
Journal of Network and Computer Applications 225 (2024) 103868

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

Securing SDN: Hybrid autoencoder-random forest for intrusion detection and
attack mitigation
Lotfi Mhamdi ∗, Mohd Mat Isa
School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, West Yorkshire, United Kingdom

A R T I C L E I N F O

Keywords:
Network security
Software defined networking
Machine learning
Intrusion detection
Autoencoder and random forest

A B S T R A C T

Software Defined Networking (SDN) has revolutionized network administration by providing centralized
management through software, enabling traffic adjustment independent of the data plane. Despite the benefits,
SDN networks are prone to security threats from external sources, thus necessitating the implementation of
security measures. Unfortunately, most existing efforts have been just a simple mapping of earlier solutions
into the SDN environments. This paper addresses the problem of SDN security based on deep learning in a
purely native SDN environment, where a Deep Learning intrusion detection module is tailored to a native
SDN environment. In particular, we propose a hybrid Deep AutoEncoder with a Random Forest classifier
model (DAERF) to enhance intrusion detection performance in a native SDN environment. The proposed model
is incorporated into a novel adaptive framework for attack mitigation in SDN environments. The proposed
framework consists of a three-layer protection mechanism for detecting and preventing attacks. It is based on
entropy-based detection, hybrid machine learning in the control layer and proactive services monitoring in
the application layer. Experimental results have shown that our DEARF proposed autoencoder model achieved
anomaly detection rates in excess of 98% in stand-alone mode as well as when incorporated within the
framework, making it highly solution for next generation SDN networks.
1. Introduction

The Software Defined Network (SDN) paradigm is a modern ap-
proach to network structures that distinguishes itself from traditional
networking. In an SDN architecture, software-based controllers and
Application Programming Interfaces (API) are utilized to interact with
switches and routers, as well as to control access (Nunez et al., 2023).
This approach adopts a three-plane architecture which includes the
management plane, control plane, and data plane. The data plane is
made up of network switches while the control plane comprises a
controller core that communicates with the switches. The APIs around
the controller core serve as a means to interact with the different
layers (Nunez et al., 2023; Kreutz et al., 2014). The SDN architecture
allows for the centralized management and control of the network,
making it easier to manage and optimize network performance. SDN
also enables network administrators to define network policies and
rules, create virtual networks, and provide flexibility and customization
options using APIs. With its advanced architecture, SDN provides a
sophisticated and modern approach to network structures.

The SDN architecture has several advantages over traditional net-
working. However, its susceptibility to attacks and the potential failure

∗ Corresponding author.
E-mail addresses: L.Mhamdi@leeds.ac.uk (L. Mhamdi), elmsbm@leeds.ac.uk (M.M. Isa).
URL: https://eps.leeds.ac.uk/electronic-engineering/staff/551/lotfi-mhamdi (L. Mhamdi).

of the entire network if the controller is compromised pose serious
security threats (Nunez et al., 2023). To overcome these security issues,
it is crucial to secure networks and keep them safe for use. Intru-
sion detection is one of the most effective ways to combat security
threats (Uppal et al., 2014).

Intrusion detection techniques can be classified into two categories:
signature-based and behavior-based. Signature-based detection uses
predefined patterns of attack signatures, while behavior-based detec-
tion relies on the analysis of network traffic behavior. In SDN, different
types of intrusion, such as unauthorized access, data leakage, data
modification, compromised applications, DoS, configuration issues, and
system-level SDN security, can lead to network attacks (Zhao et al.,
2019).

Machine Learning (ML) approaches provide an effective solution for
detecting anomalous behavior that violates pre-defined rules such as
unauthorized access or malware detection in SDN networks (Das et al.,
2015). By leveraging machine learning and deep learning techniques,
network security can be improved, enabling a modern and advanced
approach to network security (Sabeel et al., 2019). Deep learning tech-
niques, such as Convolutional Neural Networks (CNNs) and Recurrent
vailable online 15 March 2024
084-8045/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.jnca.2024.103868
Received 12 November 2023; Received in revised form 6 February 2024; Accepted
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

12 March 2024

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
mailto:L.Mhamdi@leeds.ac.uk
mailto:elmsbm@leeds.ac.uk
https://eps.leeds.ac.uk/electronic-engineering/staff/551/lotfi-mhamdi
https://doi.org/10.1016/j.jnca.2024.103868
https://doi.org/10.1016/j.jnca.2024.103868
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2024.103868&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa

S
r
r
d
b
a
r
t
m
d

2

t
m
d

m
a
d
t
I

Neural Networks (RNNs), have shown promising results in detecting
various network attacks, including DoS and DDoS (Zhang et al., 2019a;
Tang et al., 2018; Liu et al., 2022).

Extensive research works have focused on early detection, such
as counting the number of connections, the entropy of transactions,
and others (Halder et al., 2017; Lim et al., 2014; Mousavi and St-
Hilaire, 2015). Embarking on machine learning capabilities is also
being explored with the aim of studying the data representation and
explicit meanings (Tang et al., 2018). Prevention steps and action are
also being experimented with, aiming to minimize the impact of, and
if possible, repel any attacks (Sattar et al., 2016; Kumar et al., 2018;
Huang et al., 2020).

Another effective approach for intrusion detection is to combine
the Autoencoder (AE) and Random Forest (RF) algorithms. The AE
algorithm can identify the characteristics of normal network traffic
behavior. The RF algorithm can then classify the traffic based on
the features identified by the AE and determine whether it is normal
or malicious. This technique has demonstrated high accuracy in de-
tecting network intrusion. The AE and RF algorithm combination is
another effective approach for detecting network intrusion, particularly
in identifying new or unknown attacks.

With the focus on integrating and combining the different pro-
posals into a complete approach, this paper proposes a unified adap-
tive framework for attack mitigation in a native SDN environments.
In particular, the key difference in our proposed work is the build
up of several detection and prevention blocks into one consolidated
framework which covers protection in different layers of the SDN
environment. In summary, the contributions of this paper are:

• The introduction of a hybrid combination of a deep autoencoder
(DAE) and random forest (RF) algorithm in the native SDN envi-
ronment, deployed in the SDN controller mechanism. Within the
SDN controller, our proposed DAERF approach yields a detection
rate in excess of 98% using purely native SDN statistics collection
as features.

• The description of a novel three-layer adaptive framework for
attack mitigation in native SDN environments. It consists of
entropy-based detection, hybrid machine learning in the control
layer and proactive services monitoring in the application layer.
Experimental results show that DAERF achieves more than 98%
detection rate in the proposed IDS framework.

