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Abstract
Learning visual predictive models has great potential for real-world robot manipulations. Visual predictive models serve as
a model of real-world dynamics to comprehend the interactions between the robot and objects. However, prior works in
the literature have focused mainly on low-level elementary robot actions, which typically result in lengthy, inefficient, and
highly complex robot manipulation. In contrast, humans usually employ top–down thinking of high-level actions rather than
bottom–up stacking of low-level ones. To address this limitation, we present a novel formulation for robot manipulation that
can be accomplished by pick-and-place, a commonly applied high-level robot action, through grasping. We propose a novel
visual predictive model that combines an action decomposer and a video prediction network to learn the intrinsic semantic
information of high-level actions. Experiments show that our model can accurately predict the object dynamics (i.e., the object
movements under robot manipulation) while trained directly on observations of high-level pick-and-place actions. We also
demonstrate that, together with a sampling-based planner, our model achieves a higher success rate using high-level actions
on a variety of real robot manipulation tasks.

Keywords Robot manipulation · Visual foresight · Visual perception · Deep learning · Grasp planning

Introduction

Humans can master increasingly complex manipulative
behaviors and gradually develop advanced manipulation
skills of exploiting high-level actions beyond lengthy prim-
itive explorations. For example, in the infancy cycle, we
typically go from only being able to fiddle with a toy to
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learning to grasp it directly. Then, as children, combin-
ing both high-level and low-level actions, such as push,
pull, and grasp, we can accomplish more practical, effi-
cient, and goal-oriented manipulation tasks, such as sorting
a toy box. Humans naturally obtain such high-level manip-
ulation skills through constantly observing, learning, and
reproducing from interacting with the real world. It would
be exciting for robots to learn to interact with objects
like humans, particularly learning to incorporate high-level
actions inmanipulating objectswith limited prior knowledge.
However, learning robot manipulation skills in a real-world
environment, particularly for both low-level and high-level
actions, is indeed challenging.

Recently, visual foresight [12] has been widely demon-
strated as a promising tool for learning visual-based robot
manipulations in unknown environments from the standpoint
of sensory prediction. More concretely, this line of work [7,
9, 39] is mainly built on a deep visual predictive model
trained with high-dimensional visual streams for learning
real-world dynamics. The learning of visual predictive mod-
els is typically task-independent [20, 31] and, therefore, can
be generalized over different tasks. Even though promising
results have been achieved, whether in the very vanilla visual
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Fig. 1 Manipulation planningwith visual inputs and high-level actions.
Top: during the training, a visual predictive model is trained on a
dataset of executed pick-and-place actions (e.g., grasping a toy to a spe-
cific location). Bottom: using the visual predictive model to optimize
appropriate actions for the specific manipulation tasks (e.g., replacing
a sponge’s position in the workspace)

foresight [12] or its follow-up works [7, 9, 39], robot actions
in this paradigm are usually prescribed to be low level, such
as small differential displacements of the robot end-effector.
Take the example in Fig. 1. Even to relocate a sponge within
a quite short distance, a robot using visual foresight will
typically have to apply a fairly long sequence of low-level
displacements, while a human expert can come up with more
efficient solutions with higher level manipulation actions,
such as simply picking (grasping) the sponge up and placing
it to the target location directly. Moreover, such low-level
actions are babbling-like, not only in the training data, e.g.,
RoboNet [3], but also in the short horizon of actions planned
through the learned predictive model using model predic-
tive control (MPC). Such a planning framework is usually
confronted with increasing complexity for tasks requiring
long sequences of low-level displacements of the robot end-
effector.

To address these limitations, we go deeper into visual fore-
sight by improving the model’s understanding of high-level
actions in robot manipulations. The underlying intuition is
to train a deep visual predictive model that can learn world
dynamics under high-level robot actions and ultimately use
it to determine appropriate high-level actions in task plan-
ning. However, training such a predictive model remains a
challenge. High-level actions usually contain rich seman-
tic information and cues that are not present in low-level
actions, which poses two questions regarding understand-
ing such actions. First, how can the robot learn a visual
predictive model by leveraging the semantic information
in high-level actions? Second, how can the robot learn
high-level actions while still retaining the understanding of
low-level actions? Learning semantic information from low-

dimensional task representations, such as the object bounding
box and semantic segmentation [34], usually relies on ground
true annotation, which can hardly be achieved while learning
from a large number of raw visual observations. Instead, we
incorporate semantic information into a sequence of visual
frames obtained under high-level robot actions and build a
recurrent neural network to learn such information implicitly.
This allows our model to learn both high-level and low-level
robot actions from the interval of consecutive frames. The
main contributions of this paper are summed up as follows:

– We propose a novel visual predictive model for high-
level robot actions containing an action decomposer and
a video prediction model.

