing half of the BC landscape

containing negative-quality solutions has a positive impact

on the performance of the algorithm. There is no difference

between ME-Devo 2 and ME-Devo 3.

ME-Perf 1 and ME-Perf 3 are * significantly different. The

improvement is lower than ME-Devo and this might related

to the proportion of negative-quality regions removed from

the range for BC where the amount of negative regions is

subjectively higher for ME-Devo than ME-Perf.

Figure 3a also illustrates that ME-Devo 2 and ME-Perf 2

are ** significantly different than MO, therefore this rejects

hypothesis 3 and demonstrates that this QD algorithm finds

better solutions for the engineering problem shown in this

paper.

Figure 3b shows the convergence of the HV metric over

generations for selected strategies. The convergence speed is

correlated to the final HV values where ME-Perf 3 finds the

best HV values.

It is therefore possible to conclude that the exclusion of

negative quality regions improves the performance of the

algorithm for ME-Devo and ME-Perf. This is effective up

to a limit after that it becomes insignificant, hereby this

rejects hypothesis 2. The next section explores the explorative

effectiveness of each strategy using the QD score.

C. QD score comparison

In this section, the QD score is compared for each com-

bination of strategy and BC landscape. This is to identify

the strategy that has the highest QD scores across all the BC

landscapes.

Figure 4 and table III illustrate in different ways the QD-

score for each combination of strategy and BC. In table III,

the median values are shown for each strategy with each BC.

The blue cells highlight the best strategy for each given BC

landscape. In this case, ME-Devo has the highest QD values

for Gen, Phe and Devo BCs. ME-Pef has the highest QD

values for the Pef BC landscapes. In other words, even though

the ME-Devo is designed to explore the Devo BC landscape

this strategy not only has the best QD-scores for this BC but

also this strategy has the best scores for the Gen and Phe BC

landscapes. This means that ME-Devo is able to explore more

space and find better elites in 3 out of the 4 BCs.

The previous statement can also be visualised with figure 4.

In the barplot in figure 4a, the highest values are achieved by

ME-Devo in 3 out of the 4 BC landscapes and in similar way

ME-Devo is able to get close to the four regions in the radar

plot in figure 4b. Please note that the values of the radar plot

are normalised for visualisation purposes

In conclusion, hypothesis 1 is rejected and the BC has an

impact on the exploration where the ME strategy with Devo

(a)

(b)

Fig. 3: Results of comparing MO and ME with different BCs

using HV as metric. Figure (a) shows the HV values at the

last generation and figure (b) shows the convergence of the

HV over time for selected strategies (ME-Devo and ME-Perf).

The ME strategy is finding better values for HV than MO for

ME-Devo 3 and ME-Perf 2. Designing the BC with positive

quality solutions provides better solutions for ME-Devo 3 and

ME-Perf 2. Convergence is faster for ME-Devo 3 and ME-

Perf 3 than MO

BC seems to provide a better exploration power across the rest

of BC landscapes.

D. Growth process from evolved desingns

Examples of the best quality structures found by each

strategy can be visualised in figure 5. Most strategies seem

to reinforce the top arch and the edges connecting to the load

and this is because these edges experience the highest forces

in the structure and hence the highest deflection. There are

also elements of symmetry and some edges are set vertically

(figure 5e).



TABLE III: Median value for each strategy measure against each BC landscape. The QD score for the best-performing strategy

is highlighted in blue. A u-test is performed between the first and second best performing QD-score and the results are shown

in parentheses.

BC measured with

Gen Phe Devo Perf

Strategy evolved with

MO 2358 -16367 17810 13121
ME-Gen 3399 -22636 10967 2793
ME-Phe -6552 -40422 2443 -502

ME-Devo 9606 (***) -15751 (*) 24647 (***) 14902
ME-Perf 13121 -19902 20714 19072 (***)

(a)

(b)

Fig. 4: Real value QD score bar plots (a) and normalised QD

score radar plot (b). The ME-Devo strategy has the highest

values across the Gen, Phe and Devo BCs. ME-Perf has the

highest value for Perf

Figure 6 illustrates the growth of the structures shown in fig-

ure 5. Figure 6a shows the improvement at each step relative to

the seedling. All strategies appear to have a consistent increase

in performance. ME-Perf and ME-Phe had a miniscule drop

in improvement at the last step. This does not occur in ME-

Devo where one of the attributes of BC identifies in which step

during the growth process the highest quality was achieved.

Figure 6b presents the improvement relative to the previous

step for the growth process for each structure. As the growth

from the structure matures the amount of improvement at each

step diminishes. The drop in improvement at each step for

ME-Perf is not as consistent as ME-Devo.

In conclusion, the results indicate that ME-Devo might cre-

ate GRNs with more efficient and consistent growth processes

and this might enhance exploration as shown in section III-D.

IV. CONCLUSION

The starting conditions, that is the seedling, in this Evolu-

tionary Development (EvoDevo) algorithm used in generative

design for engineering structures can drive the process to sup-

optimal solutions as shown in [1]. This paper proposed to make

use of QD algorithms to prevent the EvoDevo process from

stagnating in a sub-optimal solution by promoting diversity

in designs. For this, four different behaviour characterisation

(BC)s are explored as options for the QD algorithm. Each BC

has properties from different layers in the EvoDevo process.

The main conclusions of this paper are summarised as

follows: 1) The QD algorithm used in this paper (CME-ME

[7]) provides better designs than NSGA-II for the problem

considered (Warren truss). 2) The BC related to the growth

process seems to provide better results than the rest. This might

show that it is important to consider the information during

the growth process to produce the best results in an EvoDevo

process.

This paper also shows that the design BC should contain

as much of the positive quality region for the algorithm to

exhibit its best performance. Also, it is important to note

that the list of BC used in this paper is not exhaustive and

better BC might exist that improve the performance of the

algorithms. Regardless, the question still prevails. How to

design the appropriate BC and the range values for this BC?

For this, three options can be used from literature:

1) Manual calibration: similar to the work presented in this

paper, the BCs can be manually crafted. However, this

approach is time-consuming, and requires knowledge

from the designer and the BC design might not provide

the best global results.

2) Automatic BC definition [12], [13]: this type of al-

gorithm uses the knowledge accumulated during the

evolutionary process to construct BCs on the fly with un-

supervised dimensions reduction techniques. However,

this approach requires prior data to be gathered and this

could be computationally expensive

3) Human assisted QD algorithms [14]: in this approach,

a human subjectively adds metrics to the solutions

according to the similarity of solutions. This approach



(a) (b) (c)

(d) (e)

Fig. 5: Best solutions found by each strategy: MO (a), ME-Gen (b), ME-Phe (c), ME-Devo (d) and ME-Perf (e). The evolved

structure exhibits the traits of reinforced arcs and edges connecting to the load.

relies on the knowledge and time of the person making

the decisions.

Regardless, the evolved GRN should be generalizable for

different problems. The selected QD algorithm should accom-

modate these needs.

Further work will explore the previous options to design BC

will be analysed in the context of EvoDevo. In addition, the

autonomous design of seedling will be explore to enhance the

final results evolved.
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(a)

(b)

Fig. 6: Growth process for the structures shown in figure 5.

Figure (a) shows the progression of each structure relative to

the seedling. All strategies appear to have continuous growth

except by ME-Perf and ME-Phe which suffer a small drop at

the last step. Figure (b) shows the improvement relative to the

previous steps. The improvement diminishes over time as the

growth process converges. Lines of interest are highlighted.

ME-Devo appears to have the most consistent progression.


