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MTLMetro: A Deep Multi-task Learning Model for 
Metro Passenger Demands Prediction 

 
Hao Huang, Jiannan Mao, Ronghui Liu, Weike Lu, Tianli Tang, Lan Liu 

 

 
Abstract—Accurate prediction of passenger demand is 

essential for the efficient operation and management of metro 
systems. In practical scenarios, strategies to enhance metro 
service quality often require passenger demand information on 
multiple fronts, such as inflow to a station, outflow from a 
station, as well as transition flow between entry/exit stations. 
While predictions for a single type of passenger demand have 
been extensively studied, limited attention was paid to jointly 
predicting multiple demands. This problem is challenging due to 
the complex relationships among multiple demands (e.g., inflow 
is only correlated with historical inflow, while the outflow is not 
only correlated with outflow but also determined by the inflow) 
and the imbalanced training issue of multiple prediction tasks. 
To address these challenges, this paper proposes a deep multi-
task learning (MTL) model called MTLMetro to co-predict 
multiple demands in metro systems. More specifically, we deploy 
the message-passing schemes in graph neural networks (GNNs) 
as the knowledge-sharing mechanisms in the MTL model to 
capture the inherent relationships among multiple demands. To 
balance the training of multiple tasks, we introduce a novel 
weighting scheme named dynamic weight average (DWA), which 
can dynamically adapt relative weight for each task. In addition, 
the partial observability problem of transition flow is also 
considered in MTLMetro in an end-to-end manner. Empirical 
evaluation on a real-world dataset demonstrates MTLMetro’s 
superior performance across the different demand prediction 
tasks when compared to several benchmarks. Further ablation 
experiments verify the effectiveness of the proposed modules and 
the weighting method. 
 
Index Terms—Metro demand prediction, multi-task learning, 
deep learning, graph neural network, dynamic weight average. 
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I. INTRODUCTION 
AIL-based metro system, emblematic of high-capacity, 
environmentally-efficient transport, represents a 
fundamental cornerstone in mitigating traffic 

congestion and traffic pollution, key challenges to sustainable 
urbanization. However, many metropolises now suffer 
substantial pressure from excessive passenger demand on their 
metro systems. For instance, over 10 million passengers use 
the Beijing metro system daily, surpassing the system capacity, 
particularly during peak hours. This necessitates strategies 
such as train scheduling [1] and passenger inflow control [2] 
to alleviate the oversaturated situation. To support such 
measures, accurate and short-term prediction of passenger 
flows through the system is essential, which could benefit the 
effective operation and management of metro systems. 

Metro systems primarily encompass two types of passenger 
demand: i) node demand, denoting the number of passengers 
entering/exiting a station during a time interval (termed as 
inflow/outflow), and ii) transition demand, representing the 
number of passengers traversing between entrance-exit 
stations during a time interval (termed as origin-destination 
(OD) flow). These two measures of passenger demand are 
interrelated but play different roles in the operation and 
management of metro systems. For example, the node demand 
is integral to passenger inflow control at stations, whereas the 
transition demand is used in planning and scheduling the train 
services.  

Recently, extensive studies have been proposed for short-
term demand prediction in metro systems, using methods that 
range from classical statistical methods to advanced artificial 
intelligence (AI) methods (e.g., machine learning and deep 
learning) [3], [4], [5], [6], [7], [8]. Among the AI methods, 
deep learning models, such as convolutional neural networks 
(CNNs) [9], [10], [11], [12], recurrent neural networks 
(RNNs) [13], [14], [15], [16], and graph neural networks 
(GNNs) [17], [18], [19], are favored by researchers, owing to 
their ability to model complex dependencies embedded in 
metro systems. However, most of these studies focus on 
predicting a single type of passenger demand, either node or 
transition demand. 

Notice that, for some operation strategies, multiple demands 
are simultaneously considered. For example, both inflow and 
OD flow are considered when collaboratively optimizing the 
train timetable and passenger flow control strategies [20]. 
Thus, a palpable need emerges for accurate co-prediction of 
multiple demands in metro systems - an area has received 
limited research attention thus far. Due to the complex 
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intercorrelation across demands, traditional machine learning 
and deep learning models cannot effectively address the joint 
learning of multiple tasks. Fortunately, multi-task learning 
(MTL) is a promising machine learning paradigm that 
leverages inherent information across multiple related tasks to 
improve performance [21]. Recent studies on the co-prediction 
of multiple demands in metro systems have verified the 
superiority of this paradigm [22], [23], [24], [25]. However, 
there are two challenges yet to be comprehensively addressed 
in existing MTL models: 

Challenge 1: How to share knowledge across tasks 
(knowledge-sharing mechanism). By leveraging useful 
knowledge among related tasks, an MTL model has the 
potential to improve performance for all tasks [26]. Clearly, 
the multiple demands in metro systems are closely related, e.g., 
the flow conservation relationship (a station’s outflow equals 
the sum of its OD flow). From the model architecture point-of-
view, designing delicate knowledge-sharing mechanisms 
derived from the inherent relationships among multiple 
demands is a key challenge for an MTL model. 

Challenge 2: How to tackle the joint learning of multiple 
tasks (task balancing). Taking the weighted sum of the sub-
task loss as the loss function is a typical way to train an MTL 
model. However, as the convergence speed and training 
difficulty for different tasks may differ, one or more tasks can 
dominate the overall model training, potentially resulting in 
bias against less-weighted tasks [26]. For a better overall 
performance, more attention should be paid to the challenging 
tasks, while less training focus should be allocated to the 
easier ones. Manual tuning of loss weights is tedious, so 
adaptively tuning the loss weights is highly desirable to 
balance the joint training of multiple tasks.  

Beyond the co-prediction problems, another two challenges 
are also concerned with demand prediction in metro systems: 

Challenge 3: Leveraging message-passing schemes in 
GNNs. GNNs, endowed with the message-passing scheme, 
enable the exchange of information/messages on node and 
edge levels [27]. Examples of the message-passing scheme in 
GNNs for node- and edge-featured graphs are shown in Fig.1, 
from which we can observe that information can be passed 
directly from nodes to nodes or edges. The exchange of 
information can be seen as a form of knowledge-sharing 
process. Thus, we argue that the message-passing schemes in 
GNNs can be further designed as knowledge-sharing 
mechanisms in an MTL model. 

Challenge 4: Partial observability of transition flow. 
Another practical challenge for passenger demand prediction 
in metro systems is the partial observability problem of 
transition flow [28], i.e., the automatic fare collection (AFC) 
system cannot record completed transition data until 
passengers finish their journeys. In other words, the true 
transition demand at the current time can only be obtained 
after a time lag. When predicting multiple passenger demands 
in metro systems, neglecting the partial observability issue and 
using the transition demand observed in the future as the 
inputs of prediction models is unrealistic in practice, while 
directly using the incomplete transition demand may cause a 

loss of massive information. Thus, integrating the transition 
demand completion task into the demand prediction model is 
also worth studying. 

With the above concerns, we propose a novel deep MTL 
model called MTLMetro to simultaneously predict multiple 
demands in metro networks. Firstly, we propose an OD 
completion (ODC) module to address the partial observability 
problem of transition demand and provide richer information 
for subsequent prediction tasks. Secondly, three tailored 
GNNs are carefully designed to characterize the inherent 
relationships among multiple demands in MTLMetro. Finally, 
a dynamic adaptive weighting method named dynamic weight 
average (DWA) is introduced to balance the joint learning of 
all tasks. Compared with the existing studies, the main 
contributions of this paper are summarized as follows: 

(1) We propose a novel deep learning model, the 
MTLMetro, to co-predict the inflow, outflow, and transition 
flow in metro systems. Completing the transition demand is 
involved as an auxiliary task in MTLMetro to address the 
partial observability issue. A dynamic loss weighting method 
is introduced for MTLMetro to adapt the relative importance 
of each task during training, allowing better overall 
performance for all tasks. 

(2) We design three GNNs, in which the tailored message-
passing schemes, derived from the inherent relationships 
among multiple demands, are developed as the knowledge-
sharing mechanisms in MTLMetro. In addition to capturing 
spatial dependencies underlying metro systems, the proposed 
GNNs can be employed to leverage beneficial information 
across associated tasks. 