– We present a sampling-based optimizationmethod to uti-
lize this visual predictive model for planning high-level
pick-and-place actions in real robot tasks.

– We contribute a novel vision dataset that contains a rich
set of real robot pick-and-place actions.

We evaluate our method in terms of the accuracy of the
predicted outcomes of high-level actions and the overall
performance of using the predictive model in real robot
downstream tasks. The results demonstrate that our approach
can substantially learn to understand high-level robot actions
and can promisingly be utilized in planning for real robot
manipulation tasks. A video summary of this paper and
more experimental results can be found at https://youtu.be/
JOgjovETlVg.

Related work

Model-based reinforcement learning

The main difference between model-based reinforcement
learning (RL) andmodel-free RL is the employment of world
models learning transition dynamics in model-based RL.
Model-basedmethods usually havemore data efficiency than
model-free methods [6] and require fewer reward signals
during training. These can significantly reduce the robot–
environment interaction in learning, which is often expensive
and dangerous for robots. Model-based RL in robotics [5,
26] has attracted many studies in the last decade and has
shown great success in low-dimensional environments [15,
17]. Recently, a line of literature called visual foresight [7, 9,
12] has proposed a way that leverages raw visuals directly in
the model-based context. In visual foresight [12], a predic-
tive model is trained to learn the concepts of robot actions
by accurately predicting the visual outcomes based on both
current visual observations and robot actions. Furthermore,
the predictive model is task-agnostic, allowing it to be gen-
eralized over various tasks. Such an approach has shown
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robustness that can process real-world visual inputs and has
demonstrated promising performance in real robot tasks.
However, the focus of vanilla visual foresight [12] and its
follow-up works [7, 9] is to leverage only low-level robot
actions in prediction and planning. In contrast, our method
learns a visual predictive model conditional on higher level
robot actions, which can be used for more complex and
efficient action planning.Hafner et al. [20] proposed amodel-
based approach that learned dynamics directly from pixels
but plans actions in a latent space. Their approach has shown
great success on a larger scale of longer horizon tasks in
simulated environments. However, this method still requires
some labeled data for training a reward function. In compari-
son, we focus on learning robot actions from only raw visual
streams rich in real-world visual complexity.

Video predictionmodel

Recently, deep neural networks have made great progress
in representing high-dimensional states and observations.
Video prediction models have become a powerful tool for
learning world dynamics in various domains, including
autonomous driving [16, 29], human posture estimations [8,
23], and robotic manipulation [10]. These models learn from
a large amount of unlabeled data in a self-supervised manner
by utilizing the vision as a supervised signal. From earlier
deterministic models [2, 11, 35] to VAE-based [24] mod-
els [1, 7, 25, 40], a latent space is employed in probabilistic
models to catch the stochasticity of the real environment.
To model time-variational stochasticity, [7] proposed using a
learned prior in the stochastic model. The action-conditional
video prediction models have been used to learn the robot’s
actions, making them suited to the robot context.

Robot manipulations

Pick-and-place is a wide-spread action of robot manipula-
tion in various robotics applications, including industrial [41]
and domestic applications [37]. Traditionally, this problem
has been studied through analytical estimation of object
poses [32] and dynamic motion planning [13]. Both require
object models and are unsuitable for unstructured environ-
ments. In recent years, data-driven methods for learning
pick-and-place actions have gained significant attention in
robotics, with both model-free [18] and model-based [14]
techniques. Several works use learned geometric models [38,
44] to estimate object poses and infer actions. However, these
methods still require object models during training. End-to-
end models [33, 42] have the advantage of being agnostic to
the object’s physics. They can directly infer the pick-and-
place actions from pixels. An instance is the Transporter
network [42], which utilizes a simple model architecture
that can exploit spatial symmetries to effectively learn to

Fig. 2 Left: each pick-and-place action is formulated in SE(2) on the
xy plane of the robot workspace, and the coordinate z is determined by
the depth w.r.t. the plane. Right: the visual observations are acquired
from an RGB camera above the workspace

plan pick-and-place actions fromvisual inputs. However, this
line of methods tends to be task-specific and relies on task-
specific demonstrations, which limits them from zero-shot
generalization to new tasks.

Another sub-field of the pick-and-place actions is pre-
dicting the probability of success of picking. For instance,
Dex-Net [28] uses a grasp quality convolutional neural net-
work (GQ-CNN) to estimate optimal picking poses from
a depth image. However, it does not consider task-related
objectives such as which object should be picked and where
it should be placed.

