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A B S T R A C T 

In general relativity, approximations based on the spherical collapse model such as Press–Schechter theory and its extensions 

are able to predict the number of objects of a certain mass in a given volume. In this paper, we use a machine learning algorithm 

to test whether such approximations hold in screened modified gravity theories. To this end, we train random forest classifiers 

on data from N -body simulations to study the formation of structures in lambda cold dark matter ( � CDM) as well as screened 

modified gravity theories, in particular f ( R ) and nDGP gravity. The models are taught to distinguish structure membership in 

the final conditions from spherical aggregations of density field behaviour in the initial conditions. We examine the differences 

between machine learning models that have learned structure formation from each gravity, as well as the model that has learned 

from � CDM. We also test the generalizability of the � CDM model on data from f ( R ) and nDGP gravities of varying strengths, 

and therefore the generalizability of extended Press–Schechter spherical collapse to these types of modified gravity. 

Key words: dark energy – dark matter – large-scale structure of Universe. 

1  I N T RO D U C T I O N  

Structure formation in the Universe is caused by gravitational 

instability due to tiny density fluctuations produced in the very early 

Universe. It proceeds from the bottom up, with objects smaller than 

galaxies forming first, which subsequently form larger structures 

such as galaxies and clusters of galaxies. An important ingredient 

in this theory is the existence of dark matter (DM), which allows 

structures to form on small scales despite dissipative processes in 

baryonic matter. An essential element in this picture of structure 

formation are DM haloes, which can be thought of as the building 

blocks of the structures in the Universe. These are gravitationally 

bound objects and understanding their formation and evolution is 

an essential goal in cosmology. Due to the fact that DM haloes are 

highly non-linear objects, one has to resort to N -body simulations to 

study the full evolution of DM haloes. Despite this, there are (semi- 

)analytic approximations, which allow to estimate the redshift at 

which structures go non-linear or to calculate the halo mass function. 

The first study was due to Press & Schechter (1974 ), with subsequent 

impro v ements made in e.g. Sheth & Tormen ( 1999 ), Jenkins et al. 

( 2001 ), and Tinker et al. (2008 ). 

These investigations rely on general relativity (GR), in the sense 

that gravity alone is responsible for structure formation. Ho we ver, 

ever since the discovery of the accelerated expansion of the Universe 

(Riess, Filippenko et al. 1998 ; Perlmutter et al. 1999 ), cosmologists 

have studied various theories accounting for the late time accelerated 

expansion. In the simplest models, a new energy form, dubbed dark 

energy (DE), is responsible for the accelerated expansion. Including 

a cosmological constant in GR is the most economical way to model 

DE. Adding the cosmological constant in GR, together with DM, 

⋆ E-mail: jbetts3@sheffield.ac.uk 

leads to a highly successful model [the lambda cold dark matter 

( � CDM) model], which is an agreement with many of the current 

data (Peebles & Ratra 2003 ; Abbott et al. 2019 ; Peebles 2020 ). 

Ho we ver, the cosmological constant remains an enigma. Its value and 

physical interpretation is currently unexplained. Models of DE such 

as quintessence or theories of modified gravity have been developed 

in order to explain current data and to challenge the � CDM model. 

In models of modified gravity in particular, new degrees of freedom 

couple to matter, resulting in an additional force affecting structure 

formation in the Universe. In such theories, the analytical models 

such as the Press–Schechter model mentioned abo v e, might be in 

need of modifications (Pace, Waizmann & Bartelmann 2010 ; von 

Braun-Bates & Devriendt 2018 ). 

In this paper, we will use a machine learning approach to gain 

insight into structure formation in modified gravity theories. We use 

the approach put forward in Lucie-Smith et al. ( 2018 ), in which 

the evolution of structure formation was turned into a (binary) 

classification problem. In this approach, a random forest classifier is 

trained to learn the relationship between the initial conditions of the 

DM density field (at high-redshift) and the final DM distribution. The 

initial conditions are mapped on to whether a particle ends up in a 

halo or not. The random-forest algorithm has been shown to be very 

ef fecti ve and accurate in Lucie-Smith et al. (2018 ). As it was shown in 

that paper, the predictions of the random-forest classifier are in very 

good agreement with extended Press–Schechter theory. The question 

we are addressing in this paper is whether this mapping from initial 

to final conditions is affected in theories of modified gravity. To be 

concrete, we are using data from simulations of f ( R ) theories and 

nDGP (Dvali–Gabadaze–Porrati) gravity and perform the analysis 

of Lucie-Smith et al. ( 2018 ) on these data. If our result would show 

that the predictions get significantly worse as we mo v e a way from 

GR, then information about the additional degree of freedoms in 

modified gravity theories would need to be taken into account. 

