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Abstract –Coronal Mass Ejections (CMEs) are huge clouds of magnetised plasma expelled from the solar
corona that can travel towards the Earth and cause significant space weather effects. The Drag-Based
Model (DBM) describes the propagation of CMEs in an ambient solar wind as analogous to an
aerodynamic drag. The drag-based approximation is popular because it is a simple analytical model that
depends only on two parameters, the drag parameter c and the solar wind speed w. DBM thus allows
us to obtain reliable estimates of CME transit time at low computational cost. Previous works proposed
a probabilistic version of DBM, the Probabilistic Drag Based Model (P-DBM), which enables the
evaluation of the uncertainties associated with the predictions. In this work, we infer the “a-posteriori”
probability distribution functions (PDFs) of the c and w parameters of the DBM by exploiting a well-
established Bayesian inference technique: the Monte Carlo Markov Chains (MCMC) method. By utilizing
this Bayesian method through two different approaches, an ensemble and an individual approach, we
obtain specific DBM parameter PDFs for two ensembles of CMEs: those travelling with fast and slow solar
wind, respectively. Subsequently, we assess the operational applicability of the model by forecasting the
arrival time of CMEs. While the ensemble approach displays notable limitations, the individual approach
yields promising results, demonstrating competitive performances compared to the current state-of-the-art,
with a Mean Absolute Error (MAE) of 9.86 ± 4.07 h achieved in the best-case scenario.

Keywords: Coronal Mass Ejections / Drag Based Model / Space weather

1. Introduction

Coronal Mass Ejections (CMEs) are the primary eruptive
phenomena originating in the solar atmosphere and are known
to cause severe space weather effects. The passage of their inter-
planetary counterparts (ICMEs) can lead to significant varia-
tions in near-Earth space solar wind conditions, posing a
threat to space- and ground-based technologies (Schwenn,
2006; Pulkkinen, 2007; Temmer, 2021). Obtaining reliable pre-
dictions of the Time of Arrival (ToA) and Velocity of Arrival
(VoA) of CMEs is a challenging task. Various limitations,

including physical, observational, and modelling factors, hinder
the effectiveness of existing CME forecasting methods (Vourl-
idas et al., 2019). In the past two decades, extensive efforts have
been made to model CMEs and forecast their arrival on Earth.
Established approaches initially included fully magnetohydro-
dynamic (MHD) models such as the WSA-ENLIL and
EUFHORIA models (Odstrcil, 2003; Pomoell & Poedts,
2018). Although these methods proved reasonably efficient in
providing arrival time prediction of CMEs, they are typically
computationally intensive. However, more recently, with the
advent of Artificial Intelligence (AI), forecasting tools based
on Machine Learning (ML) methods have proved to be also
effective using e.g. deep learning, and logistic regression ML.
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(Huang et al., 2018; Camporeale, 2019; Korsós et al., 2021).
ML methods offer the advantage of providing timely predictions
once the models have been trained; see e.g. the CME
Arrival Time Prediction Using Machine learning Algorithms
(CAT-PUMA) tool (Liu et al., 2018) or using convolutional
neural network (CNN) approaches (Wang et al., 2019). Addi-
tionally, a category of (M)HD-based models has emerged,
leveraging the hypothesis that the dynamics of CMEs in inter-
planetary space are governed exclusively by their interaction
with the ambient solar wind (Cargill, 2004; Owens & Cargill,
2004; Shi et al., 2015). One popular model in this category is
the Drag-Based Model (DBM) (Vršnak et al., 2013; Cargill,
2004; Napoletano et al., 2018; Dumbović et al., 2018). The
DBM provides a simplified description of CME propagation
dynamics in the solar wind, leveraging a description analogous
to an aerodynamic drag due to the interplanetary medium. The
DBM assumes that beyond a certain distance from the Sun
(approximately 20 solar radii), ICMEs tend to adjust their
velocity to match the interplanetary medium, with fast ICMEs
decelerating and slow ICMEs tending to accelerate
(Gopalswamy et al., 2000). However, despite of all the efforts,
the accuracy of ToA predictions is still impacted by the limita-
tions of available data. These limitations arise from the chal-
lenges of assessing CME properties at launch from remote
sensing observations and the inability to accurately characterize
the inner heliosphere. In a previous study, Napoletano et al.
(2018), hereafter referred to as N1, introduced a probabilistic
version of the DBM, the Probabilistic-DBM (P-DBM), to
address the lack of information and provide estimates of the
inherent uncertainty in CME forecasts. The P-DBM method
upgrades the constant values of the DBM parameters with
a-priori probability distributions (PDFs). In this way, it exploits
the ensemble model approach to provide PDFs of ToA and VoA
at a target location. This framework enables the generation of the
most probable estimates of ToA and VoA, along with the
associated prediction uncertainty (e.g. Del Moro et al., 2019;
Piersanti et al., 2020). In a subsequent study, Napoletano et al.
(2022) proposed a modified version of these PDFs employing
an inversion procedure of DBM equations based on a Monte
Carlo-like N1 and N2 explore the possibility that the PDF of
the DBM parameters may differ depending on the type of solar
wind accompanying the propagation of the CMEs. The dynamics
of CMEs are modelled as that of a solid body moving in a fluid
stream, suggesting that an appropriate description of the propaga-
tion dynamics is required for accelerated or decelerated CMEs.
On average, they improved the knowledge of the parameters
PDFs leading to a better prediction of the ToA. In this paper,
we re-visit the P-DBM and propose to further improve the
P-DBM by leveraging a popular Bayesian inference technique,
the Monte Carlo Markov Chains (MCMC). MCMC algorithms
are a class of Monte Carlo techniques that allow for the
simulation of unknown distributions and open the way for their
application to new problems (Brooks, 1998; Brooks et al., 2011).
By utilizing MCMC methods, it is possible to numerically map
a-posteriori distributions, even in highly complex frameworks
involving high-dimensional parameter spaces and complex
posterior structures with multiple peaks. We propose an update
to the P-DBM parameter PDFs by harnessing the power of the
Metropolis-HastingsMCMCalgorithm and studying the applica-
tion of these PDFs in the prediction of CME arrival time.