(3) We demonstrate that the proposed MTLMetro 
outperforms other benchmark models by comparative 
experiments on a real-world metro demand dataset in Chengdu, 
China. Further experiments shed light on the superiority of the 
components in MTLMetro. 

The rest of the paper is arranged as follows: Section Ⅱ 
reviews the related literature. We provide some preliminaries 
of the study in Section Ⅲ. Section Ⅳ introduces the 
formulation process and methodologies of the proposed model 
in detail. The dataset, benchmarks, experiment results, and 
model interpretation are presented in Section Ⅴ. Finally, 
Section Ⅵ concludes with a summary of the findings of the 
case study. 

 
Fig.1 Message-passing scheme in GNNs for node-featured (left) and edge-

featured (right) graphs 
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II. RELATED WORKS 
In this section, we conduct an extensive literature review on 

short-term passenger demand prediction under two categories: 
single-type demand and multiple demands prediction. 
 

A. Single-type demand prediction 
Over the past few decades, numerous single-type metro 

passenger demand (e.g., inflow, outflow, and OD flow) 
prediction models have been developed. Early studies focused 
on predicting the node demand using methods such as auto-
regression integrated moving average (ARIMA) [3] and 
generalized autoregressive conditional heteroskedasticity 
(GARCH) [4]. Since the passenger demand data shows a 
strong non-linearity, traditional statistical models may fail to 
capture the complex features. Machine learning models have 
proved to be more efficient in metro passenger demand 
prediction. Some successful machine learning studies include 
support vector machine (SVM) [5], dynamic Bayesian 
networks [6], radial basis function networks [7], and neural 
networks (NNs) [8]. However, most studies could not well 
capture the inherent patterns of passenger demands. 

Recent studies have shown that deep learning models can 
achieve superior prediction performance than traditional 
models and machine learning models because of their ability 
to capture spatial-temporal correlations [29], [30], [31], [32]. 
In particular, RNNs, especially their variants, e.g., long-short 
term network (LSTM) [14], [15] and gated recurrent unit 
(GRU) [16], were employed to detect the temporal 
dependencies of metro inflows/outflows. CNNs were used to 
learn the spatial dependencies of passenger demand [9], [10], 
[11], [12]. However, the prerequisite to applying CNNs is 
transitioning passenger demand data to regular Euclidean 
structures, which may violate the non-Euclidean nature of 
metro networks. Owning the ability to model non-Euclidean 
structures, GNNs have been leveraged to seize the non-
Euclidean spatial dependencies and solve the drawbacks of 
CNNs [17]. Combining GNNs with RNNs has been proven to 
be an efficient way to capture the spatial-temporal 
dependencies embedded in inflows/outflows [18], [19], [33].  

In terms of metro OD flow prediction, there are only a few 
studies on this topic. Noursalehi et al. [9] combined CNN with 
convolutional LSTM (Conv-LSTM) to forecast the future 
metro OD flows. Zhang et al. [34] designed an operation-
oriented deep-learning model called the spatiotemporal 
convolutional neural network (STCNN) to realize short-term 
OD flow prediction. Some researchers have attempted to 
address this task with GNNs to better model the spatial 
dependencies. For example, Jiang et al. [28] introduced a 
temporally shifted graph convolution (TSGC) to model the 
lagged temporal relationships among OD pairs. Liu et al. [35] 
modeled the metro network as graphs based on realistic 
topology, passenger flow similarity, and correlation. A graph 
convolution gated recurrent unit (GC-GRU) was then 
proposed to incorporate these graphs. However, the above 
GNN-based models are limited to node-level operations and 
fail to incorporate the edge features containing important 

information. When converting the metro networks into graphs, 
taking the OD flows as the edge features is intuitive and valid 
[36]. Therefore, we aim to develop GNNs for edge-featured 
graphs to further exploit spatial-temporal dependencies of 
transition demand. 

The partial observability issue of OD flow information has 
attracted increasing attention in recent years. To address this 
problem, some studies suggested using additional information, 
such as inflow, outflow, historical OD flow, and unfinished 
order information, to replace the unavailable OD matrices as 
the inputs of prediction models [10], [37], [38]. Others 
attempted to estimate the completed OD. For example, Ye et 
al. [39] utilized inflow and historical OD distributions and 
proposed an NN-based model to complete the OD matrices. 
Jiang et al. [28] developed a reconstruction mechanism in a 
deep leaning-based model, taking inflow and partially 
observed OD flow as inputs to estimate the OD flow. Using 
the real-time demand information (e.g., inflow, outflow, 
destination allocation of inflow, origin allocations of outflow), 
Zheng et al. [40] established a multi-view passenger flow 
(MVPF) model to learn the latent representation of OD flow. 
Although multiple demand sources are utilized to deal with the 
partial observability issue, the previous studies are limited to 
predicting the OD flow, neglecting the inherent correlations 
between these multiple demands. Recently, Xu et al. [24] and 
Liu et al. [25] integrated the OD completion task with multiple 
demand prediction tasks using the MTL paradigm, and the 
results demonstrated the superiority of the MTL paradigm in 
enhancing overall performance. Detailed comparisons 
between the above two MTL models and our proposed model 
will be discussed in the following subsection. 
 

B. Multiple demands prediction 
MTL is a machine learning paradigm that can leverage 

useful information in multiple tasks to help learn a more 
accurate model for each task. As a promising AI technical, 
MTL has been used in several domains, such as 
recommendation systems [41], natural language processing 
[42], and computer vision [43].  

In the transportation domain, substantial research efforts are 
dedicated to jointly predicting multiple states via MTL. For an 
MTL model, one key is designing the model architecture 
where the information can be transmitted across tasks, i.e., the 
knowledge-sharing mechanism. A common way is directly 
concatenating [22], [44], summing [44], or sharing [23], [24] 
the representations of different tasks. Some modified operators 
were proposed to obtain deeper information across tasks. For 
instance, Liu et al. [25] introduced an MTL model for metro 
transition demands prediction, where the Transformer was 
used to propagate the mutual information among demands. 
Zhang et al. [45] proposed an MTL model with LSTM to 
catch the correlations between multiple demands. Zhang et al. 
[46] constructed an MTL model for ride-hailing demand 
prediction, in which the task correlation was estimated by 
dynamic time warping (DTW). Feng et al. [47] developed an 
MTL model for co-prediction of ride-hailing demands, in 
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which a matrix-factorized module was employed to decode 
representations for each task separately. Ke et al. [48] 
established an MTL model that imposes a prior tensor normal 
distribution on the weights of different task networks. Liang et 
al. [49] were the first to leverage the message-passing 
schemes in GNNs to capture the cross-mode spatiotemporal 
dependencies in multimodal transportation systems. However, 
the message-passing scheme employed in [49] is unsuitable 
for predicting multiple demands in metro systems for two 
primary reasons. Firstly, they employed GNNs that cannot 
utilize spatial dependencies on the edge level, thus limiting 
their ability to address transition-based prediction tasks. 
Secondly, the inherent relationships among passenger 
demands in metro systems are more complex than those 
captured by geographic and semantic correlations in [49]. 

Moreover, designing the loss function is as important as 
designing the architecture for an MTL model. A general and 
handy way is to set the loss function as the sum [22], [45], 
[46], [48], weighted sum [24], [25], [44], [47], [49], or 
automatic weighted sum [23] of sub-task loss. Various tasks 
may converge at different speeds, resulting in an imbalance of 
training for sub-tasks. For better overall performance, the loss 
function in the MTL model should be designed to enable the 
tasks to be trained at the same pace. However, existing studies 
in the transportation demand prediction domain have not 
addressed the task-balancing problem in MTL models. 