Problem formulation

In this work, our objective is to learn high-level robot actions
through a visual predictive model and ultimately enable their
use in robot manipulation planning. To this end, we for-
mulate the completion of a manipulation task by one or a
sequence of high-level actions. We define each high-level
action as a pick-and-place action grasping an object from
above a pick position and releasing the gripper at a place
position. The poses of the robot gripper at the pick and the
place are both composed of a 3-D coordinate x, y, z, and
a yaw rotation θ in the robot base coordinate. As shown
in Fig. 2 (left), we parameterize the high-level action as
a(high) = (Ppick,Pplace) ∈ A, where Ppick and Pplace are
the poses of picking and placing defined in SE(2), which
refers to the xy plane of the robot base coordinate system. z
is determined as the vertical depth w.r.t. the horizontal plane.
An RGB camera is used to acquire the visual observations of
the workspace [Fig. 2 (right)].
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Fig. 3 The sequential motion primitives of a pick-and-place action: the
robot moves the gripper to the upper point of the pick point, approaches
the object down to the height of the pick point, grasps the object with

the gripper, lifts the gripper back to the upper point, approaches the
place location, lowers the gripper to the height of the place location,
and finally releases the gripper

Method

This section describes our approach to learning high-level
robot actions by integrating a decomposer with a video
prediction model and applying the learned model using
sampling-based optimization techniques for desired tasks.
An illustration of our method is shown in Fig. 5.

Visual predictive model of high-level actions

We use the notation M : {Iinit, a(high)} → Î to refer to
a visual predictive model, where Iinit is the initial visual
observation and Î is the predicted visual outcome of a pick-
and-place action a(high) = (Ppick,Pplace). Model M learns
to understand high-level robot actions by being trained to pre-
dict visual outcomes. It is worth emphasizing that high-level
actions like pick-and-place contain semantic information.
For example, as shown in Fig. 3, the robot executes a pick-
and-place action through several semantic steps: the robot
moves the gripper to an upper point of the pick location,
approaches the object down to the height of the pick, exe-
cutes the gripper to grasp, lifts the gripper back to an upper
point, approaches the place location, lowers the gripper to the
height of the place, and releases the gripper. However, such
semantic information can not be incorporated by the action
formulation Ppick and Pplace.

To leverage such semantic information in the prediction,
we propose combining a video prediction model with a high-
level action decomposer. The decomposer converts a high-
level action into a sequence of intermediate low-level actions.
We thus incorporate the semantic information through the
resulting intermediate visual frames and low-level actions.
In the literature on robot manipulation [9], video predic-
tion models typically predict visual frames autoregressively
conditional on a sequence of low-level actions, i.e., the dis-
placements of the robot end-effector. The advantages of using
these two components together are twofold: (1) the seman-
tic information is still retained in the decomposed low-level
action sequence; (2) the model can learn both low-level and
high-level actions concurrently.

Fig. 4 A probabilistic video prediction model conditional on robot
actions. High-level action is decomposed into a sequence of low-level
displacements alow0 , alow1 , . . . alowT−1 and an initial position s0 of the
robot’s end-effector

Specifically, we decompose the high-level action into a
sequence of low-level actions with a(high) → {s0, a(low)

0 ,

a(low)
1 , . . . , a(low)

T−1 }, where s0 denotes the robot’s initial state
that includes the end-effector’s pose (x, y, z, θ) and a binary
scalar (open v.s. closed) of the gripper. a(low)

t is the inter-
mediate low-level action between two successive frames at
time t , denoting the end-effector’s displacement (�x,�y,
�z,�θ) and the binary scalar of the gripper. I0 is the initial
frame and It is the resulting frame of action a(low)

t−1 . T is the
length of the sequence of low-level actions.

Figure 4 shows a schematic of the video prediction model.
At each step t , the model takes the observation It and action
a(low)
t as input and generates the next predicted frame Ît+1.
By performing this prediction procedure autoregressively,
i.e., using the predicted frame Ît+1 as the input for the next
time step, we can predict the last frame of the low-level action
sequence conditional on an initial frame.

To train the model, we gather a dataset D = {ξi }Ni=1 of
N high-level robot of actions, where each example ξi con-
tains of a pick-and-place action (Ppick,Pplace), its low-level

decomposition {s0, a(low)
0 , a(low)

1 , . . . , a(low)
T−1 }, and the corre-

sponding visual frames {I0, I1, . . . , IT }.
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Fig. 5 An overview of our method, including training a visual predictive model for high-level pick-and-place actions and using it with sample-based
optimization for action planning

Variational video predictionmodel

Variational auto-encoders (VAE) [24] have been widely
used for video prediction models. Following the action
conditional video prediction paradigm, the prediction mod-
els typically take c initial frames {I0, I1, . . . , Ic−1} and a
sequence of action {a0, a1, . . . , aT−1} as inputs and predict
subsequent future frames {Ic, Ic+1 . . . , IT }. VAEs introduce
latent variables z ∼ p(z) to carry the stochastic nature of
the real world. Thus, we can build a probabilistic model
pθ (It |I0:t−1, a0:t−1, z1:t ) that predicts the frame Ît condi-
tioned on the previous frames I0:t−1, actions a0:t−1 and
the latent variables z1:t . Since estimating the marginalized
distribution over the latent space z is intractable, it is not
possible to directly maximize pθ (It ). To overcome this chal-
lenge, VAEs employ an inference network qφ(zt |I0:t , a0:t−1)

to approximate the posterior of the true distribution of the
latent variables z. This posterior inference network is typ-
ically parameterized as a conditional Gaussian distribution
N (μφ(I0:t , a0:t−1), σφ(I0:t , a0:t−1)).