Section 2 provides a description of the methods employed in this
analysis, presenting a brief description of the DBM, emphasizing
the features of the probabilistic version and outlining the main
characteristics of MCMC methods. In Section 3 we introduce
the dataset employed for the analysis. Finally, Sections 4 and 5
describe and discuss the results obtained.

2 Methods

2.1 The Drag-Based Model

The Drag-Based Model (Cargill, 2004; Vršnak et al., 2013)
is a simplified kinematic model used to describe the propagation
of CMEs in the interplanetary medium, the solar wind. The
DBM framework assumes that the CMEs propagation is primar-
ily influenced by a hydrodynamic-like drag force resulting from
the interaction with the ambient solar wind. In this framework,
the radial acceleration of a CME is determined by the solar wind
speed w(r) and the drag parameter c(r), following the equation:

a ¼ �cðrÞ½ðv� wðrÞÞ�jv� wðrÞj; ð1Þ

where v represents the CME velocity and r is the distance
from the Sun. The drag parameter c encapsulates information
about the interaction between ICMEs and the solar wind and
can be expressed as a function of the ICME cross-sectional
area (A), the solar wind density (qw), the ICME mass (M),

and the virtual mass (Mv � qw
V
2, where V is the ICME

volume) (Cargill, 2004). It is typically expressed as:

c ¼
cdAqw

M v þM
; ð2Þ

where cd is the drag coefficient. In general, the drag parameter
c may vary with time, but it is reasonable to assume that c(r)
and w(r) remain constant beyond approximately 20 solar radii
(Cargill, 2004; Vršnak et al., 2013). Under this assumption,
one can obtain the CME velocity v(t) and the heliospheric dis-
tance r(t) as functions of time:

vðtÞ ¼
v0 � w

1� cðv0 � wÞt
þ w; ð3Þ

rðtÞ ¼ �
1
c
ln½1� cðv0 � wÞt� þ wt þ r0; ð4Þ

where v0 represents the initial CME velocity, and r0 is the ini-
tial heliospheric distance. The DBM framework allows us to
make predictions for the ToA and the impact velocity (VoA)
of a CME by fixing the travelled distance (r1 � r0 � 1AU)
and using the DBM parameters as inputs. In N1, a probabilistic
version of the DBM was introduced, referred to as P-DBM,
which employs a-priori distributions of c and w to obtain esti-
mates of ToA and VoA along with their associated errors. In
N1, the drag parameter c is modelled using a log-normal prob-
ability distribution function (PDF) with mean l = �0.70 and
standard deviation r = 1.01. The solar wind speed w is mod-
elled using a Gaussian PDF. Additionally, a distinction is made
between decelerated CMEs (associated with slow solar wind)
and accelerated CMEs (associated with fast solar wind). In
the slow wind case, a Gaussian PDF centred at 400 km/s with
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a standard deviation of r = 33 km/s is used, while in the fast
wind case, the PDF is centred at 600 km/s with a standard devi-
ation of r = 66 km/s. This distinction reflects the fact that the
solar wind characteristics vary depending on the solar activity
regime. In N2, the PDFs for the DBM parameters are obtained
using a Monte Carlo method, based on the inversion of the
DBM equations, involving 213 CME events. The N2 study
shows that the concatenated individual distributions converge
to the proposed empirical PDFs. Additionally, N2 explores a
refinement of P-DBM by defining separate PDFs for the drag
parameter c, again considering the distinction between acceler-
ated and decelerated CMEs. This hypothesis is supported by
the fact that previous studies have investigated significantly
different PDFs for the c parameter compared to the one used
N1 (Rollett et al., 2016; Dumbović et al., 2018; Čalogović
et al., 2021; Paouris et al., 2021). This suggests that employing
a single PDF to describe the hydrodynamic drag of all types of
CMEs with the ambient solar wind may be overly simplistic.
To distinguish between CMEs accompanied by slow or fast
solar wind in N2, an algorithm is applied that associates this
distinction based on the presence of coronal holes at the time
of CME launch. Coronal holes are typically associated with
fast solar wind streams. While the existence of a coronal hole
may indeed affect the propagation of interplanetary CMEs
(e.g. Gopalswamy et al., 2009), relying solely on this informa-
tion for classification could be restrictive. We therefore apply a
more robust definition, presented by Mugatwala et al. (2023).
In Section 3, we outline the procedure used to create the data-
set, which includes a different method for assigning the fast
and slow labels.

2.2 Bayesian inference of the parameters

The Monte Carlo techniques allow sampling from an
unknown distribution, with a guaranteed convergence towards
the true (unobserved) distribution. In this work, we employed
an MCMC method based on the popular Metropolis-Hasting
algorithm (Metropolis et al., 1953; Hastings, 1970). The
MCMC approach involves constructing a chain of samples in
the parameter space of interest, which progressively converges
to a stationary distribution representing the target posterior
probability distribution. The strength of these Bayesian methods
lies in their ability to explore the parameter space in search of
the zone that best represents the observations in terms of
likelihood. The algorithm can be summarised in the following
steps:

– A parameter set ht ¼ ðct;wtÞ is sampled from the parameter
space, using a proposal distribution centred around the
values sampled at the previous step, ht�1 ¼ ðct�1;wt�1Þ.
The initial parameter set is sampled from the prior.

– The proposed set of parameters ht is used to solve the
DBM equations (3), (4) and obtain estimates of the arrival

time and velocity ðdToA; dVoAÞ of the CME events in the
dataset.