© 2023 The Author(s) 

Published by Oxford University Press on behalf of Royal Astronomical Society 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
6
/3

/4
1
4
8
/7

2
8
6
6
5
7
 b

y
 U

n
iv

e
rs

ity
 o

f S
h
e
ffie

ld
 u

s
e
r o

n
 2

1
 M

a
rc

h
 2

0
2
4



ML & structure formation in modified gravity 4149 

MNRAS 526, 4148–4156 (2023) 

The paper is organized as follows. In Section 2 , we will briefly 

summarize the modified gravity theories we consider in this paper. 

In Section 3 , we summarize the simulations. Our methodology is 

presented in Section 4 and our results are presented in Section 5 . 

Section 6 summarizes our findings. 

2  M ODIF IED  G R AV I T Y  T H E O R I E S  

In this paper, we consider a couple of modified gravity theories, 

namely a f ( R ) model and the nDGP model. We will briefly describe 

these two models to set the scene. 

2.1 f ( R ) gravity 

In this extension of GR, an additional term is added to the Einstein–

Hilbert action. The theory is described by the following action 

S = 

∫ 

d 4 x 
√ 

−g 

[

R + f ( R) 

16 πG N 
+ L M 

]

. (1) 

In this equation, G N is Newton’s gravitational constant, L M is the 

matter Lagrangian (including the standard model fields and CDM). 

The function f ( R ) encodes the modifications from GR. In this paper, 

we will concentrate on a specific form of f ( R ), proposed by Hu and 

Sawicki (Hu & Sawicki 2007 ). This takes the form 

f ( R) = −m 
2 c 1 

(

−R/m 
2 
)n 

c 2 
(

−R/m 2 
)n + 1 

, (2) 

where m 
2 sets the DE energy scale and is given by m 

2 ≡ H 
2 
0 �M . The 

parameter c 1 , c 2 , and n are free parameters, which are chosen such 

that the theory matches the � CDM background evolution. Apart 

from the metric, f ( R ) theories contain an additional scalar degree 

of freedom, the scalaron f R ≡ d f /d R . This degree of freedom is 

coupled universally to all matter forms and mediates a new force. 

To make f ( R ) theories compatible with experiments, one can employ 

the chameleon mechanism, for which it is necessary that | f R | ≪ 1 

in high curvature regions. The scalaron in this model al w ays sits at 

a minimum of an ef fecti ve potential, which leads to a relationship 

between the parameter and the value of the scalaron today (Arnold, 

Leo & Li 2019b ) 

c 1 

c 2 2 

= −
1 

n 

[

3 

(

1 + 4 
�� 

�M 

)]

f R0 . (3) 

The original Hu–Sawicki formulation uses theoretical arguments 

for screening within our Solar system to place a constraint of | f R0 | 
� 10 −6 . Other constraints from distance indicators in the nearby 

Universe (Jain, Vikram & Sakstein 2012 ), dwarf galaxies (Vikram 

et al. 2013 ) lower this value even further. However, the weakness of 

modifications that meet these constraints w ould mak e their impact 

on structure formation on cosmological scales negligible as they 

are not permitted to impact clustering of large-scale structure (Liu 

et al. 2021 ). Despite these shortcomings, ef fecti ve models in which 

the fifth force can impact spherical collapse still provide a test bed 

for gravity on large scales. More recently, clustering constraints on 

massive haloes (Cataneo et al. 2015 ) place | f R0 | < 10 −4.79 in these 

ef fecti ve models. 

We work with N -body simulation data for which n = 1 and | f R0 | = 

10 −4 , 10 −5 , 10 −6 were chosen. In the following, these models are 

denoted by F4, F5, and F6, respectively. 

2.2 nDGP gravity 

The DGP model is moti v ated from theories with extra dimensions 

(Dvali, Gabadadze & Porrati 2000 ). In this model, our Universe is a 

brane embedded in a five-dimensional space–time, called the bulk. 