By utilizing the reparameterization strategy [24]

z = μφ(I0:t , a0:t−1) + σφ(I0:t , a0:t−1) × ε, ε ∼ N (0, 1),

(1)

the model can be trained by optimizing the variational lower
bound of the log-likelihood

Lθ,φ(Ic:T ) =
T∑

t=c

[
Eqφ(zt |I0:t ,a0:t−1) log pθ (It |I0:t−1, a0:t−1, z0:t )

− βDKL (qφ(zt |I0:t , a0:t−1)‖p(zt ))
]
. (2)

To capture the variety of the stochastic information, Den-
ton et al. [7] propose a learned-prior pψ(zt |I0:t−1, a0:t−1).
This prior can also be parameterized as a conditional Gaus-
sian distribution N (μψ(I0:t−1, a0:t−1), σψ(I0:t−1, a0:t−1)).

The complete model is trained by maximizing

Lθ,φ,ψ (Ic:T ) =
T∑

t=c

[
Eqφ(zt |I0:t ,a0:t−1) log pθ (It |I0:t−1, a0:t−1, z0:t )

− βDKL (qφ(zt |I0:t , a0:t−1)‖pψ(zt |I0:t−1, a0:t−1))
]
,

(3)

where θ , φ, and ψ are the parameters of the generative
network, posterior network, and prior network, respec-
tively. DKL is the Kullback–Leibler divergence between the
approximated posterior and the learned prior. β is a hyper-
parameter representing the trade-off betweenminimizing the
prediction error and fitting the prior. During training, the
latent variables zt are sampled from the posterior qφ(zt ).
During testing, we directly sample zt from the learned-prior
pψ(zt ).

The implementation of this model contains an encoder,
a decoder, a prior network, a prediction network, and a
posterior network. Both the encoder and decoder are deep
convolutional neural networks that map the pixels to latent
space and map it back to the pixels, respectively. The prior,
prediction, and posterior networks are convolutional LSTM
networks for learning long-term dependencies.

Action planner with visual predictive model

The objective of a robot manipulation planner is to find one
or a sequence of pick-and-place action(s) that maximizes the

123



816 Complex & Intelligent Systems (2024) 10:811–823

Algorithm 1: Planning with the prediction of pick-and-
place actions
Input: Visual predictive model M,

Cost function C = 
1,
Goal frame Igoal

1 Initialize nstep = 0
2 repeat
3 Obtain an initial observation frame Iinit
4 Initialize a multivariate Gaussian distribution
5 for i ← i to niter do
6 Sample M actions {P(m)

pick,P
(m)
place}M from the multivariate

Gaussian distribution.
7 Use M to predict {Î(m)

1:T }M conditioned on sampled
actions.

8 Evaluate each action through the cost function:

c(m) = 1 − C(Î(m)
T , Igoal).

9 Fit the multivariate Gaussian distribution to the K actions
with the lowest cost.

10 end
11 Execute the action {P∗

pick,P∗
place} with the lowest cost.

12 until SUCCESS or nstep = maxstep;

possibility of achieving the given goal frame Igoal. We evalu-
ate a pick-and-place action by computing the 
1 cost function
between the predicted frame of it and the goal frame. Sub-
sequently, we optimize the pick-and-place actions using a
sample-based algorithm known as the cross-entropy method
(CEM).

The procedure is shown in Algorithm 1. Concretely, for
an initial frame Iinit and a goal frame Igoal, we sample M

pick-and-place actions {P(m)
pick,P(m)

place}M from a normalmulti-
variate Gaussian distribution.We predict the visual outcomes
Î(m)
1:T for each pick-and-place action, and then evaluate the cost

of each action using c(m) = 
1(Î
(m)
T , Igoal). We then select K

actions with the lowest costs, fit a new multivariate Gaussian
distribution on these K pick-and-place actions, and resam-
ple a new set of M actions from this new distribution. We
repeat the prediction and refitting procedures for n iterations.
After the final iteration, we execute the pick-and-place action
{P∗

pick,P∗
place} with the lowest cost, which has the predicted

visual outcome closest to the given goal.
Since some complex tasks may require more than one

pick-and-place action, we adopt a greedy strategy that selects
the action with the lowest cost at each step and optimizes
it anew over a current frame until the task is successful
within themaximumsteps. In contrast to previous approaches
that used CEM and MPC to optimize low-level actions,
our method optimizes high-level actions, resulting in greater
planning efficiency. By avoiding the need for repeated opti-
mization at each step of a low-level action, our approach
is more closely aligned with human planning strategies that
involve selecting actions from a higher level.