– The acceptance probability a is calculated using the
Metropolis-Hastings ratio:

a ¼ min 1;
pðDjhtÞ

pðDjht�1Þ

� �
; ð5Þ

where

pðDjhÞ ¼ LðhjDÞ � priorðhÞ: ð6Þ

Here, pðDjhÞ depends on the likelihood function (LðhjDÞ) and
the prior distribution of the parameters. The likelihood function
assesses the agreement between the result obtained with the
proposed parameters and the observed data and it is the key com-
ponent of the technique. The a-priori distribution incorporates
previous knowledge about the parameters. By exploring the
parameter space guided by the likelihood function, the MCMC
algorithm efficiently explores the parameter space and constructs
a so-called posterior distribution. The main idea here is to find a
distribution for the DBM parameters that are valid to represent
the observations of all CMEs contained in the dataset (or belong-
ing to an ensemble with specific characteristics, such as acceler-
ated or decelerated CMEs). To take this into account, the
likelihood function for a set of parameters h given an ensemble
G of CMEs is defined as the product of the individual likelihoods
associated with each CME event. Each individual likelihood is
proportional to a bivariate normal distributio centred on the
observed (ToA, VoA) values. Hence, for a sampled set (c, w)
and an ensemble G of CMEs (e.g. slow solar wind speed
CMEs or fast solar wind speed CMEs) we write the likelihood
function as:

LðhjDÞ ¼ LGðc;wÞ ¼
Y

cme2G

N
ToAcme

VoAcme

� �
;Rcme

� � dToAcme

dVoAcme

" # !
;

ð7Þ

Rcme ¼
Var½ToAcme�; Cov½ToAcme;VoAcme�

Cov½ToAcme; VoAcme�;Var½VoAcme�

� �
; ð8Þ

where N represents a bivariate normal distribution with
mean values (ToAcme, VoAcme) and covariance matrix Rcme,
evaluated in the estimates (dToAcme; dVoAcme) obtained solving
the DBM equations with the proposed parameter set ht. The
covariance matrix Rcme in equation (8) captures the uncertain-
ties in the observed values, allowing for deviations up to 10%
of the observed values (Var½ToAcme� ¼ 0:10 � ðToAcmeÞ

2,
Var½VoAcme� ¼ 0:10� ðVoAcmeÞ

2). They should ideally be
equal to the estimated error measure, but to allow an easier con-
vergence of the MCMC method we allow for likely errors up to
10% of the observed values. We tested the 10% threshold and
found it to be a robust compromise between convergence and
acceptance rate.

The anti-diagonal coefficient of Rcme accounts for the
covariance between ToA and VoA that, in this case, is taken
as the empirical correlation obtained from our data set and then
scaled by the square root of the diagonal coefficient

(Cov½ToAcme;VoAcme� ¼ Corr½ToAcme;VoAcme� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ToAcme�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½VoAcme�

p
). To simplify computations, we utilize the

log-likelihood to convert products of exponentials into sums
of their respective arguments. The MCMC method allows for
the incorporation of prior information on the parameters through
the prior distribution term p(h) in the acceptance probability
calculation. In this study, we utilized uniform (hence non-
informative) prior distributions with boundaries extending well

S. Chierichini et al.: J. Space Weather Space Clim. 2024, 14, 1

Page 3 of 15



beyond physically plausible values for w and c

(w 2 ½0; 1000�½km=s� and c 2 ½0; 10�7�½km�1�Þ. By using non-
informative priors, we ensure that the posterior distributions
are not influenced by specific prior assumptions, enabling an
objective comparison with previous results. The MCMC algo-
rithm in this work includes the uncertainty in the travelled dis-
tance by incorporating it as a free parameter with a uniform
prior distribution (R 2 ½0:97; 1:20�½AU �). The algorithm is
designed to accept candidate parameters only if they can solve
the DBM equations for all CMEs in the ensemble. This
approach, referred to as the ensemble approach, provides
parameter distributions representative of an ensemble of CMEs,
allowing for modelling the interplanetary propagation of all
CMEs belonging to that ensemble. Additionally, we developed
an alternative version of the algorithm, referred to as the individ-
ual approach, that returns parameter distributions for each CME
in the dataset independently. Before describing the results, it is
important to briefly highlight the methods used to assess the
convergence of the algorithm and ensure the reliability of the
obtained posterior distributions.

2.3 Convergence diagnostic

To ensure the convergence of the MCMC algorithm and
assess the reliability of the obtained posterior distributions, we
use the Gelman–Rubin (GR) diagnostic tool (Gelman & Rubin,
1992; Brooks & Gelman, 1998) specifically the potential scale
reduction factor (PSRF).

The GR diagnostic is a quantitative method for checking if
the MCMC chains accurately sample the stationary distribution.
It involves using multiple parallel chains fX i0 ;X i1 ; :::;X iN�1g
with i ¼ 1; :::;M , each launched from different starting points
but ultimately sampling the same area of the parameter space
corresponding to the stationary distribution. The GR method
relies on two variance estimators: the within-chain variance
(W) and the between-chain variance (B). The within-chain vari-
ance measures the variability of the samples within each chain,
while the between-chains variance quantifies the variability
between the chains. These variances are calculated as follows:

W ¼
1
M

XM

i¼1

r
2
i
; ð9Þ

B ¼
N

M � 1

XM

i¼1

ð�X i � �X Þ
2
; ð10Þ

where �X i and r2
i are the sample posterior mean and variance of

the ith chain, �X ¼ 1
M

PM

i¼1
�X i is the overall sample posterior

mean, N is the chain length, and M is the number of parallel
chains. The PSRF score is then calculated as:

PSRF ¼
W

V̂
; ð11Þ

where V̂ ¼ N�1
N

W þ Mþ1
MN

B is the pooled variance (Gelman &

Rubin, 1992). The PSRF measures the convergence of the
chains to the stationary distribution. Ideally, the PSRF should
be close to one, indicating that the chains have converged and
are effectively sampling the target distribution. If the PSRF is
significantly larger than one, it suggests that either more
iterations are needed to achieve convergence, or the posterior

distribution is not robust. In our analysis, we check the con-
vergence using the PSRF for each parameter in the MCMC
chains. Additionally, since the chains are essentially random
walks in the parameter space, the extracted samples are
typically correlated. To mitigate the issue of autocorrelation
in the samples, a thinning technique (Jones & Qin, 2022)
can be applied to retain only distant samples in the chain. In
the next section, we will introduce the dataset employed for
the analysis.