The rest of this paper is structured in the following pattern. In
ection 2, a thorough review of the relevant literature and previous
esearch in the field will be provided to establish the context for the cur-
ent study. The methodology used in the study, including the research
esign, data collection methods, and statistical analysis techniques, will
e discussed in Section 3. Section 4 will present the study’s results
nd performance analysis. These findings will be compared to previous
esearch in the field, offering a critical evaluation of the study’s con-
ributions. Finally, Section 5, concludes the paper by summarizing the
ain findings of the study, discussing their implications, and suggesting
irections for future research.

. Related work

In recent years, intrusion detection has become increasingly impor-
ant due to the rise of cyber attacks. Researchers have proposed various
ethods for detecting intrusions, including the use of deep learning, big
ata visualization and statistical analysis, and entropy-based solutions.

One such method is the non-symmetric deep autoencoder (NDAE)
odel proposed by Shone et al. (2018), which achieved an 85.42%

ccuracy rate in detecting intrusions. Another approach utilized big
ata visualization and statistical analysis in combination with an au-
oencoder, resulting in an accuracy rate of 87% (Ieracitano et al., 2018).
2

n Zhang et al. (2019a), a neural network-based anomaly detection
system was introduced, combining Lenet5 convolutional neural net-
work and Long Short-Term Memory (LSTM) network, achieving an
impressive accuracy rate of 99%. In Yang et al. (2022), a real-time
network intrusion detection system via ensemble of Autoencoder in
SDN was proposed with an accuracy of 97%.

Deep Neural Network (DNN) was used in Tang et al. (2018) with
three hidden layers, which performed binary classifications based on
the NSL-KDD dataset with six basic feature selections, achieving an
accuracy rate of 75.75%. In Ferrag and Maglaras (2019), a novel deep
learning and energy platform named DeepCoin was designed using
blockchain technology, with an accuracy level of 98.23%. Another
intrusion detection system (IDS) was proposed in Binbusayyis and
Vaiyapuri (2019), using the Random Forest learning algorithm, with
an impressive accuracy rate of up to 99.88%.

In the context of SDN, Ye et al. (2018) proposed a method for
detecting attacks using two characteristic values, namely the speed of
source IP (SSIP) and the ratio of pair flow (RPF), combined with Sup-
port Vector Machine (SVM). They extracted a six-characteristic value
matrix and processed it from multidimensional and low-dimensional
nonlinear into high-dimensional feature space, enabling the SVM model
to achieve an average accuracy of 95.24%.

Another approach for detecting Distributed Denial of Service (DDoS)
attacks in SDN environments was proposed in Fan et al. (2021a,b). Both
studies utilized entropy-based solutions to measure attack behavior oc-
currences in the network. Fan et al. (2021a) proposed a fusion entropy
technique to differentiate between legitimate and anomalous traffic,
and combined information entropy and log energy entropy to detect
DoS attacks. Their experimental findings showed that the entropy value
for attack scenarios was 91.25%. Similarly, in Fan et al. (2021b),
the entropy property was used to distinguish between legitimate and
anomalous traffic, with a combination of information entropy and log
energy entropy used to detect DDoS attacks. The experimental results
showed that the entropy value of the attack scenarios was 91.25%
lower than normal scenarios. These entropy-based solutions provide
several advantages and are more significant compared to other attack
detection methods.

A study proposed by Ashraf and Latif (2014) aimed to improve
the processing delay of legitimate nodes in the network by calculating
random flow data using entropy. The researchers utilized Mininet,
an open-source network emulator, and the extension module within
the Floodlight SDN controller to simulate the process. The data was
collected based on the destination IP information and a few attributes
of the TCP flags. The results of the study showed an impressive im-
provement of 13% in the processing delay of legitimate nodes. The
performance of CPU use and attack detection time were also analyzed,
indicating a positive impact in the tested scenarios. The use of entropy
in calculating random flow data showed promising results in improving
the efficiency of the network.

In another approach proposed by Ashraf and Latif (2014), the
researchers employed Artificial Neural Network-based (ANN) methods
to detect Distributed Denial of Service (DDoS) attacks. A dynamic Mul-
tilayer Perceptron (MLP) with a feedback mechanism was utilized to
identify both known and unknown DDoS assaults. The MLP was trained
on a range of attributes that could distinguish between normal and
attack traffic flows. This approach proved to be effective in detecting
DDoS attacks with high accuracy.

A trigger system to detect DDoS attacks more efficiently and reduce
stress on switches was proposed in Braga et al. (2010). The researchers
utilized the controller’s control plane trigger mechanism to detect
attacks, which successfully reduced the strain on switches. However,
the authors noted that this trigger system increased the strain on the
controller to some extent. Despite this, the proposed system was effec-
tive in detecting DDoS attacks in a timely manner while minimizing the
impact on the network’s resources. This trigger system could be further
optimized to reduce the strain on the controller, making it an efficient

solution for detecting DDoS attacks.



Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
In the context of SDN, DDoS attacks can cause significant harm to
the network infrastructure. Therefore, the authors proposed a trigger
system in their research work (Wang et al., 2019), which is capable
of quickly identifying DDoS attacks while reducing the stress on the
switches. The controller’s control plane trigger mechanism is imple-
mented to achieve this goal. While this approach has been found to
be successful in mitigating DDoS attacks, it has been observed that it
can increase the strain on the controller, which needs to be taken into
account during its implementation. The trigger system allows for the
rapid detection and response to DDoS attacks, reducing the chances
of the attack causing significant damage to the network infrastructure.
The system’s design helps in maintaining the overall network perfor-
mance, and by reducing the stress on the switches, it ensures that they
are not overwhelmed by the DDoS traffic.

In their study, Abou El Houda et al. (2021) presented a novel
framework for addressing network security risks in SDN. The proposed
framework consists of two modules - a data flow collection module
that employs the sFlow protocol and an unsupervised machine learning
(ML) module for outlier detection. This approach significantly reduces
the computational complexity while outperforming existing state-of-
the-art methods in terms of accuracy and detection rate. The framework
offers great potential in addressing emerging network security threats
in SDN environments. With the ability to accurately detect and identify
outlier events, the framework can help in mitigating potential security
breaches and attacks. Furthermore, the unsupervised nature of the ML
module allows for the detection of unknown and previously unseen
threats, making it a valuable addition to the current arsenal of SDN
security solutions.

In conclusion, as cyber attacks continue to rise, it is essential to
have effective intrusion detection methods to safeguard the network
infrastructure. As we shall see, the proposed unified 3-layer intrusion
detection system coupled with autoencode and random forest algorithm
(DAERF) have proven to be successful in detecting intrusions with
impressive accuracy rates.

