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ABSTRACT Deep learning methods contain powerful tools for modelling nonlinear dynamic systems.

However, whilst these models are useful for predicting outputs, they tend to be described by complicated

black box equations that lack interpretability. They are therefore not so useful for giving insight into system

dynamics, and importantly, insight into why a system produces a certain output in response to a given input.

This paper presents a novelmethod for interpreting and comparing deep learningmodels for nonlinear system

identification, using nonlinear output frequency response functions (NOFRFs). NOFRFs describe nonlinear

dynamic system behaviour in the frequency-domain using one-dimensional functions, in a manner similar

to how Bode plots are used for analysing linear dynamic systems. This is a classical way of interpreting and

understanding system behaviour, e.g. via resonances, and in the case of nonlinear systems, super and sub-

harmonics, and energy transfer between frequencies. We also use uncertainty quantification via an ensemble

bootstrap method to enhance the model interpretation, by propagating the model uncertainty estimates into

the frequency-domain. The approach is demonstrated with gated recurrent unit (GRU) and long short term

memory (LSTM) models - both are types of recurrent network used in deep learning that are analogous

to nonlinear state space models. The results obtained from both a numerical example (a nonlinear mass

spring damper system that exhibits energy transfer between frequencies) and a real-world nonlinear system

(a magneto-rheological damper) show that it is possible to gain valuable insight and interpretation of the

system dynamics from the NOFRFs in a way that is not possible from analysing the time-domain model

equations alone.

INDEX TERMS Deep learning, nonlinear system identification, frequency response functions, uncertainty

quantification, ensemble methods.

I. INTRODUCTION

The area of deep learning contains powerful methods for

computational modelling of dynamic systems. However, deep

learning models often lack interpretability, so although they

are useful for predicting and simulating outputs they tend to

The associate editor coordinating the review of this manuscript and

approving it for publication was Dong Shen .

be less useful for giving insight into system characteristics.

The focus of this paper is to demonstrate a frequency-domain

approach for interpreting deep learning models used for

nonlinear system identification. Frequency-domain methods

are a classical way of analysing nonlinear dynamic systems,

and can give crucial insight into system behaviour including

the existence of super and sub-harmonics, and energy transfer

between frequencies [1]. Frequency-domain analysis of the
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type discussed here has been widely applied to different

types of system including crack detection in structures [2],

understanding time-varying dynamics in artificial muscle

actuators [3] and condition monitoring in railway and

manufacturing systems [4].

Nonlinear system identification (NSID) is concerned

with data-driven modelling of nonlinear dynamic systems.

There are many model classes available for NSID, such as

nonlinear auto-regressive (NARX)models [5], shallow neural

networks [6] and fuzzy logic [7] - a useful unifying overview

of these methods is given in [8], which points out that the

differences are primarily based on the choice of the basis

function expansion of inputs, e.g. polynomials for NARX

models, radial basis functions in shallow neural networks

or first order basis splines in fuzzy logic. A further model

class, nonlinear state-space models, have also been used in

NSID, using particle filter methods for state estimationwithin

the expectation-maximisation (EM) algorithm [9], [10]. Deep

learningmethods are now also becoming popular in nonlinear

system identification, particularly using recurrent networks,

which are analogous to nonlinear state-space models [11].

However, recurrent networks in NSID are usually identified

using stochastic gradient descent and the backpropagation

through time algorithm, which is relatively simple to apply

compared to EM methods and more widely supported by

popular modern software tools. For these reasons, in this

paper, we consider the use of deep learning models for NSID.

Model interpretation is an important challenge across the

breadth of deep learning methods because deep learning

models tend to be in a complex, black-box form that are

difficult to understand via model equations [12]. This is also

true for the specific case of deep learning in NSID and

methods for interpreting these types of model are currently

lacking, which is the research gap we aim to address here.