3 Dataset

In N2, a dataset of CMEs was constructed by combining
information from the Richardson and Cane CME/ICME list
(Richardson & Cane, 2010) and the SOHO-LASCO CATALO-
GUE1 (Yashiro et al., 2004). This dataset contains various infor-
mation necessary to solve the DBM equations (3) and (4),
which serves as input for the MCMC algorithm. Some quanti-
ties are directly extrapolated from the source lists, and others
derived as part of the results obtained in N2. The dataset
includes the ToA of the ICMEs and its estimated error, the
Velocity of Arrival (VoA) of the ICMEs and the initial velocity
(v0) of the CMEs, along with their estimated errors. Mugatwala
et al. (2023) produced a revised version of the dataset intro-
duced in N2 (the CME-ICME dataset produced by Mugatwala
et al. (2023) is uploaded on Zenodo). They employed a Monte
Carlo approach to analytically invert the DBM equations (3), (4)
and obtain a sampling of possible values for the DBM parame-
ters for each CME. This work provided two essential additional
information about the CMEs. Firstly, they identified the most
suitable events for a DBM-based description by clustering the
CME events based on their affinity with the DBM, using the
acceptance rate of the Monte Carlo inversion. Secondly, they
labelled the CMEs as either propagating in fast solar wind
conditions (if the solar wind speed w > 500 km/s) or propagat-
ing in slow solar wind conditions if the solar wind speed
w < 500 km/s). The resulting dataset contains a total of
213 CME events from 1996 to 2018, with 178 labelled as “slow
solar wind events” (slow SW) and 32 labelled as “fast solar
wind events” (fast SW). In the next section, we will describe
the results obtained by applying the MCMC algorithm to the
CME dataset, including the assessment of convergence using
the GR diagnostic tool.

4 Results

In the following, we present the results including the
convergence diagnostics, the statistical properties of the param-
eter distributions, and the forecasting performances. For the
sake of clarity, we divide the discussion into two subsections,
focused on the ensemble and the individual approaches,
respectively.

4.1 Ensemble approach

The goal of the ensemble approach is to obtain the PDFs of
the DBM parameters c and w for a specific group of CME
1 The catalogue can be found at https://cdaw.gsfc.nasa.gov/CME_
list/.
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events. We focus on two categories of CMEs: those accompa-
nied by slow solar wind (slow ensemble) and those accompa-
nied by fast solar wind (fast ensemble). Therefore, we only
include CMEs labelled as “Nice Fits” by Mugatwala et al.
(2023), which are most suitable for DBM description. This
selection prevents unsuitable events from affecting the conver-
gence of the algorithm’s posterior PDFs. The slow ensemble
consists of 87 CMEs, while the fast ensemble consists of
15 CMEs.

The inputs to the MCMC algorithm are the CME data
required to solve the DBM equations and the prior distributions
of the parameters. Typically, prior PDFs encode known infor-
mation about the inferred parameters. To test both the conver-
gence and stability of the posterior PDFs obtained with the
MCMC approach, we proceed as follows. We generate four dif-
ferent subsets of events for both the fast and slow ensembles by
randomly sampling 80% of the total dataset. Having four sub-
sets serve two purposes. Firstly, they are used to test the stability
of the MCMC approach. The goal is to obtain distributions for
the DBM parameters that represent CMEs travelling in slow and
fast solar wind conditions. In other words, we aim to obtain
w and c PDFs for both the fast SW and slow SW ensemble.
By applying the MCMC algorithm to four different versions
of the same ensemble, we ensure that consistent output distribu-
tions are obtained. Secondly, this framework allows us to eval-
uate the forecasting performance of the resulting distributions
within a probabilistic DBM framework by keeping a number
of CMEs as test data. Further details will be explained later
(Sect. 4.1.1) For each subset, we initiate four MCMC chains
from different points in the parameter space and let them evolve
for 10,000 iterations each. This chosen number of iterations
ensures a balanced trade-off between the computation time
and the acceptance rate of the resulting output distributions.
Consequently, we have 10,000 parameter samples for each sub-
set, resulting in a total of 40,000 samples (10,000 for each chain
associated with a specific subset). Figure 1 shows the evolution
of the algorithm at different stages for the slow ensemble.
Although the four chains start from different points in the

parameter space, they tend to converge to the same region of
the parameter space for a specific subset.

Out of the 10,000 samples from the four chains, we discard
the burn-in phase (the first 900 samples) and thin them out by
keeping 1 value every 30 (based on the computed autocorrela-
tion time). Hence, each subset, for both the fast and slow cases,
consists of 1256 samples after burn-in and thinning. This proce-
dure is applied to all four subsets. Figure 2 illustrates the his-
tograms of the marginal distributions of c (on the left) and w
(on the right) obtained from the four subsets in the fast (top)
and slow (bottom) cases. Additionally, we report the cumulative
distribution functions (CDFs) of the subsets in the same order
(Figure 3). The PSRF score (described in Sect. 2.3) measures
the ratio of intra-chain variance to inter-chain variance, indicat-
ing the level of convergence. If PSRF is approximately one, it
suggests that the chains are sampling the same area of parameter
space.

The PSRF scores (reported in Figure 2) confirm the conver-
gence of the chains in all cases. Additionally, the PDFs of the
different subsets exhibit very similar mean values. We calcu-
lated the standard deviation of the average values of the PDFs,
which is close to zero (reported in Figure 2). This indicates that
the algorithm remains stable even with slight changes in the
dataset. Based on these results, we can assert that the algorithm
demonstrates robustness in terms of both convergence and sta-
bility. Thus, we can conclude that all the extracted samples
belong to the same stationary posterior distribution, which is
the desired posterior distribution that distinguishes the fast case
from the slow case. Figure 4 shows the joint and marginal PDFs
of c and w.