TABLE I compares the studies related to MTL in the 
transportation prediction domain regarding the above-listed 
challenges, including the knowledge-sharing mechanism 
(challenge 1), task balancing (challenge 2), message-passing 
level (challenge 3), and partial observability of transition flow 
(challenge 4). Four major highlights can be summarized: i) 
Few studies fully considered the potential relationships among 
demands when designing the knowledge-sharing mechanism 
in MTL models; ii) Most studies neglected the task-balancing 
issue in MTL models; iii) Few studies extended the message-
passing scheme in GNNs on the edge level; iv) the partial 
observability of transition flow problem of metro transition 
demand has not been thoroughly studied in the MTL paradigm. 
To address these issues, this paper aims to: i) Explore the 
connections between message-passing schemes in GNNs and 
knowledge-sharing mechanisms in MTL models, leveraging 

inherent relationships among passenger demands; ii) Develop 
a loss weighting method that can adapt the task weights over 
time to ensure balanced task training; iii) Generalize message-
passing schemes in GNNs on both node and edge levels, 
exploiting spatial-temporal dependencies of node and 
transition demands; iv) Integrate the transition demand 
completion as an auxiliary task within the proposed MTL 
model to provide richer information for the prediction tasks.  

III. PRELIMINARIES 

A. Basic definitions 
Definition 1: Inflow and outflow vectors. The total time 

period is first portioned into T time slots by a given time 
interval. At timestamp  , 1, ,t t T  , the inflow ,

t
in nx  and 

outflow ,
t
out nx  represent the cumulative number of passengers 

entering and exiting the station  , 1, ,n n N  , where N 
denotes the number of stations. The inflow and outflow can be 
represented by vectors ,1 ,, ,t t t N

in in in Nx x    X  and 

,1 ,, ,t t t N
out out out Nx x    X . 

Definition 2: OD matrixes. Here, we define two kinds of 
transition demands, as in Eq. (1). At timestamp t, the inbound-
based OD (INOD) matrix is denoted by t N N

in
Μ , where 

each entry , ,
t
in i jm  denotes the transition demand entering 

station i heading to station j. The outbound-based OD 
(OUTOD) matrix is denoted by t N N

out
Μ , and each entry 

, ,
t
out i jm  represents the transition demand reaching station j at 

time t originating from station i. 

 

,1,1 ,1,2 ,1,

,2,1 ,2,2 ,2,

, ,1 , ,2 , ,

,1,1 ,1,2 ,1,

,2,1 ,2,2 ,2,

, ,1 , ,2 , ,

t t t
in in in N
t t t
in in in Nt

in

t t t
in N in N in N N

t t t
out out out N
t t t
out out out Nt

out

t t t
out N out N out N N

m m m
m m m

m m m

m m m
m m m

m m m

 
 
   
 
  
 

 






   





   


Μ

Μ






  (1) 

TABLE I 
COMPARISON OF RELATED STUDIES  

Publication Goal  Knowledge-sharing mechanism Task Balancing Message-passing level Partial observability 
[44] Taxi demands Sum/Concatenation    
[45] Taxi demands LSTM    
[46] Ride-hailing demands DTW    
[47] Ride-hailing demands Matrix factorized     
[48] Ride-hailing demands Prior tensor distribution    
[22] Metro demands Concatenation    
[23] Metro demands Parameter sharing    
[24] Metro demands Parameter sharing    
[25] Metro demands Transformer    
[49] Multimodal demands Geographic/semantic-based message-passing scheme  Node level  
This paper Metro demands Inherent relationships-based message-passing scheme  Node and edge levels  
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Fig.2 presents flows in a simple metro network. Intuitively, 
flow conservation relationships exist between multiple 
demands. For example, the sum of the INOD originating from 
station i equals the inflow of the station: 

 , , ,
1

N
t t
in i in i j

j
x m



   (2) 

Similarly, the sum of the OUTOD flow reaching station j 
equals the outflow of the station: 

 , , ,
1

N
t t
out j out i j

i
x m



   (3) 

One should note that the INOD matrix cannot be observed 
in real-time since a travel time gap exists between passengers 
entering the origin station and exiting the destination station. 
In other words, the INOD matrix can only be completed and 
obtained until the passengers have finished their trips [50]. On 
the contrary, the OUTOD matrix can be fully observed in real-
time since the observed passengers have reached their 
destination. Based on the above analysis and inspired by [39], 
we then define real-time/delayed inflow/INOD.  

Definition 3: Real-time/delayed inflow vectors. Given two 
timestamps   and ,( )t t  , the real-time inflow is denoted by 

, ,t r
in
X , representing the demand entering a station at   that can 

reach destinations before or at t . Then, we define the delayed 
inflow , ,t d

in
X  as the demand that will finish their trips after t . 

Obviously, , , , ,t r t d
in in in
   X X X .  

Definition 4: Real-time/delayed INOD matrixes. Given two 
timestamps   and ,( )t t  , the real-time INOD matrix is 
denoted by , ,t r N N

in
 M , representing the transition demand 

originating from   that can reach the destinations before or at 
t . On the other hand, the remainders will finish their trips 
after t , and this kind of transition demand is defined as the 
delayed INOD matrix denoted by , ,t d N N

in
 M . Obviously, 

, , , ,t r t d
in in in
   M M M .  
Two graphs are then proposed to model the metro networks 

based on the defined passenger demands. A topology graph 
that uses the topological structure of the metro networks is 
introduced to describe the non-Euclidean spatial relationships. 
Besides, unlike the topology graph without edge features, we 

propose an edge-featured OD graph to leverage the 
information of transition demands. 

Definition 5: Topology Graph. A topology graph 
( , , )tg tg tgG V E A  is proposed to model the physical structure of 

the metro network, where V  is a set of nodes representing the 
stations in the metro network, and tgE  denotes the edges. 

N N
tg

A  is the adjacency matrix describing the topological 
connectedness of nodes, in which the entry ,[ ] 1tg i j A  if nodes 

iv V  and jv V  are physically connected; otherwise 

,[ ] 0tg i j A . The neighborhood of iv  is defined as 

 ,( ) | [ ] 1tg tg i jNe i j A . In the topology graph, each node is 

associated with the inflow/outflow features, while edges are 
with no weights.  

Definition 6: OD graph. An OD graph ( , , )od od odG V E A  is 
defined to involve the transition demand. V  is the node set 
denoting the stations and odE  is the edge set. Different from 

tgG  that simply considers the physical connections, odG  takes 
the station’s reachability into account. The reachability ,i jr  
denotes whether passengers originating from station iv V  
can reach station jv V  via the metro network, i.e., , 1i jr   if 

jv  is reachable from iv ; otherwise , 0i jr  . Then, each entry of 
the adjacency matrix odA  is defined according to the 
reachability , ,[ ]od i j i jrA . The neighborhood of node iv  in the 

OD graph is then defined as  ,( ) | [ ] 1od od i jNe i j A . In the 

OD graph, each node is featured by the inflow/outflow, and 
each edge is featured by the INOD/OUTOD.  

 

B. Research problem 
In general, a passenger demand prediction task is a time-

series prediction problem that uses historical observations to 
predict future passenger demand. In this paper, four kinds of 
passenger demand, i.e., inflow, outflow, INOD, and OUTOD, 
are involved. To fully leverage inherent information among 
these demands, we formulate an MTL model to jointly predict 
passenger demands. Notably, considering the partial 
observability problem of INOD, data completion is viewed as 
an auxiliary task in the proposed MTL model. Thus, the 
research problem of this paper is formally defined as follows. 

Multiple passenger demands prediction. Given K-step 
historical passenger demands, 1[ , , ]t K t

in in
  X X , 1[ , , ]t K t

out out
  X X , 

1, , , ,[ , , ]t K t r t t r
in in
  X X , 1, , , ,[ , , ]t K t d t t d

in in
  X X , 1, , , ,[ , , ]t K t r t t r

in in
  M M , 

1[ , , ]t K t
out out
  M M , we develop an MTL model to complete 

1[ , , ]t K t
in in
  M M , and collectively predict the inflow 1t

in
X , 

outflow 1t
out
X , INOD 1t

in
M , and OUTOD 1t

out
M  in the future.  

IV. METHODOLOGY 
Fig.3 briefly presents the framework of the proposed 

MTLMetro for co-prediction of multiple demands in metro 
systems. In our proposed approach, we first develop an ODC 

 
Fig.2 Flows in a simple metro network 
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module to address the partial observability problem of INOD. 
Then, three edge-featured GNNs are developed to capture the 
inherent spatial correlations among demands. By carefully 
designing message-passing schemes in the GNNs, useful 
knowledge can be leveraged and shared across tasks. Besides, 
the proposed model also considers a GRU module to capture 
the temporal dependencies. Finally, a dynamic loss weighting 
method, DWA, is introduced to train MTLMetro and address 
the task balancing problem. 
 