It has been noted that the very idea of model interpretation

does not have a standard definition [12], [13], although it

is often described as giving insight into why an output is

predicted as opposed to just what is predicted [14]. In system

identification, we might wish to understand why a model

behaves in a certain way, for instance, whether it is due

to a resonant mode of behaviour, or the bandwidth of the

system dynamics and so on. These questions become even

more complex for nonlinear systems where, unlike for linear

systems, energy can be transferred across frequencies [1].

The frequency-domain is a natural perspective from which

to analyse system dynamics and interpret model behaviour

because it gives insight into and explains system behaviours

in a way that would not be possible from inspecting black

box model equations. Therefore, the main contribution of

this paper is to demonstrate an approach to interpreting

deep learning models for NSID in the frequency-domain.

This would be referred to as post hoc analysis under certain

established systems of model interpretation [12].

A nonlinear system’s dynamic behaviour can be inter-

preted in the frequency-domain using methods such as the

generalised frequency response functions (GFRFs) [15]. The

GFRFs can be obtained directly from input-output data [16],

[17], [18] or in a model-based framework [19], [20], [21],

where the model is excited across a range of frequencies

by harmonic probing [22], [23]. The GFRFs are based on

the multidimensional Fourier transform of the Volterra series

kernels [24] and as such are multidimensional descriptors

of the nonlinear dynamics. This makes them complex to

evaluate and analyse, especially because the dimensionality

increases with the order of nonlinearity. The nonlinear output

frequency response functions (NOFRFs) [1], [25] are an

alternative to the GFRFs. The key advantage of NOFRFs over

GFRFs is that the NOFRFs are one-dimensional descriptors,

and give information analogous to the Bode plot for linear

systems but at different orders of nonlinearity. The magnitude

of each nonlinear order of NOFRF can therefore be plotted

as a one-dimensional function and inspected by a human

for system interpretation, to explain why certain types of

behaviour arise from the system. In the area of health

monitoring, NOFRFs have been combinedwith deep learning

methods to improve the detection of faults [26], [27], [28],

which is linked to the work conducted here. One of the main

contributions of this paper is to develop the use of NOFRFs to

analyse and interpret recurrent models used in deep learning,

specifically with gated recurrent units (GRUs) [29], and long

short term memory (LSTM) units [30], both of which are

types of nonlinear state-space model.

Uncertainty quantification is important in NSID to assess

the accuracy and trustworthiness of model predictions.

Similarly, it is also important formodel interpretation because

it reveals where model interpretations are trustworthy,

and enables more effective comparison amongst models.

Uncertainty quantification for nonlinear dynamic models can

be obtained using Bayesian methods such as variational

inference [31] and Markov chain Monte Carlo (MCMC)

[32], [33]. A number of similar methods for uncertainty

quantification also exist in the deep learning literature,

which can be divided into two main classes of Bayesian

methods and ensemble methods [34]. Bayesian methods

can use variational inference [35], [36], stochastic gradient

MCMC [37], scalable weight averaging [38] and Monte

Carlo dropout [39], [40]. Ensemble methods include deep

ensembles based on random initialisations of the training

process and shuffling data [41], sub-ensembles with weight

sharing [42], and network pruning to reduce the ensemble

size [43]. An appealing aspect of ensemble methods is that

they tend to be simple to implement and require little tuning

in terms of hyperparameters [41].

Methods exist for propagating uncertainty in NARX

models into the frequency-domain using Monte Carlo

sampling [44] and analytic methods [45] but this has not yet

been done for deep learning models. This is an important

research gap to address because it will extend the use of

NOFRF analysis with uncertainty quantification to models

identified by deep learning identification methods, which

VOLUME 12, 2024 11053



W. R. Jacobs et al:. Interpretable Deep Learning for Nonlinear System Identification

are now becoming more popular. We address this research

gap here by using an ensemble deep learning method for

uncertainty quantification based on the bootstrap [46], [47]

to characterise uncertainty in the NOFRFs. The bootstrap is

a sampling-based method of statistical inference, which as

with other ensemble methods is appealing for its simplicity

to implement, even for complex models, which is why we

use it here. The bootstrap has been widely used with time-

series models, including the block-bootstrap and the residual

bootstrap [48], [49], [50], [51]. In this paper we use the

stationary bootstrap [52], a type of variable length block-

bootstrap, to quantify uncertainty in the recurrent network

models. In the stationary bootstrap, variable length blocks

of time-series data are sampled with replacement from the

full training data set to train an ensemble of models, and, for

the first time, we propagate the uncertainty derived from the

model ensemble into the frequency-domain using NOFRFs,

to enhance system interpretation.