Fig. 6 Environmental setup. It includes a a horizontal workspace, b
a 7-DoF Franka Emika Panda robot, c an RGB camera observing the
workspace, d a 2-finger Franka Emika gripper, and e a depth camera
used to obtain the height position of each action

Experiments and results

Our experiments aim to evaluate whether the robot can
learn high-level actions through the proposed visual pre-
dictive model and ultimately leverage them in real-world
robot manipulation tasks. The question is twofold: (1) Can
the proposed method predict accurate visual outcomes of
robot pick-and-place actions? and (2) can the visual predic-
tive model learning pick-and-place actions be used to plan
real robot tasks, and can this lead to a greater success rate
and planning efficiency?

We conduct both quantitative and qualitative experiments
to answer the above questions. To answer question (1), we
compare the predicted visual outcomes of pick-and-place
actions between our method and baseline methods that use
either a conditional variational autoencoder (CVAE) or mod-
els trained only on data of low-level actions. For question
(2), we compare our approach with the vanilla visual MPC
that uses only low-level robot actions on a variety of real
robot tasks. In addition, we further conduct experimental
comparisons with other pick-and-place methods, including
Transporter Network [30, 43] and Dex-Net [28], where cus-
tom algorithms are designed, but no world dynamic models
are considered. More visualizations and videos can be found
at https://youtu.be/JOgjovETlVg.

Experimental setup

We train and evaluate our proposed method in a real robot
environment. For both data collection and evaluation, we use
a 7-DoF Franka Emika Panda robot equipped with a two-
finger Franka Emika gripper, as shown in Fig. 6. To obtain
visual observations, we place an RGB camera on the side and
process the images to a 64x64 pixel resolution for the predic-
tive model. Since we parameterize pick-and-place actions on
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Fig. 7 An example in PandaGrasp-Pick&Place dataset. Left: the pick-and-place action. Right: the observation of a sequence of visual frames

a horizontal 2D plane in SE(2), another depth camera provid-
ing the depth map of the workspace is mounted at the robot’s
end-effector to obtain the height position (z-axis) of each
action. In our experiments, all models are trained with 4×
NVIDIA Tesla V100 (32 GB) graphics cards, while infer-
ences are done with one consumer graphics card NVIDIA
GeForce 3090.

Dataset

Wecollect a real robot dataset namedPandaGrasp-Pick&Place,
to train and evaluate theproposedmethod.WhileRoboNet [4]
introduced an autonomous data collection strategy to obtain
data on interactions between the robot and objects in open-
world environments and released a promising dataset, actions
in RoboNet aremostly low-level displacements of the robot’s
end-effector. To address this limitation, we introduce high-
level pick-and-place action on our dataset. Specifically.

RoboNet

[4] provides a large open dataset containing 150K trajectories
of robot manipulation from several robots. Each trajectory
in RoboNet records a sequence of visual observations and
low-level actions defined as the displacements of the robot
end-effector. Despite RoboNet providing a large number of
examples, the babbling-like exploration strategy results in
a scarcity of high-level actions in the provided examples.
In our experiments, we use RoboNet to pre-train the visual
predictive model of our method and establish baselines for
evaluating the visual prediction performance.

PandaGrasp-Pick&Place

As its name indicates, it is a dataset containing the pick-
and-place actions of a Franka Panda robot. Concretely, as
shown in Fig. 7, each example in the dataset records the robot
performing a random pick-and-place action. The robot exe-
cutes the actions according to the primitives defined in Fig. 3,
which involve approaching the picking position, grasping the
object, and moving to the placing position. We record the
visual observation of each action as a sequence of 21 frames
in length, according to the high-level action decomposer pro-
posed in the section “Method”.

Fig. 8 Qualitative comparison between the predictions of a CVAE net-
work and our proposed method. a The initial frame, b the ground truth
of the last frame, c the prediction of the CVAE network, and d the
prediction of our proposed method. The green boxes on the pictures
highlight that a sponge is being manipulated in this example

Table 1 Quantitative comparisons of the predicted last frames between
the CVAE network and our proposed method (mean ± standard error)

Method PSNR ↑ SSIM ↑ LPIPS ↓
CVAE 21.8 ± 0.02 87.2 ± 0.03 0.036 ± 0.001

Ours 22.5 ± 0.02 87.4 ± 0.04 0.032 ± 0.001

Visual prediction conditional on high-level actions

To study whether the visual predictive model can understand
robot pick-and-place actions correctly, we evaluate the accu-
racy of the predicted frames of such actions in reference to
the ground truth frames.Our quantitative evaluations arewith
three metrics: structural similarity index measure (SSIM)
[36], peak signal-to-noise ratio (PSNR) [22], and learned
perceptual image patch Similarity (LPIPS) [45].