A. ODC module for INOD completion 
In practice, the travel time gap leads to the partial 

observability problem of INOD. In this subsection, we aim to 
develop an ODC module to complete INOD.  

According to definition 4, the INOD matrix in
M  can be 

decomposed into a real-time INOD matrix , ,t r
in
M  and a 

delayed INOD matrix , ,t d
in
M . Since , ,t r

in
M  can be observed in 

real-time, the estimation of in
M  mainly depends on the 

estimation of , ,t d
in
M . Note that , ,t d

in
M  can also be represented 

by the product of , ,t d
in
X  and the corresponding delayed 

passenger distribution probability ,d N N
in
 P , that is, 

, , , , ,t d t d d
in in in
   M X P , where   denotes the broadcast operation. 

Because , ,t d
in
X  can be easily obtained according to definition 

3, the problem of estimating , ,t d
in
M  can be come down to 

estimate ,d
in
P . In reality, passenger flow in metro systems 

shows an apparent weekly period [28], [34], [39]. We assume 
that the delayed distribution probability at the same time of the 
previous week ,d

in
P  can be employed as the estimation of ,d

in
P . 

In practice, ,d
in
P  can be easily obtained according to historical 

observations. 
Based on the above analysis, a simple feedforward neural 

network (FNN)-based ODC module is proposed, taking the 
real-time INOD, delayed inflow, and probability of delayed 
INOD as inputs. The details of ODC are shown in Fig.4 (a). 
The process of ODC is as follows: 

 , , , , ,
, , , , , , ,( )t r t d d

in i j in i j in i in i j in inp     m m x W b   (4) 

where , ,
, ,
t r C

in i j
 m  represents the real-time INOD from iv  to 

jv , , ,
,
t d C

in i
 x  denotes the delayed inflow of iv , and C is the 

feature dimension. ,
, ,
d

in i jp  is the delayed distribution probability 
of OD from iv  to jv  at the time   of previous week. 

C C
in

W  is the trainable matrix, and C
in b  represents the 

trainable bias, ( )   is the non-linear activation function. 

, ,
C

in i j
  m  is the completion result of INOD from iv  to jv  at 

time  . Thus, the completed INOD for all OD pairs can be 
represented as , , , 1{ } ,N N N C

in in i j i i in
    

 
  M m M . 

Different from [39], which separated the INOD completion 
task from the subsequent prediction tasks, we treat it as an 
auxiliary task in MTLMetro so that it can be trained in an end-
to-end manner. 
 

B. Edge-featured GNNs for knowledge-sharing across 
passenger demands 

The core idea of GNNs lies in the message-passing scheme 
that enables exchanging and aggregating information among 
nodes/edges. In the context of MTL, it aims to boost overall 
learning performance by leveraging and sharing beneficial 
knowledge across related tasks. When comparing GNNs to the 
MTL paradigm, the message-passing in GNNs can be seen as 

 
Fig.3 Framework of the proposed MTLMetro 
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a form of knowledge-sharing in MTL.  
Designing the knowledge-sharing mechanism of an MTL 

model necessitates meticulous attention to the inter-task 
relationships. To capture the inherent correlations among 
multiple demands, this subsection introduces three GNNs with 
customized message-passing schemes tailored to these 
relationships. The following parts will introduce the details of 
the three modules. 
 

1) IGNN 
Recognizing that the INOD represents the spatial 

distribution of the inflow, we propose an inbound graph neural 
network (IGNN) module with an in-to-od message-passing 
scheme to capture this spatial relationship. The details of 
IGNN are shown in Fig.4 (b). For a historical time 

, { 1, , }t K t      , given the inflow features , 1{ }N
in in i i
 

X x  

and completed INOD features , , , 1{ }N
in in i j i j
 


 M m , the process of 

the IGNN module is as follows: 

 , , , ,( ), ( )in i in j in g in g tgj
j Ne i    x x W b   (5) 

 , , , , , , , ,([( ) || ( )] ), ( )i j in i in v in v in i j in e in e a odz j Ne i     x W b m W b W   (6) 

 ,
,

,

exp( )
, ( )

exp( )
i j

i j od
i jj

z
j Ne i

z




  


  (7) 

 , , , , , ,( ), ( )in i j i j in i in v in v odj Ne i     m x W b   (8) 

 , , , , , , , ,(1 ) ( ), ( )in i j in in i j in in i j in e in e odj Ne i         m m m W b   (9) 

where ,
C

in i
 x  and ,

C
in j
 x  denote the inflow features of 

nodes iv  and jv  at time  , respectively. , ,
C

in i j
  m  represents 

the completed INOD features of edge ,i je at  . 

, , { , , }C O
in q q g v e W and , , { , , }O

in q q g v e b  are the 
trainable weights and bias, and O represents the feature 
dimension. [ || ]   is the concatenation operation. 2 1O

a
W  

denotes the linear transformation that can map a matrix to a 
scaler. ,i jz  and ,i j

  represent the unnormalized and 
normalized attention score of iv  to ,i je , and [0,1]in   is a 

learnable weight. , ,in i j
m  is the latent node feature. ,

O
in i
 x  

and , ,
O

in i j
 m  represent the output features for iv  and ,i je  of 

the IGNN module, respectively. For all nodes and edges, the 
output features are defined as , , 1 ,{ } ,N N O

in ignn in i i in ignn
   

 X x X  

and , , , , 1 ,{ } ,N N N O
in ignn in i j i j in ignn
    

 M m M , respectively. 
In the proposed IGNN, Eq. (5) is used to output the node 

features, while Eq. (6-9) is employed to produce the edge 
features. Specifically, a node-to-node message-passing scheme 
[51] is developed to operate on the topology graph to capture 
the spatial dependencies between inflows, as Eq. (5) shows. 
Then, the in-to-od message-passing scheme based on the 
graph attention networks (GAT) [52] is designed to operate on 
the OD graph to model the relationship between inflow and 

INOD. In Eq. (6), linear transformations ,in vW  and ,in eW are 
initially employed to project inflow and INOD representations 
into high-dimensional spaces. A concatenation operator is 
used to fuse the inflow and INOD representations. 
Subsequently, a trainable linear transformation aW  is applied 
to compute the pair-wise attention score ,i jz , which signifies 
the influence from the inflow of iv  to the INOD of ,i je . In Eq. 
(7), a softmax operation is applied to normalize the attention 
score and make coefficients comparable across different 
INOD pairs. Once the normalized attention score is obtained, a 
simple product of the attention score and inflow is conducted 
to determine the influence of inflow on INOD, as shown in Eq. 
(8). Notice that we can get , 1, ( )i j odj

j Ne i    according to 

Eq. (7). The flow conservation relationships between inflow 
and INOD will be guaranteed by Eq. (8). In Eq. (9), a fusion 
operator with a learnable weight in  is developed to 
adaptively integrate the task-across node knowledge and task-
specific edge knowledge when updating the edge features.  

In contrast to the traditional GAT, which is primarily 
designed for graphs with node features, the attention 
mechanism in IGNN is specifically devised for graphs that 
incorporate both node and edge features. 