In the fast SW case, the posterior PDF of the solar wind
speed (w) exhibits an average value of 600 km/s, while in the
slow case, the average value of w is 430 km/s. In the fast SW
case, the w values never fall below 500 km/s, while in the slow
case, the highest value remains below 480 km/s. These results
align with our assumed definition of CMEs propagating in slow
and fast solar wind conditions. However, the marginal distribu-
tions of the drag parameter (c) show noticeable differences. The

Figure 1. MCMC evolution plot showing three different states of the algorithm’s evolution for the slow ensemble. The starting points (shown
as dots) of the four chains are drawn from a density that is over-dispersed with respect to the target density, and progressively they all end up
sampling the same area of the parameter space defined by c and w. The first plot shows 100 iterations, the second shows 1000 and the third
shows 10,000 iterations.

S. Chierichini et al.: J. Space Weather Space Clim. 2024, 14, 1

Page 5 of 15



drag parameter models the interaction between the CME and the
solar wind. Figure 4 (lower left) illustrates that the algorithm
tends to prefer larger values of c in the fast SW ensemble case
compared to the slow SW ensemble case. This observation is
further supported by the slight correlation present in the poste-
rior PDF of the slow data (Figure 4 (upper right)); as w
increases, c also increases. It is important to mention that the
dispersion around the mean value in the two cases differs signif-
icantly. In the slow SW case, the values accepted by the MCMC
algorithm tend to cluster more closely around the mean value,

resulting in a smaller standard deviation. This difference can
be attributed to the disparity in the ensemble sizes. Indeed,
the slow SW case contains a larger number of elements than
the fast SW case. The most stringent constraint placed on the
ensemble approach is that a new sample (c, w) is accepted if
the proposed values allow solving the DBM equations for all
CMEs in the ensemble. This condition makes the slow case
more conservative, as the samples must fit a broader spectrum
of events compared to the fast case. The resulting PDFs are then
defined by the samples accepted under this assumption. Such

Figure 2. Probability distribution functions for solar wind speed w and drag parameter c for fast (top) and slow (bottom) CMEs obtained
leveraging four different folds of the dataset. The legend reports the mean value (avg), the standard deviation (std) and the PSRF score of the
folds.
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samples, in principle, may not be the pair of values (c, w) that
best represent all the CMEs in the ensemble. To clarify this con-
cept further, we provide additional details. In this framework,
we assume that a probabilistic version of the DBM can model
the dynamics of CMEs in interplanetary space. Thus, the evolu-
tion of each CME is described by the DBM equations, with the
parameters (c, w) represented as probability distributions rather
than fixed values. The PDFs of the DBM parameters are, in
principle, not identical for all CMEs, as the solar wind speed

naturally varies because of the solar cycle, the solar rotation,
as well as the different origin sources of the wind itself on
the Sun. The assumption made in the ensemble approach leads
to accepting DBM parameter samples that satisfy the model for
all events, so the algorithm focuses on the areas of parameter
space that best fit the ‘average’ behaviour of CMEs in the
DBM framework. In the subsequent section, we will describe
the results obtained using these PDFs for forecasting the transit
time of CMEs.

Figure 3. Cumulative distribution functions for solar wind speed w and drag parameter c for fast (top) and slow (bottom) CMEs obtained
leveraging four different folds of the dataset. The legend reports the mean value (avg), the standard deviation (std) and the PSRF score of the
folds.
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4.1.1 Validation: transit time forecasting

One of the primary applications of P-DBM is to forecast the
transit time and impact speed of CMEs with and their associated
error. This can be achieved within a probabilistic framework by
leveraging the estimated PDFs of the DBM parameters and,
thus, generating an ensemble of value pairs (c, w). These values
produce an ensemble of predictions for the transit time through
the DBM. The average of the predictions and their standard
deviation serve as transit time estimates and their associated
error interval. In this work, we aim to test the forecasting

capabilities of the PDFs extracted from the P-DBM framework.
To ensure an unbiased evaluation, we employ a cross-validation
technique. The dataset is divided into four training and test
folds, where the training consists of randomly sampling 80%
of the events from the dataset, and the remaining 20% of events
serve as the test set. The training folds align with the four
subsets described in the previous section. Hence, the PDFs
are generated using the training set and the forecasting perfor-
mances are evaluated on the test set. The four training subsets
consist of 68 events for the slow case and 12 for the fast case,
and four test subsets consist of 17 events in the slow case and

Figure 4. Posterior PDFs obtained from MCMC approach (upper left). Joint distribution of DBM parameters (c, w) for the fast solar wind case
(upper right). Joint distribution of DBM parameters (c, w) for the slow solar wind case. Marginal c (lower right) and w (lower left) PDFs for the
fast and slow solar wind case. The legend shows the average (avg) and standard deviation (std) values.
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3 in the fast case. In total, we have 68 slow test events and
12 fast test events. This approach provides robustness to the per-
formance evaluation of P-DBM and a relatively large test sample
of CMEs to assess its performance. Using the P-DBM frame-
work, we are able to generate a distribution of transit times as
a result, rather than just isolated values. The average value within
this distribution is treated as the estimated transit time (T̂ ) for the
CMEs. In order for the model to be probabilistically reliable, we
expect the true value of CME transit time (T) to fall within the
confidence interval of 1r in approximately 68% of the cases.
Transit time forecasting results are summarised in Figure 5.
The results show that the DBM manages to achieve prediction
performances in line with the literature. The averageMean Abso-
lute Errors (MAEs) of the predictions across the folds are
approximately 10 h (slow case) and 7 h (fast case), with standard
deviations of 3.4 h and 0.8 h, respectively (Figure 5 (left)). Addi-
tionally, the transit time forecast residuals (Figure 5 (left)) indi-
cate a negligible bias in the fast case (�0.9 h) and a slight
underestimation trend in the slow case (�4.55 h) in terms of
mean error (ME). From a probabilistic perspective, the perfor-
mance of the resulting P-DBM is relatively low. The true values
of the transit time fall within the 1r confidence intervals less than
68% of the cases for the slow and fast cases (Figure 5 (left)) We
believe that the lack of consistency in the resulting confidence
intervals is due to the structure of the inference method, which
imposes strict constraints on the values of the DBM parameters,
as mentioned at the end of Section 4.1. This leads to narrow
posterior PDFs and the acceptance of samples carrying high
errors in the likelihood. In the next section, we will explore
the description of the individual approach.