The action is given by 

S = 

∫ 

bulk 

d 5 x 
√ 

−g (5) 
R 

(5) 

16 πG (5) 
+ 

∫ 

brane 

d 4 x 
√ 

−g 
R 

16 πG 
. (4) 

In this equation, g (5) denotes the determinant of the metric of the 

five-dimensional space–time, g is the determinant of the induced 

metric on the brane. G is Newton’s gravitational constant and G 
(5) 

is the five-dimensional gravitational coupling. Since there are two 

gravitational couplings in the theory, their ratio define a characteristic 

scale, called cross-o v er scale, defined by the ratio 

r c = 
G 

(5) 

2 G 
, 

abo v e which the first term in the action abo v e dominates and 

deviations from GR are predicted. The model consists of two 

branches. The first branch, considered here, is the ‘normal’ branch 

(nDGP), and the second branch is a self-accelerating branch. We 

focus on the former, because ghost instabilities are not present in this 

branch. Abo v e the cross-o v erscale, gravity becomes stronger, while 

on smaller scales gra vity beha ves like GR thanks to Vainshstein- 

screening. 

For the models used in this work, we express deviations from 

GR by the product H 0 r c (i.e. the ratio of r c to the present Hubble 

radius 1/ H 0 ). Markov chain Monte Carlo studies of brane tension 

(Lombriser et al. 2009 ) place the crosso v er scale much higher than 

the Hubble scale, giving the constraint H 0 r c > 3. For the models 

considered in this paper, we use H 0 r c = 1 and H 0 r c = 5, denoted by 

N1 and N5, respectively. 

3  SI MULATI ONS  

In this work, we make use of the SHYBONE (Simulation HYdrody- 

namics BeyONd Einstein) simulation suite (Arnold, Leo & Li 2019a ; 

Hern ́andez-Aguayo et al. 2021 ), which are a set of high-resolution 

h ydrodynamical g alaxy formation simulations of GR, f ( R ) gravity, 

and the nDGP model, carried out with the AREPO hydrodynamical 

simulation code (Springel 2010 ), modified to include a modified 

gravity solver that solves the extra scalar fields in the f ( R ) and nDGP 

models. For this analysis only the DM runs (with no baryons) of 

SHYBONE are used. 

These simulations co v er six gravity models – GR, F6, F5, F4, 

N5, and N1 – and evolve 512 3 DM particles in a cubic box of size 

62 h 
−1 Mpc from z = 129 to z = 0. All runs start from identical 

initial conditions, given that the modified gravity impact on matter 

clustering at z = 129 is negligible. Group catalogues are identified 

using the SUBFIND (Springel et al. 2001 ) halo-finder, and we use M 200c 

as the halo mass definition, which includes all particles enclosed 

by a sphere of radius R 200c , within which the average density is 

ρ̄ = 200 × ρcrit around the potential minimum of the object, at the 

halo redshift. 

The simulations adopt the Planck 2015 cosmology (Planck Col- 

laboration 2016 ) with cosmological parameters n s = 0.9667, h = 

0.6774, �� = 0 . 6911, �b = 0.0486, �m = 0.3089, and σ 8 = 0.8159, 

where h ≡ H 0 / 
(

100 km s −1 Mpc −1 
)

, n s and σ 8 are respectively the 

spectral index of the primordial density fluctuations and the present- 

day root-mean-squared matter density fluctuation within 8 h 
−1 Mpc , 

and �b , �m ,and �� are the present-day density parameters of 
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Figure 1. The full pipeline used to generate models for GR, three f ( R ) theories, and two nDGP theories. The initial conditions of each simulation are used 

to generate an NGP density contrast field image. This density image then has the feature engineering smoothing applied to generate 50 features per particle 

describing its density environment. The halo catalogues at z = 0 are then used to label the features for supervised training. Finally, the resulting data sets are 

used to train a random forest classifier per theory, by implementing a grid search to optimize hyperparameters. 

baryons, (all) matter and the cosmological constant. The particle 

mass resolution is ≃ 1 . 5 × 10 8 h 
−1 M ⊙. 

4  M AC H I N E  L E A R N I N G  M E T H O D S  

The following design of a machine learning pipeline to study struc- 

ture membership and its influences in modified gravity is proposed; 

following the methods of Lucie-Smith et al. ( 2018 ). The N -body 

simulations of Section 3 are used to generate supervised training 

data sets for models that can classify the structure membership of 

particles at z = 0 based on initial density behaviour. The properties 

of these models can then be examined to study the generalizability of 

density-contrast-centric descriptions of structure formation (Press & 

Schechter 1974 ) to f ( R ) and nDGP screened gravity theories. Fig. 1 

shows a high-level overview of this pipeline. 

Supervised training data sets consist of a set of objects with a 

class membership label and a set of features for each object that 

are designed to contain rele v ant information to class membership. 