 

2) OGNN 
The outflow at a station emerges as the aggregate outcome 

of the corresponding OUTOD, and we develop an outbound 
graph neural network (OGNN) module equipped with an od-
to-out message-passing scheme to model their relationship. 
The details of OGNN are shown in Fig.4 (c). For a historical 

 
Fig.4 Framework of the proposed modules 
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time , { 1, , }t K t      , given the outflow features 

, 1{ }N
out out i i
 

X x  and OUTOD features , , , 1{ }N
out out i j i j
 

M m , the 
process of the OGNN module is as follows: 

 , , , ,( ), ( )out j out i out g out g tgi
i Ne j   x x W b   (10) 

 , , , , , ,( )out i j out i j out e out e
   m m W b   (11) 

 , , , , ( )out j out i j odi
i Ne j  x m   (12) 

 , , ,(1 )out j out out j out out j
       x x x   (13) 

where ,
C

out i
 x  and ,

C
out j
 x  are the outflow features of iv  

and jv  at  , respectively. , ,
C

out i j
 m  represents the OUTOD 

features of ,i je at  . , , { , }C O
out q q g e W  and 

, , { , }O
out q q g e b  are the trainable weights and bias, 

[0,1]out   is the learnable coefficient. ,out j
x  and ,out j

x  are the 

latent node features. ,
O

out j
 x  and , ,

O
out i j
 m  represent the 

output features for node jv  and edge ,i je , respectively.  
In Eq. (10), the spatial dependencies of outflows are 

detected by the node-to-node message-passing scheme [51]. 
Specifically, similar to the classic GCN, when generating the 
features of node jv , the information from the 
neighborhoods , ( )i tgv i Ne j of the topology graph is utilized. 
A FNN is then employed to map the edge features to high-
dimensional space, as Eq. (11) shows. Eq. (12) shows a 
concise sum-based od-to-out message-passing scheme 
operated on the OD graph to model the flow conservation 
relationship between outflow and OUTOD. After that, the 
information derived from the OUTOD, i.e., ,out j

x , together 

with the updated node features ,out j
x , is fused to output the 

node features ,out j
x  in Eq. (13). The output features for all 

nodes and edges are defined as 
, , 1 ,{ } ,N N O

out ognn out i i out ognn
   

 X x X  and 

, , , , 1 ,{ } ,N N N O
out ognn out i j i j out ognn
    

 M m M , respectively. 
 

3) PGNN 
Considering that the outflow and OUTOD can be 

interpreted as the propagation results of the inflow, we 
propose a propagation graph neural network (PGNN) module 
featuring an in-to-out message-passing scheme to capture the 
propagation relationship.  

When modeling the relationship between inflow and 
outflow/OUTOD, the first step is figuring out which previous 
inflow of other stations will influence the target station’s 
outflow/OUTOD at the target time. Here, we carefully 
propose a time-varying propagation coefficient to describe the 
propagation relationship. At time t , given a historical time 

, { 1, , }t K t       and a future time  , the propagation 
coefficient ,

,i j
   is defined as: 

 ,,
,

1,( 1) ( 1)
0,otherwise

i j
i j

i j   


          


  
  (14) 

where ,i j  denotes the average travel time between iv  and jv , 
  is the length of the time interval. Intuitively, ,

, 1i j
   if the 

passenger origin from iv  at time   can arrive at jv  at time  , 

else ,
, 0i j
  .  

Based on the propagation coefficient, we then proposed the 
PGNN module. The details of PGNN are shown in Fig.4 (d). 
At time t , we set { 1, , }t K t      and 1t  , given the 
inflow features , 1{ }N

in in i i
 

X x  and the propagation coefficient 
, 1 , 1

, , 1{ }t t N
i j i j

  
 , the process of the PGNN module is as 

follows: 

 , 1 , 1
, , , , , , ,( ) , ( )t t

out i j in i in p in p i j i j odj Ne i         m x W b   (15) 

  , 1 , 1
, , , , ( )t t

out j out i j odi
i Ne j   x m   (16) 

 1 , 1
, , , ,

1

t
t t

out i j out i j
t K





 

  

  m m   (17) 

 1 , 1
, ,

1

t
t t

out j out j
t K





 

  

  x x   (18) 

where ,
C O

out p
 W  and ,

O
out p
 b  denote the trainable 

weights and bias. ,i j
  represents the learned attention score in 

the IGNN module. 1
,

t O
out j
 x  and 1

, ,
t O

out i j
 m  represent the 

output outflow features for node jv  and INOD features for 

edge ,i je , respectively. 1 1 1
, , 1 ,{ } ,t t N t N O

out pgnn out i i out pgnn
   

 X x X  and 
1 1 1
, , , , 1 ,{ } ,t t N t N N O

out pgnn out i j i j out pgnn
    

 M m M  denote the features for 
all nodes and edges, respectively. 

The PGNN module introduces an in-to-out message-passing 
scheme based on the OD graph. In Eq. (15), the inflow 
features are first transformed into high-level dimensions and 
then multiplied by the propagation coefficient , 1

,
t

i j
   to judge 

whether the inflow will influence the corresponding 
outflow/OUTOD. The attention score ,i j

  learned by the 
IGNN module is then used to determine how much influence 
should be considered. The flow conservation relationships 
between outflow and OUTOD will be guaranteed by Eq. (16). 
A sum operator is applied to obtain the total influence of the 
historical inflow on the OUTOD and outflow, as defined in Eq. 
(17) and Eq. (18) 

C. GRU for temporal dependencies modeling 
RNNs are widely used deep learning models for short-term 

passenger demand prediction because of their ability to 
capture temporal dependencies. Among RNNs, LSTM and 
GRU are the most popular RNN variants. Here, we employ 
GRU since it is as powerful as LSTM but with fewer 
parameters. Given a K-step input sequence  1

t

t K    
x , details 

of the GRU are as follows [53]: 
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 1( )z z zz     W x U h b   (19) 

 -1( )r r rr    W x U h b   (20) 

 1tanh( ( ) )h h hr       h W x U h b   (21) 

 1 (1 )z z      h h h   (22) 

where x  denotes the input at time  . z and r  are the update 
gate and reset gate, respectively. The reset gate controls the 
extent to which information from the previous time step is 
disregarded, whereas the update gate determines the extent to 
which information from the previous time step is retained. 

, , , ,z r h z rW W W U U  and hU  are weight matrices, zb , rb and hb  
are biases. h  presents the output at time  , which is obtained 
based on the current input x  and previous output 1 h . In the 
proposed model, the input x  of the GRU module could be the 
inflow, outflow, and OD flow.  
 

D. MTLMetro for multiple demands prediction 
The MTLMetro is proposed to co-predict multiple demands 

in metro networks, including inflow, outflow, INOD, and 
OUTOD. In MTLMetro, predicting each demand is viewed as 
a sub-task, and completing INOD is regarded as an auxiliary 
task. The framework of MTLMetro is shown in Fig. 3.  

At time t, given the K-step historical inputs, the completed 
INOD can be obtained by the ODC module as 

1[ , , ]t t K t K N N C
in in in

     
  

 M MM . The IGNN module outputs 
the inflow features 1

, , ,[ , , ]t t K t K N O
in ignn in ignn in ignn

     X XX and 
INOD features 1

, , ,[ , , ]t t K t K N N O
in ignn in ignn in ignn

      M MM . The 
OGNN module generates the outflow and OUTOD features as 

1
, , ,[ , , ]t t K t K N O

out ognn out ognn out ognn
     X XX  and 

1
, , ,[ , , ]t t K t K N N O

out ognn out ognn out ognn
      M MM , respectively. Besides, 

the PGNN module will output the outflow features 
1
,

t N O
out pgnn
 X  and OUTOD features 1

,
t N N O
out pgnn
  M  of the 

target time 1t  . 
Before feeding the outputs of the IGNN and OGNN into the 

GRU layers, a max-pooling operation is applied to reduce the 
dimension of the node features and edge features. Taking 

,
t
in ignnX  as an example, the pooling process is set as: 

 , ,( )t t
in pool in ignnmaxpoolX X   (23) 

where ,
t N
in pool X  denotes the output of the pooling layer. 

The pooled sequence 1
, , ,[ , , ]t t K t K N

in pool in pool in pool
    X XX  is 

then fed into the GRU layer: 

 , ,GRU( )t t
in gru in poolX X   (24) 

where ,
t O
in gru X  is the output of the last time step in the 

GRU layer.  

Similarly, we can obtain corresponding outputs of the GRU 
layer for outflow, INOD, and OUTOD as ,

t O
out gru X , 

,
t N O
in gru

M , and ,
t N O
out gru

M , respectively. 
A fusion operator is then used to fuse the outputs of the 

GRU layer and PGNN layer: 

 1
, ,1 , ,1 ,(1 )t t t

out fusion fusion out gru fusion out pgnn    X X X   (25) 

 1
, ,2 , ,2 ,(1 )t t t

out fusion fusion out gru fusion out pgnn    M M M   (26) 

where ,1fusion  and ,2fusion  are the learnable coefficients. 
Finally, ,

t
in gruX , ,

t
in gruM , ,

t
out fusionX , and ,

t
out fusionM  are fed into 

FNN layers to obtain the final prediction results 1t
in



X , 1t

out



X , 

1t
in



M , and 1t

out



M .  