3. Methodology

This section introduces our framework for intrusion detection in
SDN. We first describe the general overview of the system, then we give
a detailed description of the proposed three-layer protection frame-
work.

3.1. Basic architecture for intrusion detection firmware

The SDN intrusion detection is a critical component in maintaining
the security of the entire network. The architectural overview of the
native SDN intrusion detection system, as illustrated in Fig. 1, consists
of two primary modules: the Assembly module and the Adaptive ML
module (described in Section 3.2). The Assembly module is responsible
for collecting statistical data from the network, which is used to identify
patterns and anomalies in network traffic. It uses tools such as packet
sniffers and flow analyzers to collect information about the network
traffic. The collected data is then fed to the adaptive ML module, which
is responsible for implementing deep learning algorithms to detect
intrusion attempts based on unusual network activity. The adaptive
ML module is capable of adapting to changing network conditions and
identifying new and previously unseen threats. Once an intrusion is
detected, the module enforces mitigation measures to prevent further
damage and maintain the integrity of the network.

The Assembly module is a crucial element of network architec-
ture that is responsible for collecting data from network traffic and
forwarding it to the controller for analysis and decision-making. To
achieve this, the Assembly module utilizes the OpenFlow standard
protocol (McKeown et al., 2008) to send a stats request to all the
switches in the network, which contains information about the state
of the switches such as traffic flows, port statistics, and packet counts.
3

Fig. 1. Native intrusion mitigation architecture.

Once the stats request is sent, the switches respond with their
current state information, which is then processed by the controller.
This approach provides real-time visibility into network activity and
allows the controller to identify potential anomalies or security threats
and take appropriate action to mitigate risks.

The utilization of the OpenFlow standard protocol for data collec-
tion and analysis provides several advantages, such as a centralized
view of network activity, which is essential for effective network man-
agement and security. Additionally, it allows the use of advanced ana-
lytics and machine learning techniques to identify patterns and anoma-
lies in network traffic, resulting in improved accuracy and efficiency of
intrusion detection and response.

3.2. Unified three-layer intrusion detection system

The proposed framework is shown in Fig. 2. The consolidated
solution for the whole framework covers the layers within an SDN
environment. The first layer, labeled number 1⃝, is an entropy-based
module that monitors traffic against attack attempts. The detailed
working of this layer is described in Section 3.2.1. Traffic that has
passed through the first layer is examined by the second module,
which has hybrid machine learning intrusion detection located in the
controller, as labeled in 2⃝. The SDN controller keeps track of the
services status of the public server being visited by the traffic in order
to lessen the effects of an attack. Upon detecting a heavy load on the
services, the controller checks both earlier layer detection to handle the
load coming in. This layer is the core layer and is further described in
Section 3.2.2. This part of the observation is deployed in the application
layer, as shown in 3⃝ of the proposed framework. This is further
described in Section 3.2.3

3.2.1. Entropy based detection
One of the most significant security issues with SDN is the detection

of low-rate DDoS attacks on the SDN controller. The difficulty of
identifying the assault comes from the attack traffic’s similarity to
typical traffic behavior. It becomes much more difficult to achieve
high accuracy levels and a low false-positive rate when many hosts
are involved. Meanwhile, any detection technique must contend with
high-rate DDoS attacks, especially when several targets are involved.

As a result, the suggested technique monitor the traffic packets in
the SDN network passively to identify DDoS assaults on the SDN con-
troller, independent of attack transactions and the amount of targets. A
general Rényi joint entropy (Aladaileh et al., 2022) is adopted in this



Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
Fig. 2. Three-layer traffic monitoring.

study, by integrating two approaches: the joint entropy and the Rényi
approach. The destination and source IP addresses, represented by 𝑦
and 𝑥 are measured in the general Rényi joint entropy in the form of
two packet header characteristics. The Rényi joint entropy approach is
a combinations of joint entropy and Rényi entropy, and can be derived
as described below:

𝐻(𝑋) = −
∑

𝑥𝜖𝑋
𝑝(𝑥)𝑙𝑜𝑔𝑝(𝑥) (1)

𝐻(𝑋, 𝑌 ) = −
∑

𝑥𝜖𝑋
−
∑

𝑦𝜖𝑌
𝑝(𝑥, 𝑦)𝑙𝑜𝑔𝑝(𝑥, 𝑦) (2)

𝐻𝑅𝐽𝛼(𝑥) =
1

1 − 𝛼
𝑙𝑜𝑔2

( 𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝑙𝑜𝑔𝑝(𝑥𝑖, 𝑦𝑗 )

)

(3)

where 𝐻𝑅𝐽𝛼(𝑥) is a Rényi joint entropy and 𝑝(𝑥𝑖, 𝑦𝑗 ) refers to the
distribution of probability between the source IP 𝑥 and destination IP
𝑦 during the time interval of (𝑡).

The Rényi joint entropy technique is dependent on a calculated
value that could increase the detection rate by assessing the likelihood
of traffic packets arriving. Based on the IP frequencies, the 𝑝(𝑥𝑖, 𝑦𝑗 )
distribution probability is derived for each source and destination IP
address. When each packet’s probability distribution is evenly spread
throughout all the hosts’ destinations, the Rényi joint entropy reaches
its maximum value. The probability that all packets during a certain
time window skewed towards a specific destination host produce a
minimal value of Rényi joint entropy. The Rényi joint entropy is
calculated using the likelihood that each source IP address (𝑥𝑖) and
destination IP address (𝑦𝑗 ) were recorded in the previous step within
a certain time frame. The outcome of this phase is to flag packets that
are likely to cause DDoS attack threats.

3.2.2. The DAERF hybrid detection module
When building a typical machine learning models, essential input

features are selected, and the model automatically learns by mapping
4

Fig. 3. DAERF: The Deep AutoEncoder with Random Forest model.

identified characteristics of the features to a conclusion output. In
Deep AutoEncoder, there are multiple levels of encoding and decoding
used. The abstract features from various levels are automatically being
discovered and composed to produce output. The features from the
previous level are carried forward to the next level to be processed
again for another level of abstract representation. Our proposed DAERF
model, as depicted in Fig. 3 consists of an input layer, three hidden
layers, and an output layer. A total of 8 dimensions for input and output
are selected in the autoencoder. The hidden layers contain six, four, and
two neurons, respectively. The middle, hidden layer of two neurons is
used to input the random forest classifier for the intrusion detection
process, as shown in Fig. 3. A total batch size of 1000 were trained for
ten epochs using the chosen Adam optimizer (Kingma and Ba, 2014).