To demonstrate the approach, from system identification

to model interpretation using NOFRFs, we apply it to

the analysis of a synthetic nonlinear system (a nonlinear

mass-spring-damper) and a real-world system (a magneto-

rheological damper). The results demonstrate that the system

becomes both interpretable and explainable in a way that is

not possible by just examining the black boxmodel equations.

II. METHODS

A. DATA

We assume here that a dynamic system is driven by an

input ut ∈ R
nu , where nu is the number of inputs, and the

system produces an output yt ∈ R
ny , where ny is the number

of outputs. The system identification task is to identify the

system dynamics from pairs of input-output data, using the

dataset

D = {(ut , yt ) : 1 ≤ t ≤ M} (1)

whereM is the total number of data samples. In practice, this

data set is usually split into training and validation subsets,

where training data is used for parameter estimation, and

validation data is used for model evaluation.

The design of the input signal, ut , is of particular

importance in NSID because it must excite the dynamics

of the system in a way that enables accurate identification

of the system across varying amplitudes and frequen-

cies [53]. For linear systems, a pseudo-random binary

signal (PRBS) is often preferred because it has a frequency

response that resembles white noise, which excites all

frequencies in the dynamic system [54]. However, for

nonlinear systems, a binary signal is not sufficient to

identify amplitude-dependent nonlinearities [53]. Therefore

the amplitude-modulated PRBS (APRBS) signal can be

used as an alternative, which addresses this limitation [55].

The main parameters in the APRBS are the minimum

and maximum amplitudes, the length of the signal, and

the frequency-domain passband of the signal. The APRBS

signal was used here to excite the nonlinear system under

investigation.

B. MODEL DEFINITION

This section describes the linear state-space model, simple

recurrent neural network (RNN), GRU and LSTM recurrent

networks, giving a unifying overview of these model classes.

1) LINEAR STATE SPACE MODEL

A standard linear state-space model for dynamic systems is

defined in terms of a state equation and output equation,

xt = Axt−1 + But−1 (2)

ŷt = Cxt (3)

where xt ∈ R
nx is the state vector, ŷt ∈ R

ny is the model

output, A ∈ R
nx×nx is the state transition matrix, B ∈ R

nx×nu

is the input matrix, and C ∈ R
ny×nx is the output matrix.

2) SIMPLE RECURRENT NEURAL NETWORK MODEL

The state equation for the simple RNN is similar to the linear

state-space model but with a nonlinear, hyperbolic tangent,

activation of the state dynamics

xt = tanh (Asxt−1 + Bsut−1) (4)

where As ∈ R
nx×nx , Bs ∈ R

nx×nu are learnable weight

matrices and where, unlike for the linear model, we might

include bias parameters as a column in the B matrix

(increasing the dimensionality of the columns by one, Bs ∈

R
nx×nu+1) and augment the input with a row of ones to

include this bias term.

Note that the output equation for the simple RNN, ŷt =

Cxt , is the same as for the linear state-space model (for the

simple RNN the C matrix could also include a column of

bias parameters). Also note that the input is written here as

ut−1 instead of the commonly used ut , which is standard for

causal dynamic systems modelling and consistent with the

linear state-space model.