We first compare our method with a CVAE network that
directly predicts the last frame of a pick-and-place action
given an initial frame. For a fair comparison, the CVAE net-
work shares the same encoder and decoder structure as our
method, and both methods are trained on the same data. The
results (Table 1) show that comparedwith theCVAEnetwork,
using our proposed method to predict the visual outcomes
of pick-and-place action achieves better performance on all
metrics.

Figure 8 presents a qualitative comparison between the
predictions of the CVAE network and our proposed method.
The initial frame used as input to both methods is shown as
Fig. 8a, b which shows the ground truth of the last frame.
Figure8c, d shows the predictions of the CVAE network and
ours, respectively. The green boxes on the pictures highlight
that a sponge is being manipulated in this example. Upon
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Table 2 Quantitative comparison among different visual predictive models trained on high-level or low-level actions on the average of the sequence
of frames (mean ± standard error)

Model PSNR ↑ SSIM ↑ LPIPS ↓
Trained on RoboNet 18.9 ± 0.2 75.6 ± 0.3 0.065 ± 0.003

Pre-trained on RoboNet and fine-tuned on Panda-Babbling 22.0 ± 0.1 85.4 ± 0.3 0.030 ± 0.001

Pre-trained on RoboNet and fine-tuned on PandaGrasp-Pick&Place (ours) 22.9 ± 0.2 86.8 ± 0.4 0.026 ± 0.001

Table 3 Quantitative comparison among different visual predictive models trained on high-level or low-level actions on different stages of pick-
and-place actions (mean ± standard error)

Stage Model Visual predictive performance (test) Stage Model Visual predictive performance (test)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

(1) Approach to the pick m1 23.3 ± 0.2 88.7 ± 0.3 0.021 ± 0.003 (2) Grasp at the pick m1 18.1 ± 0.2 74.5 ± 0.3 0.068 ± 0.003

m2 27.2 ± 0.1 93.9 ± 0.2 0.009 ± 0.001 m2 24.5 ± 0.1 91.2 ± 0.3 0.017 ± 0.001

m3 (ours) 26.2 ± 0.2 92.9 ± 0.3 0.008 ± 0.001 m3 (ours) 23.1 ± 0.1 88.0 ± 0.3 0.018 ± 0.001

(3) Move to the place m1 17.9 ± 0.3 73.2 ± 0.3 0.070 ± 0.002 (4) Release the gripper m1 17.6 ± 0.2 71.2 ± 0.4 0.083 ± 0.005

m2 21.2 ± 0.2 85.3 ± 0.3 0.036 ± 0.001 m2 18.1 ± 0.2 77.3 ± 0.3 0.052 ± 0.002

m3 (ours) 22.0 ± 0.1 86.0 ± 0.3 0.029 ± 0.001 m3 (ours) 21.2 ± 0.2 83.7 ± 0.5 0.038 ± 0.001

*m1: model trained on RoboNet; *m2: model pre-trained on RoboNet and fine-tuned on Panda-Babbling; *m3: model pre-trained on RoboNet and
fine-tuned on PandaGrasp-Pick&Place (ours)

comparing the predictions to the initial frame, both meth-
ods predict that the sponge has been moved from its initial
position. However, when we compare the predicted frames
to the ground truth, only our method accurately predicts that
the sponge has been moved to the intended place position.
In contrast, the CVAE network fails to generate a reasonable
object in the prediction results. This is because theCVAEnet-
work learns the pick-and-place actions only from mapping
pixels between the initial and the last frames. Our method,
however, learns pick-and-place actions through a sequence
of intermediate frames, which have more semantic informa-
tion about the actions. This enables us to correctly predict
the sequence of frames up to the last frame we are interested
in.

We also conduct a comparison with two baselines to
evaluate whether or not the visual predictive model still
has the ability to learn high-level actions in the absence of
such actions. Specifically, the baseline models are trained
using only low-level actions (i.e., the end-effector’s displace-
ments), similar to those in RoboNet. To mitigate the bias
from the specific robots and environments in our dataset,
we acquire a dataset with our setup but adopt the babbling-
like methodology in RoboNet. We refer to this dataset as
Panda-Babbling. The compared baselines and our model are
as follows:

(1) A visual predictive model trained on RoboNet.
(2) A visual predictive model pre-trained on RoboNet and

fine-tuned on Panda-Babbling.

(3) A visual predictive model pre-trained on RoboNet and
fine-tuned on PandaGrasp-Pick&Place.