Two phases are involved in the autoencoder, namely encoding and
decoding. Input data that is named as 𝑥 is compressed into ℎ which is
the low dimensional representation of the data 𝑥 during the encoding
process and then it is reconstructed into the input data during the
decoding. In the Eqs. (4) and (5), the encoding is done in Eq. (4) where
function 𝑓 (.) is a non-linearity activation function, while 𝑊 and 𝑊 ′

are weight matrices. The variable 𝑦 is denoted as output and 𝑏 and 𝑏′

as biases.

ℎ = 𝑓 (𝑊 𝑥 + 𝑏) (4)

𝑦 = 𝑓 (𝑊 ′ℎ + 𝑏′) (5)

During the training process, a loss function is used to measure
the discrepancy (error) between the input data and the reconstructed
output. This study uses the Mean Squared Error (MSE) as the loss
function, as shown in Eq. (6), to train the autoencoder to identify
important features and patterns in the input data.

𝐿(𝑥, 𝑦) = ‖𝑥 − 𝑦‖22 (6)

To prevent the autoencoder from just copying the input data to
the output, regularization constraints are enforced during the opti-
mization process. Furthermore, to prevent overfitting of the data, an
8/2 compression ratio is utilized, which compresses the input data
into a lower-dimensional representation and then reconstructs it to
the original input data. The Rectified Linear Unit (ReLU) activation
function is employed for both the hidden and output layers, which
has demonstrated success in numerous deep learning applications. The
output will be 𝑥 if the output is not an intrusion and otherwise the
output will be 0. This could be written as Eq. (7) below.

𝐴(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (7)

For optimization steps, regularization constraints are enforced to
avoid the autoencoder overfitting the data by copying the input directly
to the output. The architecture of the model is shown in Fig. 3, and
Table 1 presents the model’s parameters.

To perform classification, the output of the hidden layer of the
autoencoder is processed and utilized as input for a classification



Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
Table 1
Model parameters.

Input layer Output layer Hidden layers Dropout Act. Regulizer Act. Funct.

8 8 6-4-2 0.5 10−5 Relu

Fig. 4. Application layer traffic monitoring.

algorithm. In this study, the random forest algorithm is used because of
its ability to handle high-dimensional data and control for overfitting.
Random forest is an ensemble learning approach that involves sub-
sampling the dataset and using averaging to improve the accuracy of
the prediction model. The encoded output of the autoencoder is then
fed into the Random Forest algorithm, which makes the final decision
on whether the traffic is normal or an attack attempt.

The proposed hybrid algorithm has several advantages over tra-
ditional machine learning algorithms. The use of deep learning tech-
niques allows the algorithm to learn complex features and patterns in
the data, improving the system’s ability to detect and classify different
types of attacks accurately. The inclusion of the random forest classifier
also enhances the algorithm’s performance, as it enables the system to
leverage the strengths of both deep learning and traditional machine
learning techniques.

3.2.3. Passive application layer monitoring
In the third and final layer, a Ryu framework was adopted in our

SDN topology. The controller plays two roles here: one as a standard
SDN controller that controls and monitors the network, and the other
as a defense mechanism. For the defense function, the controller keeps
checking the status of the services being provided by the internal
servers. A congested response from the servers via the status response
indicates a high traffic flow and processing being handled by the
targeted servers. In order to increase the response time for the server’s
services, heavily connected connections will be penalized to provide
the affected server with ample processing time to recover from the
impact of an attack. As shown in Fig. 4, we utilized Monit appli-
cation (Tildeslash, 2000) for monitoring the status of the server for
detection of poor response of provided services.

3.3. Dataset

Machine learning methods require a dataset to be well built up.
We have used the CICIDS2017 dataset (Panigrahi and Borah, 2018) in
our study, for various reasons. This dataset is designed explicitly for
intrusion detection in SDN environments, and its comprehensive and
up-to-date nature makes it an ideal choice for conducting research in
this field. Furthermore, the dataset is regularly updated to include the
latest types of attacks and network traffic. CICIDS2017 also contains
a vast amount of labeled data, which is essential for the development
and rigorous training of intrusion detection systems.

As stated in Sattar et al. (2016), the CICIDS2017 dataset provides
the total payload packets, replicating actual network traffic activities in
5

Table 2
Native SDN collected features.

No. Feature name No. Feature name

1 time 9 hard timeout
2 cookie 10 packet count
3 priority 11 byte count
4 reason 12 ip proto
5 table id 13 ipv4 src
6 duration sec 14 ipv4 dst
7 duration nsec 15 src port
8 idle timeout 16 dst port

Table 3
Selected SDN features.

No. Feature name No. Feature name

1 duration sec 5 packet count
2 duration nsec 6 byte count
3 idle timeout 7 ip proto
4 hard timeout 8 dst port

Table 4
SDN environment flows collection.

Dataset Attack Normal Total

Monday 0 263,156 263,156
Wednesday 16,622 210,469 227,271
Friday 1028 229,262 230,290
Total 17,650 702,887 720,717

the targeted environment. This dataset covers seven types of common
attack groups (i.e., Botnet, Brute Force Attack, DoS Attack, DDoS
Attack, Heartbleed, Infiltration Attack, and Web Attack). This dataset
consists of a Microsoft Excel CSV dataset and complete payload packets
in a PCAP format file for a five day working hours period. The PCAP
files are each sized 7 to 12 GB, respectively. Each flow sample of the
dataset contains 83 flow features, explicitly explained in Chang et al.
(2017). For this, a total of 16 native SDN OpenFlow flow features
and a binary classification type were collected during the PCAP traffic
emulation in a simulated SDN environment. The list of features is
shown in Table 2.

Out of the 16 collected features, eight flow features have been
selected for further machine learning analysis for intrusion detection in
a native SDN environment. Another eight features have been dropped
because the information differs for each network connectivity and does
not represent the analyzed traffic pattern. The eight chosen features are
listed in Table 3.

After the PCAP file had been injected into the SDN environment,
there were a total of 263 156 collected flows for Monday, 227 271
collected flows for Wednesday, and 230 290 collected flows for Friday.
The distribution of all three datasets according to network traffic classes
is shown in Table 4.

Training and testing were prepared during the data processing
phase. The collected dataset has an extensive range between the largest
and the smallest values. For example, the biggest value for parameter
duration is 999.106, while the smallest value is 0. A similar large range
value also occurs in parameters such as packet count and byte count,
which contribute to in-comparability and thus unsuitable processing.
These values are normalized by using max–min normalization to map
all the values in the range −1 to 1, according to:

𝑥𝑖 =
𝑥𝑖 −𝑀𝑖𝑛

𝑀𝑎𝑥 −𝑀𝑖𝑛
(8)

The values that were resulted from the normalization above were
used in the model during the training and testing process. 20% of the
total dataset was used for testing and the earlier selected 80%, for
training.



Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
4. Performance analysis

Before presenting the experiments, we would like to describe the
structure of this Section. Before going into the experimental results,
Section 4.1 first explains the evaluation metrics used throughout this
work. The experimental results are divided into parts. The first part,
Section 4.2, studies the performance of the DAERF algorithm presented
in Section 3.2.2 in a stand alone mode. Then, Section 4.3 presents
the results of our proposed unified IDS framework as presented in
Section 3.2, referred to in the results as DAERF_IDS.

4.1. Evaluation metrics

The performance evaluation used in this study are the followings:

• True Positive (TP): number of anomaly records correctly classi-
fied.

• True Negative (TN): number of normal records correctly classi-
fied.

• False Positive (FP): number of normal records incorrectly classi-
fied.

• False Negative (FN): number of anomaly record incorrectly clas-
sified

These metrics include Recall (R), Precision (P), Accuracy (ACC), and
F-measure (F). These measures are calculated by using the following
formulas:

Recall (R) is the proportion of relevant instances that have been
retrieved over the total number of relevant instances. The formula for
Recall is:

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(9)

Precision (P) is the proportion of relevant instances that have been
retrieved over the total number of instances that have been retrieved.
The formula for Precision is:

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(10)

Accuracy (ACC) is the proportion of correct predictions made by
the model over the total number of predictions made. The formula for
Accuracy is:

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(11)

F-measure (F) is the harmonic mean of Precision and Recall. It
combines the two measures to provide a more balanced evaluation of
the model’s performance. The formula for F-measure is:

𝑃 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅

(12)

It is important to note that these evaluation metrics are commonly
used in machine learning and natural language processing tasks to
assess the effectiveness of different models. They provide a quantitative
measure of the model’s ability to correctly classify instances, and can be
used to compare the performance of different models on the same task.
Additionally, these metrics are also useful for identifying areas where
the model may need further improvement, such as in cases where the
Precision or Recall is low.

4.2. DAERF stand alone performance

Fig. 5 presents a visual representation of the performance of the
DAERF model throughout the training and testing stages. A total of
80% of the Dataset (576,573 samples) were used for training and 20%
(144,144 samples) for testing. Mininet (Kaur et al., 2014) was used
as a network emulator with the Ryu (Li et al., 2020) component-
based SDN as the framework. The proposed model simulation used
TensorFlow (Bernico, 2018) back end. As can be seen from the Figure,
6

Fig. 5. DAERF testing and training performance.

Fig. 6. DAERF ROC AUC curve.

Table 5
DAERF performance comparison.

Model Accuracy Precision Recall F1

Zhang et al. (2019b) 99.9 99.8 99.9 99.8
Binbusayyis and Vaiyapuri (2019) 99.8 99.9 99.8 –
Sharafaldin et al. (2018) Adaboost – 77 84 77
Sharafaldin et al. (2018) ID3 – 98 98 98
Sharafaldin et al. (2018) KNN – 96 96 96
Sharafaldin et al. (2018) MLP – 77 83 76
Sharafaldin et al. (2018) Naive-Bayes – 88 0.4 0.4
Sharafaldin et al. (2018) QDA – 97 88 92
Sharafaldin et al. (2018) RF – 98 97 97
DAERF 98 98.89 98.96 98.92

the model exhibits a quite very good learning rate as can be seen in the
decreasing loss curve over epochs.

A standard measure for classifier comparison is the Receiver Oper-
ating Characteristic (ROC) curve. Plotting the false positive rate versus
the true positive rate produces the curve for the ROC. The area under
the curve (AUC) is a measure of determining a model’s performance in
predicting the classes. The higher the AUC, the better the classifier. This
is confirmed in Fig. 6, the DAERF model achieves 0.92 (92%) AUC.

The performance of DAERF compared with other related research
is shown in Table 5. The performance achieved was better than the



Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
Table 6
Distribution of KDDTRAIN+ and KDDTEST+ Traffic classes.

Dataset Normal Dos Probe R2L U2R SUM

Train+ 67,343 45,927 11,656 995 52 125,973
Test+ 9711 7458 2754 2421 200 22,544

Fig. 7. DAERF testing and training performance using NSL-KDD dataset.

actual result from Sharafaldin et al. (2018). Note that Sharafaldin et al.
(2018) did not report Accuracy measures, that is why we left it as ‘–’ in
the Table. DAERF has a slightly lower performance than Zhang et al.
(2019b) and Binbusayyis and Vaiyapuri (2019). While this is minor,
this slight lower performance is attributed to the difference in the
scope of the experiment, whereby Zhang et al. (2019b) uses tshark for
dumping and analyzing network traffic and Binbusayyis and Vaiyapuri
(2019) uses the CICIDS2017 dataset in Weka. Having said that, the
proposed DAERF still exhibits comparable performance.

4.2.1. DAERF with other datasets
In order to further test the DAERF performance, we have used

the NSL-KDD dataset (Hong et al., 2021). The model is trianed on
the KDDTrain+ dataset and evaluated on the KDDTest+ dataset. The
KDDTest+ dataset is used to evaluate the performance of the model on
days when no attacks occurred in the SDN environment, making it a
reliable indicator of the model’s ability to accurately detect attacks. The
NSL-KDD dataset is a refined version of KDD-99 that addresses some of
the issues with the original dataset, such as redundant and irrelevant
features, and provides a more balanced distribution of data between
normal and attack traffic. The statistics of the NSL-KDD dataset are
shown in Table 6, which provides information about the number of
instances in each class, the distribution of attacks, and other relevant
details. This approach allows for a more comprehensive evaluation
of the intrusion detection model’s performance and its ability to ac-
curately distinguish between normal and malicious traffic in an SDN
environment.

The results of the model under the above settings have resulted into
as high as 98.4% accuracy. This is even higher than that of CICIDS2017,
as shown in Table 5. Fig. 7 depicts DAERF’s performance over the
testing and training stages, again with very good performance.

4.3. DAERF framework

In order to test DAERF within the three-layer framework, few steps
are needed to have adequate features and measures. For this, we have
again used the CICIDS2017 dataset (Panigrahi and Borah, 2018). This
7

Table 7
Selected features in DAERF framework.