3) LSTM MODEL

The LSTM recurrent model extends the simple RNN to

include gate equations, which control signal flow through the

model - the LSTM state update equation is [30],

xt = ot ⊙ tanh st (5)

where ot is the output gate defined below,⊙ is the Hadamard,

or element-wise product, and st ∈ R
nx is the internal cell

state,

st = ft ⊙ st−1 + it ⊙ tanh (Alxt−1 + Blut−1) (6)

where Al ∈ R
nx×nx and Bl ∈ R

nx×nu are learnable weight

matrices, ft is the forget gate, it is the input gate, which with

the output gate ot are defined as

ft = σ
(

Af xt−1 + Bf ut−1
)

(7)

it = σ (Aixt−1 + Biut−1) (8)

ot = σ (Aoxt−1 + Bout−1) (9)

11054 VOLUME 12, 2024



W. R. Jacobs et al:. Interpretable Deep Learning for Nonlinear System Identification

where σ denotes the sigmoid activation function, hence

the value of each gate is in the range 0-1, and

Af ,Ai,Ao,Bf ,Bi,Bo are all learnable weight matrices that

control the opening and closing of the gates. When the gate

output is zero the gate is closed, when set to one the gate is

fully open.

The key advantage of the LSTM recurrent network over

simple RNNs is that the LSTM model can learn to set the

gates such that when the forget gate is fully open, ft = 1,

and the input gate is fully closed, it = 0, then st = st−1,

which holds the internal cell state un-modified over time-

steps, mitigating the problem of vanishing and exploding

gradients in backpropagation.

4) GRU MODEL

The GRU model uses gate equations similarly to the LSTM,

but is a later advance that simplifies the model by reducing

the number of gates - the GRU state update equation is [29],

xt = zt ⊙ xt−1 + (1− zt)⊙ tanh
(

Ag (rt ⊙ xt−1)+ Bgut−1
)

(10)

where Ag ∈ R
nx×nx , Bg ∈ R

nx×nu are learnable weight

matrices. Note that the output equation for the GRU, ŷt =

Cxt , is once again the same as for the linear state-spacemodel

(with the possible addition of bias parameters).

The GRU contains two gates: the update gate, zt , and the

reset gate, rt , defined as

zt = σ (Azxt−1 + Bzut−1) (11)

rt = σ (Arxt−1 + Brut−1) (12)

where σ denotes the sigmoid activation function, hence the

value of each gate is in the range 0-1, and Az,Ar ,Bz,Br are

all learnable weight matrices that control the opening and

closing of the gates. When the gate output is zero the gate

is closed, and when set to one the gate is fully open. Note that

the GRU model contains the simple RNN as a special case

for zt = 0 and rt = 1.

The key advantage of the GRU layer over simple RNNs

is similar to the LSTM in that that it can learn to set the

gates so that the state is held un-modified over time-steps,

e.g. when the update gate is fully open, zt = 1, then xt =

xt−1. This enables learning of long term dependencies and

mitigates the problem of vanishing and exploding gradients

in backpropagation.

C. MODEL IDENTIFICATION

The section describes the identification procedure used here

for the recurrent models, which consists of model structure

detection, parameter estimation and model validation.

1) STRUCTURE DETECTION

Structure detection is an important problem in NSID

and there are many methods that are suited to different

types of model structure. For example, least squares meth-

ods [56], [57], evolutionary algorithms [58] and Bayesian

methods [31], [32] have been used for NARX models.

Sequential estimation methods have also been used for radial

basis function neural networks [59], [60]. Hyperparameter

optimization in neural networks addresses elements of the

same problem as structure detection, where the number of

hidden units and the number of layers can be regarded as

hyperparameters. Existing methods include grid search [61],

random search [62], [63], Bayesian optimization [64], [65]

and evolutionary search [66].

More recently, neural architecture search (NAS) [67] has

become prominent in deep learning, which could be used to

address the structure detection problem in NSID. It is distinct

from general hyperparameter optimization because it focuses

specifically on the network architecture. Some NAS methods

based on evolutionary search and reinforcement learning

can be very computationally intensive because they require

training many deep learning models but one-shot methods are

more efficient and use one-stage training with weight sharing

to improve computational efficiency [67].