In this case, the objects are particles, they are given IN/OUT labels 

based on structure membership at z = 0 and the features consist 

of the value of the density contrast centred on the position of that 

particle in the initial conditions smoothed at increasingly non-local 

mass scales. Models trained on such data can then be examined to 

determine which of the features was most rele v ant to classification 

output, and therefore how much structure membership information 

is contained in the density contrast and at which scale. 1 

4.1 Structure membership 

There are several available halo-finder algorithms that group the 

masses of an N -body simulation into a catalogue of haloes at a given 

redshift slice. In order to define the IN and OUT classes, the SUBFIND 

halo catalogue at z = 0 is used as described in Section 3 . Whilst these 

types of halo-finders are able to identify substructures in DM haloes, 

the binary nature of the problem means that only halo membership, 

rather than substructure membership is rele v ant in this case. 

Particles are classified as being IN a structure if they are gravita- 

tionally bound to a halo of mass M halo ≥ 1 . 8 × 10 12 M ⊙ and OUT 

1 This w ork mak es use of the PYTHON programming framew ork. The PYNBODY 

library (Pontzen et al. 2013 ) and the AREPO PYTHON integration (Arnold et al. 

2019a ) are used to parse the simulation data. The PYLIANS CYTHON library 

is used to carry out the computation of the base density contrast field and to 

carry out smoothing convolution 5 . The SK-LEARN machine learning library 

for PYTHON is used to carry out model training, inference, and analysis. 

if they are in no structure at all or in a halo of mass lower than this 

threshold value. This value is chosen at a typical scale in order to 

divide the halo catalogue into two binary classes, and may depend 

on the resolution of the N -body simulation being considered. 2 More 

thresholds could also be considered for a multiclass rather than a 

binary structure membership problem. The additional condition of 

gravitational binding preserves the assumptions of spherical collapse 

into haloes and places particles in extraneous filaments in the OUT 

class. 

We emphasize at this point that gravitational binding in our halo- 

finder is defined as in GR (using the comparison of the kinetic energy 

of a given particle to the Newtonion potential of the associated 

structure) irrespective of the modified gravity model. We find that 

the impact of this assumption is negligible on our results, a more 

detailed discussion can be found in Appendix A . 

4.2 Feature engineering 

Now the local density behaviour around the particle in the initial 

conditions must be turned into features that differentiate between 

particles that end up IN or OUT of haloes. The base density contrast 

field is generated using the nearest-grid-point (NGP) method. 3 This 

field is then spherically smoothed to generate features as follows. 

F or a giv en smoothing radius R , the smoothed density contrast can 

be defined as 

δ ( x ; R ) = 

∫ 

δ
(

x ′ 
)

W top −hat ( x − x ′ ; R) d 3 x ′ , (5) 

with real-space top-hat window function 

W top −hat = 

{ 
3 

4 πR 3 
for | x | ≤ R, 

0 for | x | > R. 
(6) 

Convolution ( 5 ) is calculated for a given R by means of a Fourier 

transform, filtering in k space, then inverse Fourier transform. 

W top-hat ( x , R ) for a given R maps to a characteristic mass scale 

M smoothing = ρ̄V top −hat ( R) with V top-hat ( R ) = (4//3) πR 
3 . Each feature 

for a given particle then becomes the smoothed density contrast value 

for a chosen M smoothing centred on the particle in the initial conditions. 

The full feature set is computed for a series of logarithmically 

2 Halo-mass-function cutoffs due to unresolved haloes at smaller scales are a 

good indicator for the structure threshold. 
3 Cloud-in-cell methods were also tested in the generation of the base density 

contrast field but were found to produce resolution effects when smoothed at 

low scales due to the boundaries between cells. 
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Figure 2. Density trajectories for example particles contained in the IN (red) 

and OUT (blue) classes for GR. 

Figure 3. The mean trajectories for IN (red) and OUT (blue) in GR o v er 

a training data sample of 50 000 particles. The shaded area shows the 1 σ

deviation in each class. 

spaced values of M smoothing bounded below by the resolution of the 

simulation and bounded abo v e by the size of the simulation box. In 

the case of this work, 3 × 10 10 M ⊙ < M smoothing < 10 15 M ⊙. It has 

been found previously that a series of 50 values for M smoothing in 

this range and therefore, 50 features was sufficient to differentiate 

class membership (Lucie-Smith et al. 2018 ). The same is true in this 

work, a larger number of features did not yield an impro v ement 

in classification performance for GR or any of F4, F5, F6, N1, 

and N5. The set of 50 smoothed density contrast features for a 

given particle can be visualized as its density trajectory through 

increasing mass scales. Fig. 2 shows a selection of example particle 

trajectories for the IN and OUT classes in GR, and Fig. 3 shows 

the averaged trajectories for each class. This demonstrates how the 

features given to the classifier can be used to differentiate class 

membership. 