4.2 Individual approach

The ensemble approach yields PDFs of DBM parameters
for a specific group of CMEs. With the individual approach
we aim to further investigate the potential of the MCMC algo-
rithm to obtain a specific P-DBM description for each CME
event in the dataset. The structure of the algorithm is similar
to that of the ensemble approach, but there are several distinc-
tions, which are listed below. First, the input data for the algo-
rithm pertains to individual CMEs, aiming to generate an output
specific to each individual CME in the dataset. In this case, the
output consists of PDFs of the DBM parameters for each CME
event in the dataset. The limitations that required the samples to
fit all CMEs of a specific ensemble are removed. We introduce a
new free parameter for the MCMC algorithm, namely the initial
velocity v0 of the CMEs. The reason is that the errors associated
with the initial velocity in the dataset are very heterogeneous
(some very large and some very small); this significantly pena-
lises convergence. To prevent the algorithm from having too
many degrees of freedom, we set the heliospheric distance to
be 1 AU. Achieving convergence in the individual approach
is more challenging compared to the ensemble case. In princi-
ple, the dynamics of each CME event are described by different
parameters in the context of the DBM. Ideally, the data should
drive the algorithm’s decisions by producing PDFs tailored to
individual events. Therefore, in this case, we opt for weakly
informative prior PDFs. For instance, we use a broad Gaussian
distribution for the solar wind speed w with a mean of 400 km/s
and a standard deviation of 200 km/s. The prior for v0 is a Gaus-
sian distribution centred around the values stored in the dataset

Figure 5. The transit time forecasting results with P-DBM obtained via the ensemble approach (left). Histogram of the residuals ð�T � TÞ,
where �T represents the predicted transit time and T represents the true transit time. The histogram provides an overview of the distribution of the
forecast errors. The legend in figure shows the mean value and standard deviation of the residuals obtained from four test folds. The mean value
indicates the average bias of the predictions, while the standard deviation represents the spread or variability of the errors (right). Scatter-plot of
the residuals ð�T � TÞ for all the test CMEs, along with associated error bars derived via P-DBM. The vertical axis marks the CME number in
the dataset. Each point on the scatter plot represents an individual CME.
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with a standard deviation of 200 km/s. For the drag parameter c,
we choose a log-normal PDF. These priors guide the algorithm
to prefer sampling in parameter space regions close to the most
probable parameter values. The convergence study remains
unchanged: we run four chains with different initialization val-
ues for each CME and record the PSRF score values. At the end
of the process, we discard the burn-in phase and thin the chains.
This approach allows for the investigation of CMEs individu-
ally, meaning that the algorithm produces PDFs for the DBM
parameters for each event in the dataset. For each event, we
save statistical indicators describing these PDFs, such as the
mean and standard deviation of the extracted samples, the con-
vergence of the chains, and the acceptance rate of the algorithm.
Since the algorithm is applied individually in this case, there is
no a-priori distinction between CMEs belonging to the slow or
fast ensemble. We define the PDFs of the slow ensemble and
the fast ensemble by concatenating the samples of the CMEs
labelled slow and fast, respectively, by Mugatwala et al.
(2023). In essence, we construct an ensemble PDF (whether
slow or fast) by aggregating all the individual PDFs (more
specifically, all the samples defining such PDFs) of the CMEs
belonging to the ensemble.

Figure 6 shows histograms of the marginal fast and slow
PDFs of the DBM parameters obtained using the individual
approach. The distribution of fast values for w appears noisier
compared to the slow case due to the smaller number and
potential heterogeneity of events in the fast ensemble. The
results align with those obtained using the ensemble approach,
but the marginal distributions are broader. The mean w values
are 415 km/s and 514 km/s for the slow and fast cases, res-
pectively. The average values for c are 0:82� 10�7 km�1 and
1:04� 10�7 km�1. This demonstrates that even with the indi-
vidual approach, the algorithm tends to prefer values of solar
wind speed w < 500 km=s for the slow case and
w > 500 km=s for the fast case. Additionally, for c, the fast case
tends to assume higher values compared to the slow case, result-
ing in a distribution with a longer tail.

It is essential to highlight that the algorithm does not achieve
convergence for all CME events. Some events exhibit non-
robust convergence based on the PSRF score and acceptance
rate data. Examining the most robust events identified by the
algorithm is intriguing. We choose events with a PSRF score
<1.05 for all free parameters and an acceptance rate greater than
5%. Out of the 213 CMEs in the dataset, 117 demonstrate good
convergence according to the adopted convergence criteria.
Among the 102 events categorized as “Nice Fits” by Mugatwala
et al. (2023), 64 are determined to exhibit good convergence.
There is an additional noteworthy observation. Inconsistencies
are found when comparing the average values of the PDFs
obtained through MCMC with the fast and slow labels used
by Mugatwala et al. (2023).

Figure 7 illustrates that some events labelled as slow exhibit
MCMC PDFs with mean values exceeding 500 km/s. Further-
more, most events with high solar wind speeds are recorded dur-
ing the ascending or descending phase of the solar cycle.
Consequently, a new labelling scheme for CMEs based on
the average values of PDFs obtained via MCMC is adopted.
Out of the 117 well-converged CMEs, 90 CMEs exhibit an
average solar wind speed w < 500 km/s, and they are labelled
as MCMC Slow, while 27 CMEs display an average solar wind
speed w > 500 km/s and are labelled as MCMC fast.