Traffic class Label Sample Composition

BENIGN BENIGN 537,749 58.550%
DDoS DDoS 128,027 13.940%
DoS DoS GoldenEye 10,293 1.120%
DoS DoS Hulk 231,073 25.160%
DoS DoS Slowhttptest 5499 0.598%
DoS DoS Slowloris 5796 0.631%
Heartbleed Heartbleed 11 0.001%
TOTAL N/A 918,448 100%

Table 8
Comparison table for the native SDN intrusion detection framework.

Method Accuracy rate FPR

Ujjan et al. (2021) - CNN model 93% 9%
Ujjan et al. (2021) - SAE model 94% 6%
Carvalho et al. (2019) 95% 5%
DAERF_IDS 98.16% 1.85%

dataset includes seven common assault types (i.e. Botnet, Brute Force
Attack, DoS Attack, DDoS Attack, Heartbleed, Infiltration Attack, and
Web Attack). The dataset includes entire payload packets for a five-
day work period as shown in Table 4. In our study, a combination
of Wednesday and Friday afternoon with a DDoS attack dataset were
chosen. Both days’ dataset activities, which contain benign and also
DoS/DDoS attacks were recorded. The selected features with sample
size and class composition, are as shown in Table 7.

We ran the CICIDS2017 Wednesday and Friday dataset, which
contains benign and DoS attacks, into the simulated DAERF_IDS frame-
work. The controller’s ability to detect DoS and DDoS attacks were
tested during the entropy implementation. A window of 10-seconds was
used to make the entropy calculation in order to determine whether
traffic was benign or attacks. A total of 10 simulation runs were
completed and the average rate for all 10 runs was reported. The
average false positive rate was 1.85% while the average detection rate
was 98.16%, as depicted in Table 8.

Table 8 demonstrates a comparison of the DAERF_IDS (framework)
and other recent machine learning advancements for DDoS attack
detection in SDN. The average detection rate and average false positive
rate were used for comparison. As can be seen from the table, the
DAERF_IDS framework produces better results as compared to earlier
studies, for DDoS attack detection in SDN.

These results indicate that the proposed DAERF framework is very
attractive in detecting and responding to malicious network traffic with
a high level of accuracy and efficiency. The significance of selecting an
appropriate dataset and optimizing the compression ratio to enhance
the accuracy of the autoencoder and random forest-based intrusion
detection systems in SDN is important in this regard.

4.4. DAERF SDN controller performance

In this Section, we evaluate the effect (overhead) of the DAERF
on the SDN network controller performance. Below, we first describe
the evaluation testbed and then the network performance evaluation is
presented in terms of system’s throughput and latency.

4.4.1. Experimental setup
The DAERF is implemented as an application within a Ryu con-

troller. Cbench (Jawaharan et al., 2018) is a standard tool used for
evaluating the SDN controller performance which supports two running
modes, throughput and latency. The throughput mode computes the
maximum number of packets handled by the controller and latency
mode computes the time needed to process a single flow by the con-
troller. We run our experiments on a virtual machine having an Intel(R)
Xeon(R) E3-1226 3.3 GHz with 3 cores available and 8 GB of RAM.



Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
Fig. 8. SDN controller throughput with varying switch count.

Fig. 9. SDN controller latency with varying switch count.

The operating system is Ubuntu 18.04.2 LTS 64-bit. The controller
performance is tested with different numbers of virtual OpenFlow
switches emulated by Cbench. The performance of the stand-alone Ryu
controller is considered as a baseline for our evaluation and compared
to that of a similar controller running DAERF.

4.4.2. Experimental results
Fig. 8 depicts the throughput of a SDN network in two modes: one

with a stand-alone Ryu controller, and the other with Ryu running
DAERF. We wish to see the effect of the DAERF on the controller’s
throughput. As can be seen from the Figure, although the throughput
tends to decrease with increasing SDN size (as the number of switches
increases), this is more attributed to SDN increase in size and not due to
DAERF overhead. This is because the same decreasing trend is observed
when Ryu is stand-alone, baseline. It is, therefore, clear that DAERF,
although securing the SDN network, incurs no throughput degradation
of the system.

An interesting observation can be seen from Fig. 9 in that DAERF
has almost negligible impact on the controller’s latency performance.
When we increase the number of connected switches, the latency
achieved are between 3 to 4 ms and not so much overhead introduced.
This is inline with the observation in Zhu et al. (2019) regarding the
Ryu controller latency performance.
8

5. Conclusion

This paper presented a hybrid combination of an AutoEncoder
and Random Forest (DAERF) ML model for intrusion detection in a
native SDN environment. We have shown that the proposed DAERF
surpasses other previous works with an accuracy of 98% in addition to
a decreased amount of time needed for training and execution. From
the results accomplished, it is shown that the model is optimistically
efficient for real-time intrusion detection.

We have further incorporated our proposed model into a 3-layer
intrusion detection framework. This unified attack prevention and mit-
igation framework has been shown to exhibit good performance when
tested on a typical representative dataset. The experimental results
have shown that the DAERF_IDS model achieves impressive levels of
accuracy, with an average false positive rate of 1.85% and an average
detection rate of 98.16%, outperforming previously proposed schemes.
Additionally, we have tested the potential overhead such a system
would incur. Simulation results revealed that the proposed model has
virtually minor overhead when running on a typical SDN controller,
making it an attractive model for next generation secure SDN networks.

CRediT authorship contribution statement

Lotfi Mhamdi: Methodology, Project administration, Supervision,
Validation, Writing– original draft, Writing – review & editing. Mohd
Mat Isa: Data curation, Investigation, Methodology, Software, Visual-
ization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Abou El Houda, Z., Hafid, A.S., Khoukhi, L., 2021. A novel machine learning framework
for advanced attack detection using sdn. In: 2021 IEEE Global Communications
Conference. GLOBECOM, IEEE, pp. 1–6.

Aladaileh, M.A., Anbar, M., Hintaw, A.J., Hasbullah, I.H., Bahashwan, A.A., Al-
Sarawi, S., 2022. Renyi joint entropy-based dynamic threshold approach to detect
DDoS attacks against SDN controller with various traffic rates. Appl. Sci. 12 (12),
6127.

Ashraf, J., Latif, S., 2014. Handling intrusion and DDoS attacks in software defined net-
works using machine learning techniques. In: 2014 National Software Engineering
Conference. IEEE, pp. 55–60.

Bernico, M., 2018. Deep Learning Quick Reference: Useful Hacks for Training and
Optimizing Deep Neural Networks with Tensorflow and Keras. Packt Publishing
Ltd.

Binbusayyis, A., Vaiyapuri, T., 2019. Identifying and benchmarking key features for
cyber intrusion detection: An ensemble approach. IEEE Access 7, 106495–106513.