4.3 Model selection and training 

There are many machine learning (ML) algorithms that can learn 

classification. For structure formation, each of the density contrast 

features are correlated with one another. Random-forest classifiers 

were found to be agnostic to this (Lucie-Smith et al. 2018 ), and we 

continue their use in this work for their auditability. Random forests 

are an ensemble model that use the wisdom of crowds principle to 

vote on the outcome of a classification amongst a forest of decision 

trees (Breiman et al. 1984 ; Breiman 2001 ). Decision tree methods 

attempt to divide up the feature space such that members of each class 

can be identified based on their feature values. Building the perfect 

single decision tree is computationally intractable in non-trivial cases 

(G ́eron 2019 ) and the resulting model would not generalize well to 

new data. Therefore a ‘forest’ of trees trained on random subsets of 

the training data vote on classification outcomes. This reduces bias 

and variance in predictions and increases the generalizability of the 

model. 

Secondary among the benefits of using a random forest is the 

ability to examine the feature importance attributes of a model. Once 

the model has been trained, it is possible to measure each feature’s 

importance to the classification decision. This is done by computing 

an average class-impurity decrease across nodes in the random forest 

that use the feature. We make use of Gini impurity (Farris 2010 ) in 

this work. Consider node m of a given decision tree in the forest. Let 

the data at node m be denoted by Q m and contain n m samples. The 

goal of node m is to split each object y ∈ Q m into one of k classes. In 

this binary case k ∈ [0, 1]. The proportion of class k observations at 

node m is 

p mk = 
1 

n m 

∑ 

y∈ Q m 

I ( y = k) , (7) 

which is then aggregated into the Gini impurity measure for the node, 

H gini ( Q m ) = 

∑ 

k 

p mk (1 − p mk ) . (8) 

For feature i in a single decision tree, N i is the set of nodes that 

use feature i and N t is the total number of nodes in the tree. Feature 

importance for feature i is then given by 

F i ≡
∑ 

n ∈ N i H gini ( Q n ) 
∑ 

m ∈ N t H gini ( Q m ) 
. (9) 

In the random forest case, F i is computed for each feature, for each 

tree in the forest. These values are then averaged across all of the 

trees to give each feature an important statistic for the forest as a 

whole. Finally, the forest feature importance are normalized between 

0 and 1. In this work, where each feature denotes the behaviour of 

the density contrast at a given mass scale centred on a particle, 

the feature importance should be thought of as the significance of 

density field behaviour at that mass scale to the process of structure 

formation. 

Aside from the calculation of rele v ant features to describe objects 

to be classified, there are a couple of other nuances to training a 

machine learning model of this type that are worth mentioning. 

P arameters that giv e the algorithm computational information such 

as the number of trees in a forest, the maximum depth of each 

tree or the minimum number of training samples a node must take 

before it can finalize its split of the data set. These values are 

known as hyperparameters . The selection of these values can have 

a considerable effect on the performance of the resulting model, e.g. 

overfitting . Overfitting occurs when a model is too strongly biased 

towards the training data it has received and therefore performs 

poorly when asked to classify new instances when validated. Voting 

architectures such as the one used in this work can contribute 

somewhat to combatting this issue, as the biases of individual trees 

are smoothed out (Breiman 1996 ). Ho we ver, there are also cross- 

validation (Stone 1974 ) techniques that can be used during training 

to help select hyperparameters that enable a model to learn and 

generalize well. The first method used in this work is a manipulation 

of the training data structure known as k-folding (Mosteller & Tukey 

1968 ). k-F olding involv es rotating the training data set through a 
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train/validate process. Training data is divided into k subsets of equal 

size, the model is trained on k − 1 of the subsets and then validated 

on the lefto v er one. This process is then repeated with a different k 

− 1 subsets and so forth until each subset has been used to validate. 

The second method involves a higher level iteration over sets of 

algorithm hyperparameters known as a grid-search. A grid-search 

defines a hyperparameter space, samples from it, trains a model with 

the selected hyperparameters and then tests its performance against a 

validation data set. This carries on iteratively and the validation scores 

of all the models are compared to select the one that performed the 

best and therefore uses the best set of hyperparameters. The sampling 

of the hyperparameter space can either be done e xhaustiv ely or 

by random sampling, and can also be repeated itself if trends in 

performance emerge. 