Figure 8 displays the PDFs of the new ensembles alongside
the previous ones (fromMugatwala et al. (2023) labels, in grey).
The PDFs remain similar to the previous ones, ranging approx-
imately the same interval of values. The distribution of w for the
new slow ensemble shifts towards lower values, with an average
of 400 km/s. In contrast, the new fast ensemble collects higher
w samples, with an average of 580 km/s. A shift is also
observed in the distributions of the drag parameter c. The mean
values of both MCMC and Mugatwala et al. (2023) ensembles
are higher than before, and the gap between the two widens.
Particularly, the tail of the distribution for the new fast ensemble
is thicker and longer. The fast distribution remains noisy even
with a larger sample of events, particularly for w. Finally, the

Figure 6. Histograms of marginal DBM parameter PDFs for the slow (blue) and fast ensemble (orange); obtained via individual approach.
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individual approach PDFs are employed to test the forecasting
capability of CME arrival time.

4.2.1 Validation: transit time forecasting

In this section, we present the results of transit time forecast-
ing of CMEs using the Individual approach with P-DBM. The
individual approach allows us to obtain specific PDFs for each
CME event in the dataset, which can then be used to define
PDFs representing ensembles of CMEs with common character-
istics. We defined two versions of the PDFs for the slow and
fast ensembles. In the first version, the PDFs are constructed
using the labels fromMugatwala et al. (2023) as in the ensemble
approach, resulting in 87 slow events and 15 fast events. In the
second version, we expanded the dataset by including all CMEs
that showed good convergence criteria, resulting in 90 slow
events and 27 fast events. To evaluate the forecasting perfor-
mance, we used a 4-fold cross-validation method, similar to
the ensemble approach. The dataset was divided into four

sub-ensembles: three for training and validation to define the
PDFs and one as a test set for evaluation. For the first version,
each training set consisted of 68 slow events and 12 fast events,
while each test set consisted of 17 slow events and 3 fast events.
For the second version, the training sets consisted of 72 slow
events and 22 fast events, while the test sets consisted of 18
slow events and 5 fast events. The forecasting results are sum-
marised in Figure 9 for both versions.

The graphs in the figure show the forecasting results
obtained using the individual approach with P-DBM. The upper
graphs represent the ensembles defined by Mugatwala et al.
(2023) labelling, while the lower graphs represent the ensembles
obtained by relabeling via MCMC. Overall, the forecasting per-
formance of the individual approach is consistent with that of
the ensemble approach. The MAE values are comparable, indi-
cating similar levels of accuracy. In the first version of the
PDFs, the slow ensemble shows slightly lower average error,
while this is higher for the fast ensemble. Although the
model exhibits reliability from a probabilistic perspective, the

Figure 7. Scatter plot depicting the average solar wind speed (w) values of the PDFs obtained through the individual approach. CMEs labelled
slow and fast by Mugatwala et al. (2023) are represented by blue and orange dots, respectively. The second y-axis illustrates the line plot of the
annually averaged Sunspot number (in red).

Figure 8. Histograms depicting the PDFs of marginal DBM parameters for the MCMC slow ensemble (MCMC slow), and the MCMC fast
ensemble (MCMC fast) obtained via the individual approach. We also report Mugatwala et al. (2023) ensembles PDFs (M-I slow and fast) for
comparison.
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extensive error bars associated with the transit time estimates
can be attributed to the broadness of the PDFs. Similar to the
ensemble approach, the model tends to underestimate the transit
time. However, the results for the MCMC ensemble PDFs are
less promising. The MAE values are higher, indicating larger
errors; in particular, the overcast for fast CMEs is much more
evident. This discrepancy is further evident in the probabilistic
performance, as the 1r confidence intervals are not respected.
Conversely, the forecasting performance for the slow ensem-
ble remains satisfactory, considering the larger size of the test
set.

5 Discussion and conclusions

In this section, we present a discussion of the results
obtained from both the ensemble approach and the individual
approach in producing PDFs for DBM parameters and forecast-
ing the transit time of CMEs using the P-DBM framework. To
evaluate the performance of transit time forecasting, we used a
cross-validation technique. The P-DBM framework leveraged
the PDFs of the DBM parameters to generate ensemble predic-
tions for transit time. In the ensemble approach, we employed
an MCMC algorithm to estimate the posterior distributions of

Figure 9. The transit time forecasting results with P-DBM obtained via individual approach (right). Scatter-plot of the residuals ð�T � TÞ for all
the test CMEs (left). Histogram of the residuals ð�T � TÞ (�T is the predicted transit time and T is the true transit time).
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the DBM parameters for an ensemble of CMEs. The algorithm
was designed to only accept candidate parameter sets that satis-
fied the DBM equations for all CMEs within the group. This
approach allowed us to obtain a distribution of parameters that
represents the collective behaviour of the CMEs with common
features. We examined the posterior distributions of the drag
parameter (c) and the solar wind speed (w) for two categories
of CMEs: either interacting with slow (slow ensemble) or fast
(fast ensemble) solar wind. The resulting PDFs provided an
average representation of the behaviour of CMEs propagating
in different heliospheric conditions. These PDFs yielded transit
time predictions that showed relatively good performance in
terms of Mean Absolute Error (MAE), considering the size of
the test set and the simplicity of the model. However, the model
proved to be probabilistically unreliable. In contrast, the individ-
ual approach aimed to obtain specific PDFs for each CME event
in the dataset. We introduced the initial velocity v0 as a free
parameter and employed weakly informative prior distributions
for the DBM parameters. The algorithm was applied individu-
ally to each event, and the resulting PDFs were used to define
PDFs for the slow and fast ensembles of CMEs. The evaluation
of the forecasting results demonstrated similar performance
between the ensemble approach and the individual approach,
with comparable MAEs. Considering the advantages and disad-
vantages of each approach, the individual approach exhibited
greater probabilistic robustness, providing a more reliable repre-
sentation of the uncertainty associated with the transit time esti-
mates. However, the error bars associated with the transit time
estimates obtained through the individual approach were rela-
tively large, indicating significant uncertainty in the predictions.
In Table 1, we collect the primary descriptors of the PDFs
obtained in this work. Additionally, we compare them with
the results obtained in previous works. Overall, the PDFs
obtained in this study align with the findings of previous
research. CMEs propagating in slow solar wind conditions exhi-
bit PDFs centered around low values of w (w < 500 km/s). Con-
versely, CMEs propagating in fast solar wind are characterized
by PDFs centred at higher greater of w (w > 500 km/s). This
observation holds true for the earlier studies as well (e.g. in
Napoletano et al., 2018; Mugatwala et al., 2023), with the sole
exception being the fast case in N2, where the average value for
the PDF of w is found to be 490 km/s. Regarding the c param-
eter, the discussion becomes more intricate. A notable distinc-
tion is observed in the c PDFs when employing the ensemble