Table 2 shows the average quantitative results over the
prediction of the entire sequence of pick-and-place actions.
Themodel trained on pick-and-place action data outperforms
other models trained only on low-level actions. We then
evaluate the models on different stages of pick-and-place
actions (Table 3). Although the model trained on Panda-
Babbling performs better in the short horizon, such as the
first two stages, it fails to predict in the long horizon, which is
important for pick-and-place actions. In contrast, our method
trained on PandaGrasp-Pick&Place performs better predic-
tion on the long horizon.

Figure 9 shows a qualitative comparison of prediction
results across different models. Although the model trained
on Panda-Babbling successfully learns the gripper move-
ments related to the low-level displacement actions, it fails
to learn object movements. In contrast, the model trained on
PandaGrasp-Pick&Place achieves more accurate predictions
of both gripper and object movements.

Evaluation on real tasks with high-level actions

This section evaluates whether using high-level actions in the
prediction and planning leads to a greater success rate in real
robot tasks and more efficiency in planning, especially for
tasks related to pick-and-place actions. As shown in Fig. 10,
we compare our method with the vanilla visual MPC [9, 39]
on three manipulation tasks, including
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Fig. 9 Qualitative comparison among the predictions of visual predic-
tive models that are whether being trained on the data of pick-and-place
actions or not. We show some keyframes of the sequence of frames.

The red boxes highlight whether the sponge is correctly predicted to be
picked up, and the green boxes highlight whether the sponge is correctly
predicted to be placed

Fig. 10 Three real robot tasks in our experiments. Left: relocating an object without obstacles. Middle: relocating an object with obstacles. Right:
placing an object into a bowl

1. Relocating an object without obstacles, where the goal
is to relocate an object into a desired position without
obstacles in the workspace.

2. Relocating an object with obstacles, where the goal is to
move the object across to a new location without impact-
ing obstacles in the workspace.

3. Placing an object into a bowl, where the robot is required
to place an object into a particular target area such as a
bowl.

Given an initial frame and the goal frame, our method per-
forms visual predictions on a set of pick-and-place actions.
We then select the action with the predicted frame resulting
in the lowest 
1 loss to the goal frame. In contrast, for the
vanilla visual MPC, we adopt the planner method described
in citewu2021greedy, where the predictive model predicts
the frames on a set of sequences of low-level actions on a
short horizon and iteratively selects the first action of the
sequence that leads to the lowest 
1 loss to the provided goal
frame. For each task, we repeat the experiments with ten con-
figurations by randomly putting objects in the workspace and

Table 4 Various objects used in our experiments

Objects Sponge (face up/ back side up), toy football

Obstacles Plush toy, toy hammer

Bowl Round, rectangle bowls

designating a goal visual frame according to the correspond-
ing task specifications. Table 4 lists the various objects in our
experiments to diversify the configurations.

We annotate an experiment as a success if the target object
is relocated or placed into the goal configuration within the
maximum number of steps and as a failure otherwise. In
Fig. 11, we present a set of qualitative experiments showing
that the learned model of high-level actions can complete all
three manipulation tasks related to pick-and-place actions.
Table 5 shows that using high-level action prediction and
planning leads to higher success rates than vanilla visual
MPC. This is particularly apparent in tasks that involve more
complex robot and/or object interactions, e.g., with obstacles
or other objects in the scene.
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Table 5 Comparisons between success rate and efficiency of different planning methods

Relocating Relocating with obstacles Placing into a bowl Avg. iters

Vanilla visual MPC 70% 10% 30% 9.3

Planning on high-level action prediction (ours) 60% 50% 60% 1.2 (7.7×)

Fig. 11 Qualitative visualization for using the prediction of pick-and-place actions in three real robot tasks. Left: the given initial and goal frames
of a specific task. Middle: the prediction of the planned action. Right: the real execution of the robot

Furthermore, Table 5 shows that the average number of
CEM iterations of planning on pick-and-place actions is
much less (7.7×) than that of planning on low-level actions.
This highlights that planning on high-level pick-and-place
actions leads to greater efficiency in downstream tasks.
Regardless of our method or vanilla visual MPC, each CEM
iteration denotes an action re-planning process. In vanilla
visual MPC, action re-planning occurs after every low-level
action. In contrast, our method only performs the re-planning
after the high-level action, resulting in greater planning effi-
ciency. Although the autoregressive generation makes our
method predict a longer horizon than vanilla visual MPC
(20 frames vs. ten frames), planning pick-and-place actions
allows for a reduction in the number of CEM iterations, still
resulting ins greater planning efficiency.

Comparison with other planning frameworks

In this section, we provide experimental analysis and com-
pare our approach with other state-of-the-art planning frame-
works of pick-and-place actions, such as the Transporter
Network [30, 43], and Dex-Net [28].