Braga, R., Mota, E., Passito, A., 2010. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. In: IEEE Local Computer Network Conference. IEEE, pp. 408–415.

Carvalho, R.N., Bordim, J.L., Alchieri, E.A.P., 2019. Entropy-based DoS attack identi-
fication in SDN. In: 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops. IPDPSW, IEEE, pp. 627–634.

Chang, Y.-P., Li, W., Yang, Z., 2017. Network intrusion detection based on random
forest and support vector machine. In: 22017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference
on Embedded and Ubiquitous Computing (EUC). Vol. 01, pp. 635–638, URL https:
//api.semanticscholar.org/CorpusID:37567415.

Das, S., Liu, Y., Zhang, W., Chandramohan, M., 2015. Semantics-based online malware
detection: Towards efficient real-time protection against malware. IEEE Trans. Inf.
Forensics Secur. 11 (2), 289–302.

Fan, C., Kaliyamurthy, N.M., Chen, S., Jiang, H., Zhou, Y., Campbell, C., 2021a.
Detection of DDoS attacks in software defined networking using entropy. Appl.
Sci. 12 (1), 370.

http://refhub.elsevier.com/S1084-8045(24)00045-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb7
https://api.semanticscholar.org/CorpusID:37567415
https://api.semanticscholar.org/CorpusID:37567415
https://api.semanticscholar.org/CorpusID:37567415
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb9
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb9
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb9
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb9
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb9
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb10


Journal of Network and Computer Applications 225 (2024) 103868L. Mhamdi and M.M. Isa
Fan, C., Kaliyamurthy, N.M., Chen, S., Jiang, H., Zhou, Y., Campbell, C., 2021b.
Detection of DDoS attacks in software defined networking using entropy. Appl.
Sci. 12 (1), 370.

Ferrag, M.A., Maglaras, L., 2019. DeepCoin: A novel deep learning and blockchain-
based energy exchange framework for smart grids. IEEE Trans. Eng. Manage. 67
(4), 1285–1297.

Halder, B., Barik, M.S., Mazumdar, C., 2017. A graph based formalism for detecting
flow conflicts in software defined network. In: 2017 IEEE International Conference
on Advanced Networks and Telecommunications Systems. ANTS, IEEE Press, pp.
1–6. http://dx.doi.org/10.1109/ANTS.2017.8384101.

Hong, R.-F., Horng, S.-C., Lin, S.-S., 2021. Machine learning in cyber security analytics
using NSL-KDD dataset. In: 2021 International Conference on Technologies and
Applications of Artificial Intelligence. TAAI, pp. 260–265.

Huang, X., Xue, K., Xing, Y., Hu, D., Li, R., Sun, Q., 2020. FSDM: Fast recovery
saturation attack detection and mitigation framework in SDN. In: 2020 IEEE
17th International Conference on Mobile Ad Hoc and Sensor Systems. MASS, pp.
329–337. http://dx.doi.org/10.1109/MASS50613.2020.00048.

Ieracitano, C., Adeel, A., Gogate, M., Dashtipour, K., Morabito, F.C., Larijani, H.,
Raza, A., Hussain, A., 2018. Statistical analysis driven optimized deep learning
system for intrusion detection. In: Advances in Brain Inspired Cognitive Systems:
9th International Conference, BICS 2018, Xi’an, China, July 7-8, 2018, Proceedings
9. Springer, pp. 759–769.

Jawaharan, R., Mohan, P.M., Das, T., Gurusamy, M., 2018. Empirical evaluation of
SDN controllers using mininet/wireshark and comparison with cbench. In: 2018
27th International Conference on Computer Communication and Networks. ICCCN,
pp. 1–2. http://dx.doi.org/10.1109/ICCCN.2018.8487382.

Kaur, K., Singh, J., Ghumman, N.S., 2014. Mininet as software defined networking
testing platform. In: International Conference on Communication, Computing &
Systems. ICCCS, pp. 139–142.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.,
2014. Software-defined networking: A comprehensive survey. Proc. IEEE 103 (1),
14–76.

Kumar, P., Tripathi, M., Nehra, A., Conti, M., Lal, C., 2018. SAFETY: Early detection
and mitigation of TCP SYN flood utilizing entropy in SDN. IEEE Trans. Netw. Serv.
Manag. 15 (4), 1545–1559. http://dx.doi.org/10.1109/TNSM.2018.2861741.

Li, Y., Guo, X., Pang, X., Peng, B., Li, X., Zhang, P., 2020. Performance analysis of
floodlight and ryu SDN controllers under mininet simulator. In: 2020 IEEE/CIC
International Conference on Communications in China (ICCC Workshops). IEEE,
pp. 85–90.

Lim, S., Ha, J., Kim, H., Kim, Y., Yang, S., 2014. A SDN-oriented DDoS blocking scheme
for botnet-based attacks. In: 2014 Sixth International Conference on Ubiquitous
and Future Networks. ICUFN, pp. 63–68. http://dx.doi.org/10.1109/ICUFN.2014.
6876752.

Liu, Y., Zhi, T., Shen, M., Wang, L., Li, Y., Wan, M., 2022. Software-defined DDoS
detection with information entropy analysis and optimized deep learning. Future
Gener. Comput. Syst. 129, 99–114. http://dx.doi.org/10.1016/j.future.2021.11.009.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. OpenFlow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38 (2), 69–74. http://dx.doi.org/10.1145/
1355734.1355746.

Mousavi, S.M., St-Hilaire, M., 2015. Early detection of DDoS attacks against
SDN controllers. In: 2015 International Conference on Computing, Networking
and Communications. ICNC, pp. 77–81. http://dx.doi.org/10.1109/ICCNC.2015.
7069319.

Nunez, A., Ayoka, J., Islam, M.Z., Ruiz, P., 2023. A brief overview of software-defined
networking. arXiv preprint arXiv:2302.00165.

Panigrahi, R., Borah, S., 2018. A detailed analysis of CICIDS2017 dataset for designing
intrusion detection systems. Int. J. Eng. Technol. 7 (3.24), 479–482.

Sabeel, U., Heydari, S.S., Mohanka, H., Bendhaou, Y., Elgazzar, K., El-Khatib, K.,
2019. Evaluation of deep learning in detecting unknown network attacks. In: 2019
International Conference on Smart Applications, Communications and Networking
(SmartNets). IEEE, pp. 1–6.

Sattar, D., Matrawy, A., Adeojo, O., 2016. Adaptive bubble burst (ABB): Mitigating
DDoS attacks in software-defined networks. In: 2016 17th International Telecom-
munications Network Strategy and Planning Symposium (Networks). pp. 50–55.
http://dx.doi.org/10.1109/NETWKS.2016.7751152.

Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A., 2018. Toward generating a new intrusion
detection dataset and intrusion traffic characterization.. ICISSP 1, 108–116.

Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q., 2018. A deep learning approach to network
intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2 (1), 41–50.
9

Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M., 2018. Deep recurrent
neural network for intrusion detection in sdn-based networks. In: 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, pp.
202–206.

2000. Monit, tildeslash ltd.. URL https://mmonit.com/monit/.
Ujjan, R.M.A., Pervez, Z., Dahal, K., Khan, W.A., Khattak, A.M., Hayat, B., 2021.

Entropy based features distribution for anti-ddos model in sdn. Sustainability 13
(3), 1522.

Uppal, H.A.M., Javed, M., Arshad, M., 2014. An overview of intrusion detection system
(IDS) along with its commonly used techniques and classifications. Int. J. Comput.
Sci. Telecommun. 5 (2), 20–24.

Wang, Y., Hu, T., Tang, G., Xie, J., Lu, J., 2019. SGS: Safe-guard scheme for protecting
control plane against DDoS attacks in software-defined networking. IEEE Access 7,
34699–34710.

Yang, L., Song, Y., Gao, S., Hu, A., Xiao, B., 2022. Griffin: Real-time network intrusion
detection system via ensemble of autoencoder in SDN. IEEE Trans. Netw. Serv.
Manag. 19 (3), 2269–2281. http://dx.doi.org/10.1109/TNSM.2022.3175710.

Ye, J., Cheng, X., Zhu, J., Feng, L., Song, L., 2018. A DDoS attack detection method
based on SVM in software defined network. Secur. Commun. Netw. 2018.

Zhang, Y., Chen, X., Jin, L., Wang, X., Guo, D., 2019a. Network intrusion detection:
Based on deep hierarchical network and original flow data. IEEE Access 7,
37004–37016.

Zhang, Y., Chen, X., Jin, L., Wang, X., Guo, D., 2019b. Network intrusion detection:
Based on deep hierarchical network and original flow data. IEEE Access 7,
37004–37016.

Zhao, Y., Li, Y., Zhang, X., Geng, G., Zhang, W., Sun, Y., 2019. A survey of networking
applications applying the software defined networking concept based on machine
learning. IEEE Access 7, 95397–95417. http://dx.doi.org/10.1109/ACCESS.2019.
2928564.

Zhu, L., Karim, M.M., Sharif, K., Li, F., Du, X., Guizani, M., 2019. SDN controllers:
Benchmarking & performance evaluation. arXiv preprint arXiv:1902.04491.

Lotfi Mhamdi (Senior Member, IEEE) received the Master
of Philosophy (M.Phil.) degree in computer science from The
Hong Kong University of Science and Technology (HKUST),
in 2002, and the Ph.D. degree in computer engineering
from the Delft University of Technology (TU Delft), The
Netherlands, in 2007. He continued his work at TU Delft
as a Postdoctoral Researcher, working on various European
Union funded research projects. Since 2011, he has been
with the School of Electronic and Electrical Engineering,
University of Leeds, U.K. His research interests include
high-performance networking, Software Defined Networks,
Cybersecurity, Internet of Things design, Cloud and Edge
Computing convergence and infrastructures design.

Dr. Mhamdi is/was a Technical Program Committee
Member of various conferences, including the IEEE Inter-
national Conference on Communications (ICC), the IEEE
GLOBECOM, the IEEE Workshop on High Performance
Switching and Routing (HPSR), and the ACM/IEEE Interna-
tional Symposium on Networks-on-Chip (NoCS). He is/was
the TPC Co-Chair of the Green Computing, Networking,
and Communications Symposium (GCNC 2020), the TPC
Co-Chair of GLOBECOM (NGNI Symposium), in 2020 and
2022, IEEE HPSR’24 Workshop Chair and TPC Co-Chair of
IEEE ICC’25 IoT & Sensor Networks Symposium. He served
as the Chair for the IEEE ComSoc Technical Committee on
Communication Switching and Routing (CSR-TC).

Mohd Sani Mat Isa received the B.S. and M.S. de-
grees in computer networking from Universiti Teknologi
Mara, Malaysia, and the Ph.D. degree from University
of Leeds, United Kingdom. He is currently working with
Malaysian Goverment in managing the Malaysia’s Gover-
ment Private Network involving more than 10,000 sites.
His research interests include Software Defined Networking
(SDN), denial-of-service attacks and security in SDN.

http://refhub.elsevier.com/S1084-8045(24)00045-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb12
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb12
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb12
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb12
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb12
http://dx.doi.org/10.1109/ANTS.2017.8384101
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb14
http://dx.doi.org/10.1109/MASS50613.2020.00048
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb16
http://dx.doi.org/10.1109/ICCCN.2018.8487382
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb18
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb18
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb18
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb18
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb18
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb20
http://dx.doi.org/10.1109/TNSM.2018.2861741
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb22
http://dx.doi.org/10.1109/ICUFN.2014.6876752
http://dx.doi.org/10.1109/ICUFN.2014.6876752
http://dx.doi.org/10.1109/ICUFN.2014.6876752
http://dx.doi.org/10.1016/j.future.2021.11.009
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/ICCNC.2015.7069319
http://dx.doi.org/10.1109/ICCNC.2015.7069319
http://dx.doi.org/10.1109/ICCNC.2015.7069319
http://arxiv.org/abs/2302.00165
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb29
http://dx.doi.org/10.1109/NETWKS.2016.7751152
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb32
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb32
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb32
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb33
https://mmonit.com/monit/
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb37
http://dx.doi.org/10.1109/TNSM.2022.3175710
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb41
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb41
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb41
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb41
http://refhub.elsevier.com/S1084-8045(24)00045-6/sb41
http://dx.doi.org/10.1109/ACCESS.2019.2928564
http://dx.doi.org/10.1109/ACCESS.2019.2928564
http://dx.doi.org/10.1109/ACCESS.2019.2928564
http://arxiv.org/abs/1902.04491

	Securing SDN: Hybrid autoencoder-random forest for intrusion detection and attack mitigation
	Introduction
	Related Work
	Methodology
	Basic Architecture for Intrusion Detection firmware
	Unified Three-Layer Intrusion Detection System
	Entropy Based Detection
	The DAERF Hybrid Detection Module
	Passive Application Layer Monitoring

	Dataset

	Performance Analysis
	Evaluation Metrics
	DAERF Stand Alone Performance
	DAERF With Other Datasets

	DAERF Framework
	DAERF SDN Controller Performance
	Experimental Setup
	Experimental Results


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