approach versus the individual approach. Within the group
approach, the algorithm appears to indicate a trend of higher c
values being associated with higher values of w. This is evident
as the c mean value of the fast case is notably greater than that
of the slow case. Moreover, the joint distribution of the slow
case (Fig. 4 top-right) also reveals a slight positive correlation
between w and c. Conversely, when considering the individual
approach, this outcome is less evident. The disparity between
the PDFs of c in the fast and slow cases is not pronounced
enough to strongly imply a distinct characterization in terms
of the drag parameter. It is crucial to highlight that the sample
of labelled CMEs as traveling in fast solar wind is exceedingly
limited. This limitation poses a challenge when attempting to
draw robust conclusions regarding the ensemble of fast cases.
The positive correlation observed in the group approach may
potentially arise as a mathematical compensation effect, driven
by the stringent constraints inherent to that approach. Further-
more, Table 2 displays the results for CME transit time forecast-
ing as presented in this research, along with the corresponding
findings from other works utilizing the DBM framework,
namely, the P-DBM and the drag-based ensemble model
(DBEM). We also present results achieved by utilizing machine
learning models, in order to provide a broader range of compar-
isons. Generally, comparing results across various studies is
challenging. This difficulty primarily arises from the fact that
different criteria are typically employed to create datasets for
building or training models and subsequently assessing their
performance. This issue is particularly pronounced in data-
driven methods, as the input space defines the phenomenon
one aims to represent. Additionally, the size of the sample has
an impact on the evaluation metrics. To provide a comprehen-
sive perspective on the results across different studies, additional
information on the models employed, the validation technique,
and the size of the test set are also included. It is worth noting
the intriguing fact that the outcomes obtained for both the
ensemble approach and the individual approach (specifically,
M-I slow and fast) stem from the same training/test sets and
employ the same evaluation methodology, rendering them
readily comparable.

It is important to acknowledge that data-driven techniques
heavily rely on the quality of the available data. Unfortunately,
the data we have for modelling CMEs are affected by recurring
errors, e.g. due to the approximation or the erroneous CME/
ICME association. More importantly, the number of CME

Table 1. This table presents the moments of the distributions obtained in the current study for the DBM parameters w and c, along with a
comparative analysis against findings from prior research. The reported values comprise the mean and standard deviation of the distributions.

Study CME ensemble �w [km/s] rw [km/s] �c [�10�7 km�1] rc [�10�7 km�1]

Napoletano et al. (2018) Slow 400 66 PDF for all CMEs
Fast 600 76 0.83 1.21

Napoletano et al. (2022) Slow 370 80 PDF for all CMEs
Fast 490 100 0.96 3.62

Mugatwala et al. (2023) Slow 371 89 0.86 0.80
Fast 579 68 1.26 0.80

This work (ensemble approach) Slow 432 12 0.67 0.12
Fast 620 38 1.39 0.45

This work (individual approach) M-I slow 415 75 0.82 0.61
M-I fast 574 91 1.04 0.55
MCMC slow 400 62 1.10 0.75
MCMC fast 580 83 1.51 1.61
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events employed here is limited, highly influencing the results.
These limitations became evident when comparing the results
between the slow SW and fast SW cases. The algorithm strug-
gled to provide a comprehensive description of the fast SW
ensemble due to the smaller number of available CME events
compared to the slow case. Furthermore, this work was based
on the assumption that there are only two types of CMEs, which
is a strong approximation. The ensemble approach imposed
restrictive conditions for accepting samples, ensuring they solve
the DBM equations for all CMEs. However, it is likely that the
DBM is not optimal to precisely describe all CME events in the
dataset. On the other hand, the individual approach, which uti-
lized PDFs obtained for each CME event, allowed more flexibil-
ity but carried the risk of losing the collective characteristics in
favour of CME-specific ones. Moving forward, these findings
suggest the potential for testing the algorithm on various ensem-
bles of CMEs, corresponding to different phases of the solar
cycle. Additionally, our analysis indicates a tendency for the
algorithm to associate higher values with the solar wind speed
in the ascending and descending phases of the solar cycle, as
observed in Figure 7. Finally, we employed an MCMC algo-
rithm based on the popular Metropolis-Hastings method.
Exploring more sophisticated MCMC techniques (e.g. Good-
man & Weare, 2010) could enhance sampling efficiency and
acceptance rates, leading to more appropriate PDFs.

In conclusion, the DBM provides a valuable and efficient
tool for CME forecasting. Enhancing the characterization of this
model is essential for advancing CME forecasting efforts. Baye-
sian methods, particularly the MCMC algorithm, show promise
in the probabilistic characterization of the DBM. Further explo-
ration of these Bayesian approaches is warranted to improve our
understanding and utilization of the DBM for CME forecasting.
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