In this work, we will focus on four measures of model per- 

formance: the area under the receiv er-operating-curv e, precision, 

recall, and the F1 score (Bradley 1997 ; Olson & Delen 2008 ). 

The receiv er-operating-curv e (sometimes kno wn as the recei ver- 

operating-characteristic, abbreviated to ROC or ROC curve) is the 

primary e v aluation method for classification problems. It is an 

aggregate of the confusion matrix output by a given model on a 

test set of data with known class labels. The confusion matrix groups 

the predictions of the model into true positives , false positives , true 

ne gatives , and false ne gatives for a given decision threshold. For 

example, take our two example classes y 0 and y 1 . In classification 

matrix terms for a binary decision, let y 0 be considered the negative 

class and y 1 the positive class. For feature vector x the model will 

output class probabilities P( y 0 ) and P( y 1 ). If the decision threshold is 

set at 0.5, then P( y 1 ) > 0.5 will result in a classification of the object 

with properties x into class y 1 . If this prediction is true then the result 

is a true positive at decision threshold 0.5. If false, the prediction is 

a false positive. Vice versa for the negative class y 0 . To generate the 

ROC, the fraction of positive predictions that are true (true positive 

rate) and the fraction of false positives to negatives (false positive 

rate) are computed at a series of decision thresholds between 0 and 

1. The true positive rate is then plotted against the false positive rate, 

this is the ROC. The area under the resulting curve (AUC) forms a 

useful e v aluation metric for models on a scale between 0 and 1, with 

1 being a perfect score. 

There are some limitations to this measure, such as its lack of 

robustness to class imbalance. If the training sample is 90 per cent y 1 
objects, then classifying all objects as y 1 spikes the true positive rate, 

even if the performance on the negative class is poor. This leads to a 

misleadingly high AUC score. Fortunately, the other measures listed 

abo v e in combination with the AUC score give a more complete 

picture of a classifier’s performance. Precision and recall are defined 

individually, but are often used together to provide class-relative 

insight into a model. They are both also derived from the confusion 

matrix at a given decision threshold. Precision P is defined as 

P ≡
T p 

T p + F p 
, (10) 

where T p is the number of true positives and F p is the number of false 

positives. Recall R is defined as 

R ≡
T p 

T p + F n 
, (11) 

where F n is the number of false ne gativ es. Semantically, precision 

describes the fraction of positive classifications that are true and recall 

gives the fraction of ground truth positive results that are correctly 

identified by the model. This is a subtle but important distinction. A 

precise model with low recall may not identify all of the instances 

of a class, but those members of a class it does identify are likely 

to be correctly classified. Conversely, a high recall but low precision 

model will catch most of the instances of a class, but will be less 

certain about the correctness of those predictions. Either case may be 

desirable depending on the problem. The final performance measure 

used in this work, the F 1 score, is defined as the harmonic mean of 

precision and recall 

F 1 ≡
2 P R 

P + R 
. (12) 

F 1 scores also scale between 0 and 1, and are often used as part 

of a broader assessment of models that are attempting to solve 

class-imbalanced problems. Given the problem addressed in this 

work involves classifying particles inside and outside N -body scale 

structures, it follows that the class of particles that are in structures 

will be smaller than the class of particles outside of structures. A 

combination of AUC and F 1 scores will be used for grid-search 

assessment of hyperparameters. 

A series of training data sets each containing 50 000 particles 4 

is generated for each of GR, F4, F5, F6, N1, and N5. The first 

will be used for the k-folded gridsearch for hyperparameters de- 

scribed abo v e. The rest of the data sets will be used to train a 

series of models using the selected hyperparameters for the given 

gravitational mechanism. The feature importance of these models 

will be collated to sho w ho w well the density contrast determines 

structure membership for a particle, and therefore how well it 

should go v ern analytical structure formation for the rele v ant modified 

gravity. 

5  RESULTS  

5.1 Individual model properties 

Fig. 4 shows the feature importance attributes of models constructed 

for each cosmology and their respective mean AUC score perfor- 

mance. For our GR simulation not only does the density contrast 

provide a complete description of structure formation – as is expected 

– but most of the information is concentrated at 5 . 9 × 10 11 M ⊙. 