 

E. DWA for task balancing 
In the previous subsections, we present the details of the 

MTLMetro model. In addition to network architecture, the 
training method is also important for an MTL model. In this 
paper, a weighted sum of sub-task loss is used to train the 
model: 

2 2 21 1 1 1
1 2 32 22

2 21 1 1 1
4 52 2

           

t t t t
in in in in in in

t t t t
out out out out

L   

 

   

   

      

   

  

 
（ ） X X M M

X X M M

M M
  (27) 

where   are all learnable parameters in the proposed model, 
and , {1, ,5}i i    are weight coefficients of the sub-tasks. 

For an MTL model, the training difficulty of tasks may 
differ, leading to a scenario where one or more tasks dominate 
the model training. Thus, efforts should be made to avoid the 
imbalance in training to improve overall performance. We 
then develop a task weighting method, DWA [54], that can 
adapt the loss weights over time to balance the joint learning 
of multiple tasks. Based on the DWA, the weights i  in Eq. 
(27) are then replaced by time-varying ones as: 

 5exp( ( 1) / )( )
exp( ( 1) / )

i
i

ii

w P
w P
 






  (28) 

 ( 1)( 1)
( 2)

i
i

i

lw
l




 


  (29) 

where ( 1)il    denotes the loss value of the task i  at iteration 
1  , and ( 1)iw    represents the relative descending speed of 

task i  at iteration 1  . The softmax operator of Eq. (28) 
multiplying 5 is applied to obtain ( )i   and ensure 

( ) 5ii
   . P represents the temperature that controls the 

softness of weighting in the softmax operator. For 1,2  , we 
set ( ) 1iw   . 
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V. CASE STUDY 

A. Data and benchmarks 
The real-world dataset collected from the AFC system of 

the Chengdu metro is used to verify the proposed model. The 
map (produced by © Mapbox, data by © OpenStreetMap) of 
the study case network in Chengdu is shown in Fig.5. We treat 
the stations in the metro network as nodes and construct 
graphs tgG  and odG  according to definitions 5-6. Graph-
related data, such as adjacency matrices and neighborhood 
information, can subsequently be obtained. The dataset 
contains the inbound and outbound information of 6 lines and 
136 stations ranging from 1st August to 31st October 2018, 
containing about 192 million passenger demand records. 
According to the real operation of Chengdu metro systems, the 
research time period for each day starts from 6:00 a.m. to 
24:00 p.m. In this experiment, the length of the time interval is 
set as 10 minutes. This dataset is divided into three parts: the 
data from 1st August to 13th October 2018 for training, the data 
from 14th to 22nd October 2018 for validation, and the data 
from 23rd to 31st October 2018 for testing.  

To demonstrate the effectiveness of the proposed model, the 
benchmarks considered in this paper are listed as follows: 

HA: Historical Average is the most fundamental method for 
demand prediction. The historical average of the training 
dataset is used to predict passenger demands. 

KNN: K-Nearest Neighbors is a classical machine learning 
model. The number of neighbors of KNN is tuned from 1 to 
10, among which the optimal values for inflow, outflow, 
INOD, and OUTOD prediction are 6, 6, 7, and 8, respectively.  

GBDT: Gradient Boosting Decision Tree is an ensemble 
machine learning model that can combine several simple tree 
models to achieve better performance. The maximum depth of 
the tree is tuned from {1, 3, 5, 7, 10, 15, 20}. The best 
parameters for inflow, outflow, INOD, and OUTOD 
prediction are 15, 10, 20, and 20, respectively. 

RF: Random Forest is an effective machine learning model 
for passenger demand modeling. The number of trees in the 
forest is selected from {10, 50, 100, 150, 200}, and it turns out 
that 50, 100, 150, and 150 trees make the best performance for 
predicting inflow, outflow, INOD, and OUTOD, respectively. 

MLP: Multi-layer Perception is the basic deep learning 
model. We build a 4-hidden layer MLP model with ReLU as 
the activation function.  

GRU: Due to the ability to model sequence data, GRU is 
employed as a baseline model. We build a 2-layer stacked 
GRU model in this paper.  

T-GCN: Temporal Graph Convolutional Network [55] is a 
state-of-the-art spatial-temporal deep learning model for 
transportation demand prediction. A T-GCN model with a 
GCN layer and a GRU layer is implemented in this paper. Due 
to the limitation of GCN, which can only operate on node 
level, T-GCN is used for inflow and outflow prediction.  

HIAM: Heterogeneous Information Aggregation Machine 
[25] is a deep learning model for short-term OD passenger 
flow prediction model that can simultaneously forecast the 
future INOD and OUTOD. HIAM serves as a baseline for 
jointly predicting passenger transition demand. 

MR-STN: Spatio-Temporal Network framework based on 
Multi-Relational [56] proposes a multi-relational learning 
module to model the relationships among multiple demands, 
which can simultaneously predict passenger inflow and 
outflow. MR-STN can be viewed as a baseline for node 
demand prediction based on the MTL paradigm. 

NENN: Node and Edge feature in graph Neural Networks 
(NENN) [57] is a recently proposed model that considers both 
the node and edge features in a graph, which means that it can 
be used for both node and transition demands prediction. 

Herein, we introduce the hyper-parameter settings for all 
deep learning models. When training the above deep learning 
models, the initial learning rate is set from {0.1, 0.01, 0.001, 
0.0001} with a 0.5 decay rate after every 20 training steps, the 
batch size is selected from {8, 16, 32, 64}, and the hidden size 
for each layer chosen from {16, 32}. All the deep learning 
models are trained for 200 epochs by an ADAM optimizer 
with MSE as the loss function. Besides, an early stopping 
strategy is applied to the validation dataset to avoid overfitting. 
We set =12K , which means that the nearest 120 min of 
historical observations is used to predict future passenger 
demands. All experiments are implemented on a PC with 96G 
RAM and one NVIDIA 3080 GPU.  

The performances of these models on the test dataset are 
evaluated via three commonly used metrics: 

(1) Mean absolute error (MAE): 

 
1

1 I

i i
i

MAE y y
I 

     (30) 

(2) Root mean square error (RMSE): 

 2

1

1 ( )
I

i i
i

RMSE y y
I 

     (31) 

(3) Mean absolute percentage error (MAPE): 

 
Fig.5 The map of the study case network in Chengdu, China 
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TABLE II 
EXPERIMENT RESULTS ON MULTIPLE DEMANDS PREDICTION 

 Inflow   INOD    Outflow   OUTOD   
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
HA 20.851 40.954 39.698% 0.698 1.455 69.531% 22.500 43.333 42.994% 0.707 1.499 75.384% 
KNN  17.624 30.970 28.269% 0.676 1.313 68.091% 19.735 33.753 30.820% 0.596 1.145 66.670% 
GBDT 17.210 33.121 26.661% 0.637 1.204 55.660% 19.689 34.242 30.762% 0.583 1.065 54.523% 
RF  16.954 33.005 25.334% 0.614 1.167 54.913% 19.522 33.601 29.200% 0.584 1.070 55.027% 
MLP 16.971 33.021 25.430% 0.611 1.132 54.892% 19.549 33.822 29.236% 0.595 1.100 55.588% 
GRU 16.813 32.484 23.148% 0.593 1.113 52.557% 18.982  32.787 27.977% 0.565 1.072 49.146% 
T-GCN 16.264 30.503 22.557% - - - 18.892  31.729 27.445% - - - 
HIAM - - - 0.535 1.002 45.442% - - - 0.540 1.013 44.196% 
MR-STN 16.003 29.981 22.311% - - - 18.652 31.634 27.261% - - - 
NENN 16.792 31.128 23.138% 0.564 1.003 48.415% 19.031 32.112 28.143% 0.559 1.063 46.392% 
MTLMetro  15.617  29.358 21.975% 0.521 0.966 41.093% 18.496 31.289 26.803% 0.524 0.985 39.854% 
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where iy  and iy are the thi  ground truth and the prediction 
value, respectively, and I  is the size test dataset. Given that 
the division by zero yields an infinite MAPE, we only 
consider the data records with positive values when 
calculating the MAPE. 
 