Transporter network

The Transporter network leverages visual cues to determine
the task’s goal and ultimately uses them to estimate the
robot’s pick-and-place actions. To compare with the Trans-

port network, we replicate it to perform robot rearranging
tasks in our local environment. Following [43],we implement
a similar user interface to acquire human demonstrations,
which we use to train the model of the Transport network.

Concretely, we obtain 500 human demonstrations of plac-
ing an object into a round bowl, as shown in the left part
of Fig. 12. The results in Table 6 demonstrate that we have
trained a model that performs very well (a 100% success
rate) on the task of “placing an object into a round bowl”.
However, we also observe a limitation in using visual cues to
generalize between tasks. Table 6 shows that this model per-
forms very limitedly on the new task of “placing an object
into a rectangle bowl”. This is due to the learning of the
Transport network being task-specific, and the demonstra-
tions used for training limit the model to only manipulate
with a round bowl. In contrast, for our approach, we aim to
use a visual predictive model as the world model to learn
the interactions between the robot and objects without mak-
ing the model dependent on any specific task. The results in
Table 6 show that our method still achieves a success rate of
50% on placing an object into a rectangle bowl, although in
the training, the model has never seen either a demonstra-
tion of placing an object into a rectangle bowl or even the
rectangle bowl itself. The intention of this experiment is not
to compare an absolute winner but rather to foster an open
dialog concerning whether to use inductive bias to generalize
tasks or world dynamics.
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Table 6 Comparison of the
success rate of generalization
from the task of demonstrations
to a new task

Task of demonstrations New task

Transport network ✓(100%) ✗

Goal-conditioned transport network ✓(100%) ✗

Visual predict (ours) 60% 50%

Task of demonstrations: “placing an object into a round bowl”, the new task: “placing an object into a
rectangle bowl”

Fig. 12 Left: we obtain 500 human demonstrations of placing an object
into a round bowl. Right: the trained model performs very limitedly on
the new task of “placing an object into a rectangle bowl”

Table 7 Comparison of the success rate of picking in the task with
single object vs. multiple objects

Relocate (single) Place into a bowl (multi)

Dex-Net 100% 60%

Ours 90% 80%

Dex-Net

Dex-Net [28] is a state-of-the-art picking method that esti-
mates the optimal picking poses from a depth image. How-
ever, it does not take into account task-related objectives,
such aswhich object to pick up andwhere to place it for a spe-
cific task’s goal. Nevertheless, we are interested inwhether or
not we can introduce Dex-Net into our approach, e.g., using
it to select picking.We thus evaluate the performance of Dex-
Net in the task-specific situation. We conduct this evaluation
on two tasks: one is to relocate an object, with only the target
object visible for the Dex-Net, and another one is to place an
object into a bowl, with both the object and the bowl present
in the field of view.

The results in Table 7 indicate that when only the target
object is visible, Dex-Net performs well (100%) in selecting
a suitable picking on this object. However, in cases where
multiple objects are present in the scene, Dex-Net may not
consistently identify the suitable picking on the relevant
object. For example, in the task of placing an object into
the bowl, Dex-Net sometimes selects a picking on the edge
of the bowl, which will lead to the failure of the task. In
contrast, our method can select picking on the task-relevant
object more consistently (60 vs. 80%). In a nutshell, meth-
ods like Dex-Net that select the most suitable pick only by
the learned geometry can be used to help select the pick in

pick-and-place tasks, but they need to be well adapted to the
task goal.

Conclusion and discussion

We propose a visual predictive model that learns the high-
level pick-and-place actions in the real robot manipulation
environment. The predictive model combines a high-level
action decomposer and a video prediction network to learn
the intrinsic semantic information of high-level actions. We
also expand our previous work [27] and contribute a new
dataset. PandaGrasp-Pick&-Place contains 5K examples of a
Franka Panda robot executing pick-and-place actions. In our
experiments, we find that our method outperforms a CVAE
network to predict the target frame conditional on the initial
frame and the pick-and-place action. By comparing differ-
ent visual predictive models that are trained on high-level
action or not, we find that our proposed method can sub-
stantially learn the pick-and-place actions. We then evaluate
our method with sample-based optimization on several real
robot tasks. Our method can find appropriate pick-and-place
action, especially in the scenariowhere this kind of high-level
action is more reasonable. We also found some limitations
in our work. The introduction of the primitive of high-level
actions reduces the generality compared to the vanilla Visual
Foresight, resulting in a lower success rate in the task of relo-
cating without obstacles, which may be accomplished more
easily through pushing. We believe that the generalization of
ourmethod could be improved through amore general primi-
tive or combing various primitives. Also, although learning a
world dynamic is task-agnostic and more generalized, it may
be more challenging than learning models for each specific
task, such as the Transporter network. As the state-of-the-art
video predictive and generative models [19] [21] advance,
their capability to learn world dynamics will become more
powerful, eventually leading to better performance in the
downstream tasks.
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