As the strength of the f ( R ) modifications increases away from 

GR (i.e. structures become less screened from modifications), the 

most rele v ant scale for structure classification mo v es inwards to 

3 . 8 × 10 11 M ⊙. Similarly for nDGP gravity, as the enhancement 

of gravity gets stronger, the information also mo v es inwards from 

the range 3 . 8 × 10 11 M ⊙ < M smoothing / M ⊙ < 5 . 9 × 10 11 M ⊙ down 

to 3 . 8 × 10 11 M ⊙. These shifts in information rele v ant to structure 

formation do also appear to have a physical basis in the structure 

distributions of each of the simulations. The GR simulation contains 

∼ 115 000 structures at z = 0, compared to ∼ 101 000 for F4 and 

∼ 109 000 for N1. Increasing the strength of the fifth force in f ( R ) and 

nDGP models is known to enhance the abundance of massive haloes 

at the expense of smaller structures, with emptier voids between 

structures (Schmidt et al. 2008 ; Mitchell et al. 2021 ). The authors’ 

conjecture that this behaviour is the cause of the mo v ement of the 

feature importance peaks in Fig. 4 , as this condensing of density 

signals localizes information. 

Fig. 5 shows this effect on IN class membership in the GR and F4 

simulations, respectively. As these initial conditions are smoothed to 

generate the machine learning features, larger radial (and therefore 

4 Higher sample sizes may be used but yield diminishing additional returns 

on model performance. 
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Figure 4. Feature importance across a sample of models with their hyperparameters optimized and trained on GR, F6, F5, F4, N1, and N5, respectively. 50 

training data sets are generated for each of GR, F6, F5, F4, N1, and N5. Each of these data sets is used to train a classifier, leading to a sample of 50 models per 

cosmology. The average AUC score for each set of models is also given as an indicator of their performance. 

mass) scales are required to capture all the particles that end up in 

structures in GR. Ho we ver in F4, the IN class particles are more 

local, due to the effects of the fifth force described abo v e. Lower 

mass scales are sufficient to capture all of the particles that end up in 

a given structure, potentially explaining the movement of the feature 

importance peaks in Fig. 4 as the strength of the modified gravity 

theories increases. 

As the AUC scores sho w, e ven though the difference between 

theories is captured in the varied mass scales at which they decide 

structure membership, the density contrast provides just as complete 

a description of structure formation for any of the models trained on 

their respective gravities as it does for GR. It should be noted that 

whilst the relative motion of the feature importance peak between 

cosmologies generated from the same initial conditions is indicative 

of mechanical changes, its position per set of simulations will change 

depending on resolution. 

5.2 Generalizability of the � CDM model 

Further to the properties of models trained on individual simulations, 

the GR model itself also seems to generalize well to other gravities. 

Fig. 6 sho ws ho w the performance of the GR model varies as 

it is applied to non-GR data. 50 data sets of 50 000 particles 

were generated for each modified gravity. Each of these data sets 

was passed to the GR model and compared with ground truth to 

b uild a probability-distrib ution-function (PDF) of the GR model’s 

performance against each other gravity. 

For f ( R ), the spherical collapse model trained on GR data performs 

well across all three simulations. Ho we ver, Fig. 6 does show that this 

model does not perform as well on data from F4. This suggests 

that the spherically aggregated information from the initial density 

field is less helpful in determining structure membership in the final 

conditions for F4 gravity. For F5 and F6, the performance of the 
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Figure 5. A slice of the initial density field, with IN class particles from GR 

in blue, and IN class particles from F4 in red. The black circles show a sample 

of smoothing radii from the feature engineering process. 

GR trained ML model is consistent with its performance on GR 

data. Some intermediary simulation data that resides between F4 and 

F5 would provide the opportunity to probe this behaviour further. 

Ho we ver, these results certainly seem to indicate that an ML model 

trained on Press–Schechter spherical collapse in GR generalizes well 

for f ( R ) gravity for models with | f R0 | < 10 −4 . 

For nDGP gravity, the spherical collapse GR model generalizes 

well to both N1 and N5, despite N1 violating the H 0 r c > 3 constraint 

(Lombriser et al. 2009 ). Some div ergence is be ginning to occur as 

the strength of H 0 r c increases from N5 to N1, but not to the same 

pronounced degree as is evident in f ( R ). Violating constraints on 

nDGP gravity seems to have a weaker impact on the generalizability 

of spherical collapse. Ho we ver, there are frame works for constraining 

nDGP gravity that are still awaiting the results of ongoing and 

upcoming sky surveys (Mitchell et al. 2021 ). The outcomes of 

these projects may provide more insight into the sensitivity of 

constraints in nDGP and this result, but the ML model that has 

learned structure formation from spherical collapse in GR certainly 

seems to generalize well in spite of current constraints. 