B. Prediction performance comparison 
The prediction performance of baselines and the proposed 

model are listed in TABLE II, and the best performance is 
marked in bold. Some interesting conclusions can be drawn as 
follows: 

(1) The performance of HA is worse than the machine 
learning and deep learning models, especially for outflow 
prediction, because of its simple assumptions about the 
relationships between the data. 

(2) Model tailored for time series, GRU, outperforms the 
classical deep learning model MLP, indicating that 
considering the inherent temporal dependencies may improve 
the prediction performance. 

(3) By integrating GNNs with RNNs, T-GCN can capture 
both spatial and temporal dependencies embedded in 
node/transition demand, helping boost prediction performance. 

(4) We can observe that the MTL models, HIAM and MR-
STN, outperform the single-task learning models, indicating 
that the MTL paradigm leverages useful information in 
multiple tasks to enhance the accuracy of each subtask. 

(5) Though NENN is capable of multi-task prediction, it 
does not outperform T-GCN, HIAM, and MR-STN. The 
reason is that NENN models the relationship between the node 
and edge by the traditional attention mechanism that neglects 
inherent correlations between node demands and transition 
demands. The improper modeling of the relationships between 
multiple demands results in the recession of NENN.  

(6) For all models, it can be observed that the MAPE values 
for INOD/OUTOD are comparatively high and exceed those 
for inflow/outflow, a discrepancy primarily attributed to two 
factors. Firstly, MAPE, as a measure of relative error, is 
determined by contrasting the absolute difference between 
predicted and actual values against the actual ones. Therefore, 
the MAPE tends to produce relatively large values when the 

ground truths are small. Notably, INOD/OUTOD values are 
consistently smaller than the inflow/outflow values, as 
demonstrated in Eq. (2) and Eq. (3), contributing to the larger 
MAPE observed for the former one. Secondly, INOD/OUTOD 
exhibits a higher complexity than inflow/outflow, 
characterized by high data dimensionality and sparse spatial-
temporal dependencies [10]. In the studied Chengdu metro 
system, which comprises 136 stations, a total of 18,496 
INOD/OUTOD pairs are identified, with more than 26% 
exhibiting zero flow during the day. This complexity, arising 
from high dimensionality and spatial-temporal sparsity, poses 
challenges to the accurate identification of INOD/OUTOD 
patterns, resulting in higher MAPE errors compared to 
inflow/outflow. Despite the challenges, the MAPE values for 
the proposed model’s predictions of INOD and OUTOD are 
41.093% and 39.854%, respectively, both well below the 50% 
threshold. This threshold, as noted by Lewis [58], is 
recognized as an indicator of reasonable accuracy, suggesting 
that the proposed model is reliable for practical applications. 

(7) The proposed MTLMetro model outperforms all single-
task (HA, KNN, GBDT, RF, MLP, GRU, and T-GCN) and 
multi-task models (HIAM, MR-STN, and NENN) on all tasks, 
demonstrating that the proposed MTLMetro is an effective 
model for multiple demands prediction. The improvements of 
MTL come from the following aspects: i) considering the 
spatial and temporal dependencies by integrating GNNs and 
RNNs, ii) completing the INOD matrix to provide richer 
information, iii) an MTL architecture with carefully designed 
knowledge-sharing mechanisms according to the inherent 
relationships among tasks, and iv) an adaptive and dynamic 
weighting method for task balancing. Detailed model 
interpretations are conducted in the following subsections.  

 

C. Experiment results visualization 
In this subsection, we visualize the detailed prediction 

results to gain insights into the spatial-temporal patterns 
learned by the model.  

Fig.6 presents the prediction results and the ground truth of 
inflows from three selected stations: Sihe Station, situated in a 
residential area; Chunxi Road Station, located in a central 
business district (CBD); Zhongba Station, positioned within a 
residential and industrial vicinity. Due to disparities in points 
of interest (POI), the inflows demonstrate diverse temporal 
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patterns, for example, morning peak, evening peak, and 
bimodal patterns for the inflows at Sihe, Chunxi Road, and 
Zhongba stations, respectively. In Fig.6, the black lines 
represent the ground truth, while the red lines depict the 
prediction results. From Fig.6, we can observe that the 
prediction curves trace well with the ground truth curves for 
all cases, indicating that the proposed model can robustly 
capture the temporal dependencies of the inflow well. 

Fig.7 shows the ground truth and predicted values of four 
timestamps (7:30 a.m., 7:40 a.m., 7:50 a.m., and 8:00 a.m.) 
INOD of a line with 33 stations during the morning peak. In 
Fig.7, the first row represents the ground truth, while the 
second represents the prediction results. The color bar of Fig.7 
represents the quantity of INOD trips, with deeper shades of 
red indicating higher numbers of OD trips. Clearly, we can 
observe that the proposed model can well capture the 
passenger patterns embedded in INOD both temporally and 
spatially. 

In addition to the primary demand prediction tasks, INOD 
completion is regarded as an auxiliary task within the 
proposed MTLMetro framework. Fig.8 displays the 
distribution of the completion residuals, illustrating the 
difference between the ground truth and the completed values. 
The relatively small magnitude of the residuals suggests that 
the proposed ODC module effectively addresses the 
completion of partially observed INOD. Additionally, the 
residuals basically follow a normal distribution with zero 
mean, which implies the absence of significant non-random 
patterns in the residuals, indicating that the proposed model 
has adequately learned sufficient INOD information [14]. 

 

D. Effect of the proposed modules 
To better understand the contribution of the modules to the 

performance of MTLMetro, further ablation studies are 
conducted in this subsection. More exactly, we aim to 
investigate the effect of the ODC module, the proposed GNN 
modules, the multi-task architecture, and the DWA weighting 

method.  
We first set up experiments to verify the effect of the ODC 

module. Three variants of MTLMetro are designed. 
MTLMetro-V1 takes the real-time INOD as its input. 
MTLMetro-V2 considers the delayed information comprising 
the delayed inflow and delayed INOD probability. 
MTLMetro-V3 utilizes the historical average INOD as the 
model input. The experiment results of these three variants are 
shown in TABLE III. Specifically, MTLMetro-V1 shows the 
poorest performance compared with other variants because it 
uses limited information as model input. By comparing 
MTLMetro-V2 and MTLMetro-V1, it can be seen that 
considering the delayed information can slightly improve the 
prediction performance. MTLMetro-V3 outperforms 
MTLMetro-V1 and -V2, demonstrating the significance of 
completed INOD that contains rich information for the 
prediction model. However, MTLMetro-V3 lacks the real-
time fluctuation of passenger demand, resulting in 

 
Fig.7 Ground truth (top) and prediction results (bottom) of MTLMetro on the INOD  

 
Fig.6 Ground truth and prediction results of MTLMetro on the inflows of 

Sihe Station (1st  row), Chunxi Road Station (2nd row), and Zhongba 
Station (3rd row) 
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performance degradation compared with MTLMetro. Overall, 
MTLMetro performs better than the other baselines because 
the ODC module integrates both real-time and delayed 
information to address the partial observability issue of INOD. 

We then validate the contribution of the proposed GNN 
modules in MTLMetro. MTLMetro-V4 is designed by 
removing the PGNN module in MTLMetro. Note that, to 
guarantee that the MTLMetro variants can output the four 
demands, IGNN and OGNN are unremovable. Thus, we 
replace the message-passing schemes of IGNN/OGNN with 
those of general GCN [51] and edge-enhanced GNN (EGNN) 
[59], denoting them as MTLMetro-V5 and MTLMetro-V6, 
respectively. The prediction results are listed in TABLE III. 
Upon comparing MTLMetro-V4 with the original MTLMetro, 
a discernible improvement in the prediction of multiple 
demands becomes apparent, indicating that the proposed 
PGNN well models the relationship between inflow and 
outflow/OUTOD and can improve the model performance. 
Similar results emerge when contrasting MTLMetro-V5 and 
MTLMetro-V6 with the baseline MTLMetro, thereby 
affirming the superiority of the customized IGNN and OGNN 
modules. The results also shed light on the feasibility of 
extending the message-passing schemes in GNNs for 
knowledge-sharing mechanisms in the MTL paradigm. 