6  C O N C L U S I O N S  

In this work, we trained a random-forest classifier on N -body 

simulations of two modified gravity theories to find a relationship 

between the initial conditions of the density field at high-redshift 

( z = 99) and the present day. This approach has been found valuable 

in the context of simulations in � CDM (Lucie-Smith et al. 2018 ). 

In particular, it showed that in � CDM the initial density field 

contains sufficient information in order to predict the formation 

of DM haloes. The accuracy was shown to match that of (semi- 

)analytical frameworks based on the spherical collapse model. The 

main result of this paper is that these frameworks remain a very good 

description also in the screened modified gravity theories considered 

here, namely f ( R ) theories and nDGP models. 

The ML models constructed for this work also captured other 

modified gra vity beha viours. First, they seemed to show the effects 

Figure 6. PDFs o v er the ROC AUC performance metric generated from 

applying a GR classifier to data sets generated from each of the other modified 

gravities. 50 test data sets were generated for each of GR, F6, F5, F4, N1, 

and N5. These batches of test data were then handed o v er to a model trained 

using GR data for inference. The performance of the GR model o v er each of 

these batches was used to generate a PDF for each gravity. The GR model 

seems to perform largely identically on all gravities except F4. 

of changes in clustering behaviour between GR and the two screened 

gravity theories. The suppression of small clusters, enhancement of 

voids and larger structures, and the localizing of density signals was 

captured by the ML models as the strength of the fifth force increased. 

This was shown in the feature importance of their structure formation 

decisions. Secondly, the performance of the GR model maps well to 

established constraints on the strength of the fifth force. When the 

screening mechanisms were tuned beyond constraints that are known 

to impact clustering, the performance of the GR model decreased in 

a statistically significant manner in the f ( R ) case. In the nDGP case, 

the performance decrease was less obvious but still present. The 

fact that the ML models elucidated these behaviours also shows that 

the key result, the generalizability of spherical collapse to screened 

modified gravity, is far more than a statistical triviality. Both the 

feature importance results and the GR model performance results 

form natural targets for further work, such as testing the impact of 

scalar field information on structure membership. The methodology 

described in this work may also generalize to other modified gravities 

with scalable extra forces, expanding structure formation as a natural 

test bed for new theories of gravity . Finally , we hope the results of 

this work lend more weight to the use of machine learning as a tool 

to do meaningful cosmology. 
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APPENDI X  A :  T H E  I M PAC T  O F  MODI FIED  

G R AV I T Y  O N  G R AV I TAT I O NA L  BI NDI NG  

Pertaining to the gravitational binding condition used in our structure 

definition in Section 4.1 , it is reasonable to question the appro- 

priateness of this assumption in the context of modified gravities, 

particularly f ( R ) gravity. A more appropriate model for the modified 

gravitational potential could be U = (1 + β2 ) U G , where U G is 

the standard Newtonian potential and β = 
√ 

1 / 6 , which takes into 

account the impact of the fifth force appearing in f ( R ) theories. When 

defining haloes in the final conditions, all particles are bound based 

on the friends-of-friends method of the associated halo finder. There 

is then an unbinding process, where the kinetic energy of the particle 

is compared to the gravitational potential of the rele v ant structure. 

When deciding gravitational unbinding, using U rather than U G could 

lead to more particles being included in structures in f ( R ). This 

effect would be most prevalent in F4 gravity, where all structures 

Figure A1. Feature importance for models trained on F4 (blue) and F4M 

(orange) data. 

Figure A2. PDFs o v er the ROC AUC performance metric generated from 

applying a GR classifier to data sets generated from GR, F4, and F4M. 
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are unscreened. In order to make sure that the results of Sections 5.1 

and 5.2 are not impacted by the fifth force in gravitational binding, 

we repeated those tests with the original F4 data and a new F4 

halo catalogue generated using U for binding, denoted here as F4M. 

Figs A1 and A2 below show the feature importance of F4 and F4M 

models, and the GR model performance test results analogous to 

those in Section 5.2 . 

Fig. A1 shows that the F4M feature importance is spread more 

broadly o v er the whole mass range, but the peak is in the same 

location, with the same behaviour as F4. Fig. A2 shows that the 

GR model performs almost identically (a 0.06 per cent difference) 

on F4M data as on F4 data. These results imply that using the 

GR potential in the halo-finder for gravitational unbinding does not 

impact the veracity of the results of this work, and the behaviours 

observed by this ML study do not arise from this definition of 

gravitational binding. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 

© 2023 The Author(s) 
Published by Oxford University Press on behalf of Royal Astronomical Society 
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