Moreover, we explore the influence of the multi-task 
architecture on the final prediction results. Four single-task 
MTLMetro variants, MTLMetro-V7, -V8, V9, and V-10, are 
proposed for inflow, INOD, outflow, and OUTOD prediction, 
respectively. The four variants share the same model structure 
with MTLMetro for the corresponding subtask. The prediction 
results are listed in TABLE III. We can observe that the four 

variants are all inferior to MTLMetro in terms of three metrics. 
The MAE/RMSE/ MAPE increase by 1.710%/3.001%/2.630%, 
2.879%/ 1.346%/9.812%, 0.806%/1.055%/1.679%, and 
2.863%/ 6.294%/10.405% for inflow, INOD, outflow, and 
OUTOD prediction. The experiment results demonstrate the 
effectiveness of multi-task architecture for boosting prediction 
performance for all subtasks. 

Finally, the ablation study about the DWA method is 
conducted. An MTLMetro variant without the DWA 
(MTLMetro-V11) is designed. MTLMetro-V11 is trained by a 
loss function equaling the sum of sub-tasks loss. TABLE III 
shows the prediction performance of MTLMetro-V11. 
Without balancing the training of tasks, MTLMetro-V11 
shows worse performance than the proposed MTLMetro, 
demonstrating the advantage of the DWA method for task 
balancing. More details about task balancing will be discussed 
in the following subsection.  
 

E. Task balancing 
Training MTLMetro with the DWA weighting method leads 

to better prediction performance. This subsection will discuss 
the learning details and balancing process of multiple tasks 
when using DWA in MTLMetro.  

First, we conduct sensitivity analysis for hyper-parameter P 
used to control the softness of task weights. We perform 
experiments on different  1,5,10,15,20P . Fig.9 shows the 
effect of P on the final experiment results. We can observe 
that the proposed model with different P outperforms 
MTLMetro-V11 with static and equal weights for tasks. An 
interesting finding is that models with a larger P tend to 
concentrate on the inflow and outflow tasks since they show 
better performance in MAE and RMSE than those with a 
smaller P. On the contrary, a smaller P makes the model pay 
more attention to the transition demands.  

To explain the above phenomenon, we then detail the 
training process of the proposed MTLMetro. Fig.10 
demonstrates the training loss curve and dynamic weight 
curve for tasks when P is set as 10. At the beginning of 
training, the inflow and outflow tasks dominate the training 
with larger loss descending rates than those of the OD tasks. 
The reason may be that the transition demands have more 
complex spatial-temporal dependencies than the node 

TABLE III 
EXPERIMENT RESULTS OF ABLATION STUDIES 

 Inflow   INOD   Outflow   OUTOD   
Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
MTLMetro-V1 15.907  30.591 22.739% 0.547  0.982  46.209% 18.639  31.625  27.131% 0.535  1.036  43.207% 
MTLMetro-V2 15.891 30.336 22.514% 0.539 0.980 45.531% 18.631 31.600 27.052% 0.533 1.029 42.993% 
MTLMetro-V3 15.851  30.003  22.463% 0.534 0.977  45.014% 18.608  31.598  27.006% 0.532  1.022  42.642% 
MTLMetro-V4 15.913  30.706 22.918% 0.550 0.982 46.415% 18.646 31.657 27.222% 0.537 1.050 43.823% 
MTLMetro-V5 15.917 30.754 23.000% 0.552 0.986 46.620% 18.642 31.632 27.178% 0.536 1.040 43.795% 
MTLMetro-V6 15.842 29.996 22.404% 0.533 0.975 44.986% 18.680 31.700 27.257% 0.541 1.053 44.317% 
MTLMetro-V7 15.884 30.239 22.553% - - - - - - - - - 
MTLMetro-V8 - - - 0.536 0.979 45.125% - - - - - - 
MTLMetro-V9 - - - - - - 18.645 31.619 27.253% - - - 
MTLMetro-V10 - - - - - - - - - 0.539 1.047 44.001% 
MTLMetro-V11 15.681 29.399 22.157% 0.522 0.967 42.543% 18.516 31.481 26.911% 0.531 1.005 41.725% 
MTLMetro  15.617  29.358 21.975% 0.521 0.966 41.093% 18.496 31.289 26.803% 0.524 0.985 39.854% 

 

 
Fig.8 Residual distribution of the INOD completion results 
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demands. Based on the proposed training method, smaller 
weights are assigned to inflow and outflow tasks to achieve 
task balancing. During the training, the proposed weighting 
method adaptively assigns weights for tasks with respect to the 
loss descending rate for each task. At the end of the training, 
equal weights are adopted since all tasks tend to converge. 
According to the DWA and the detailed training process, a 
smaller P will make relatively larger weights for OD tasks 
than a bigger one, and vice versa. Thus, a smaller P makes the 
model pay more attention to the OD tasks, resulting in better 
performance for OD tasks, while a larger P makes for better 
inflow/outflow performance.  

The above experiments indicate that the priorities of 
MTLMetro may vary with the P value in DWA, enabling it to 

adapt to different prediction requirements in practical 
applications. For instance, when designing the train scheduling 
scheme, one can implement an MTLMetro model that 
emphasizes the OD prediction task. Additionally, it can be 
easily adjusted to meet the precision requirements for 
predicting inflow and outflow in passenger management 
schemes at stations. For some operation strategies in which 
both the node and transition demands are necessitated 
simultaneously, MTLMetro can ensure the overall 
performance with arbitrary P value, thereby contributing to the 
operation and management of metro systems. 

VI. CONCLUSION 
In this paper, we propose a novel deep MTL model, called 

MTLMetro, to jointly predict multiple demands in metro 
systems. Our proposed model offers several key features that 
differentiate it from existing methods: i) it enables end-to-end 
training of INOD completion and subsequent multiple 
demands prediction using an MTL paradigm; ii) the proposed 
model employs the message-passing scheme in GNNs as the 
knowledge-sharing mechanism in MTL to model the inherent 
relationships among multiple demands; iii) our model 
introduces a dynamic adaptive loss weighting method, DWA, 
to effectively balance the training of tasks. Through 
experiments conducted on a real dataset from the Chengdu 
metro system, we demonstrate the efficacy of the proposed 
MTLMetro model.  

The empirical results highlight several noteworthy findings. 
Firstly, we observe that leveraging available historical and 
real-time information to complete the transition demand as an 
auxiliary task in MTLMetro provides richer information for 
subsequent prediction tasks, leading to improved prediction 
accuracy. Secondly, the knowledge-sharing mechanisms 
significantly influence the performance of MTL models. Our 
results indicate that the improper knowledge-sharing 
mechanisms will even degrade model performance, while 
mechanisms effectively capture the inherent correlations 
between multiple demands in IGNN, OGNN, and PGNN, 
leading to higher prediction precision. Thirdly, utilizing DWA 
to balance the training of tasks significantly enhances overall 
prediction performance. The adaptive tuning of task weights 
based on the rate of loss change for each task ensures a 
balanced training process. Finally, our MTLMetro model 
exhibits substantial improvements in prediction accuracy, as 
measured by MAE, RMSE, and MAPE across all passenger 
demand prediction tasks, outperforming benchmark models, 
and reinforcing the potential of our proposed model for 
multiple demands prediction in metro systems. 

Moving forward, our future work will focus on two main 
aspects for model improvement. Firstly, our observation of 
significant differences in loss magnitudes for different sub-
tasks, as illustrated in Fig.10, motivates future work to balance 
the loss magnitudes of these sub-tasks, ensuring a fair training 
process for each task. Secondly, we plan to extend our model 
to different transportation modes, such as ride-hail, taxi, and 
bike, and explore multiple states prediction in these domains. 
By addressing these aspects, we aim to further enhance the 

 
Fig.9. Parameter sensitivity analysis on inflow (1st  row), outflow (2nd  row), 

INOD (3rd  row), and OUTOD (4th row) 

 
Fig.10. Training loss curve (top) and dynamic weight curve (bottom) 
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capabilities and applicability of our model to address complex 
transportation demand prediction challenges. 
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