In this paper, as it is primarily focused on model

interpretation using frequency-domain analysis, we used a

simple grid search to select the number of hidden units in the

recurrent layer, i.e. the state dimension nx .

2) PARAMETER ESTIMATION

The parameters of the recurrent model were estimated here

by minimising the mean squared error loss function with

L2-norm regularization (to avoid overfitting) on a training

data subset of the full data, DT ⊂ D,

J (θ ) =
1

MT

MT
∑

t=1

∥

∥yt − ŷt
∥

∥

2

2
+ α ∥θ∥22 (13)

where MT is the number of training data samples and θ

comprises all the unknown parameters in the weight matrices

in the recurrent network model.

The estimation algorithm used in this paper was Adam

(adaptive moments) algorithm [68], a variation of stochastic

gradient descent, which combines a momentum-like term, vj,

with an adaptive learning rate, rj, and bias corrected versions

of these terms, v̂j and r̂j, where the j-th parameter update is

θj← θj −
ϵ

√

r̂j + δ
v̂j (14)

where δ is a small offset term designed to avoid division by

zero and

r̂j =
rj

1− β t1
(15)

v̂j =
vj

1− β t2
(16)

vj← β1vj + (1− β1) gj (17)

rj← β2rj + (1− β2) g
2
j (18)

and gj is the stochastic estimate of the loss function gradient

for parameter j,

gj = ∇θ Ĵ (θj) (19)
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TABLE 1. Parameter estimation options used for the Adam algorithm.

where the estimate of the gradient of the loss function

∇θ Ĵ (θ ) was obtained here from a mini-batch of data via

backpropagation through time [69].

The hyperparameters for the Adam algorithmwere initially

set to those used in [68] and then the learning rate ϵ was

manually adjusted from 0.001 to 0.002 to give more rapid

convergence. Other hyperparameters including the mini-

batch size, L2-norm regularisation weight, α, and number of

training epochs were manually tuned through a preliminary

investigation. The parameter estimation options used here are

shown in Table 1.

3) MODEL VALIDATION

The model selection procedure was validated through anal-

ysis on independent validation data, DV ⊂ D (where DT ∩

DV = ∅). This was done by processing the residual errors,

ej, from predictions on the validation data where

ej = ŷj − yj (20)

The residual errors were then used to obtain the R2,

or variance-accounted-for (VAF) metric, because it is a

normalised measure of goodness-of-fit [70],

R2 = 1−

∑MV

j=1 e
2
j

∑MV

j=1

(

ŷj − ȳ
)2

, (21)

whereMV is the number of samples in the validation data set

and ȳ is themean of the output data. AnR2 value of 1 indicates

a perfect model fit, a value of 0 indicates a fit equivalent to

the mean of the output data, and the value becomes negative

for poor fits.

D. UNCERTAINTY QUANTIFICATION USING

THE BOOTSTRAP

This section describes the method of uncertainty quantifica-

tion used here, which is based on the bootstrap.

In ordinary bootstrapping, samples of estimation data are

drawn at random with replacement from the original data set.

However, the ordinary bootstrap cannot be used for dynamic

models because samples are drawn independently assuming

no dependence with each other, which is not the case for

dynamic models, where there is correlation across time-

steps. Therefore, alternatives, such as the block bootstrap

have been developed for this case [71], where blocks of

contiguous samples are drawn from the original data set with

replacement. The method used here is based on the stationary

bootstrap [52], where the length of the block is randomly

selected along with the start sample, which ensures that the

blocks are stationary (if the original time-series is stationary)

and avoids the problem of selecting a single block length.

In the stationary bootstrap, the i-th training data set, Di,

is selected as a block of contiguous input-output pairs of data,

of randomly chosen block length, starting from a randomly

chosen time-step,

Di = {(uti , yti ), (uti+1, yti+1), . . . , (uti+li−1, yti+li−1)}

for i = 1, . . . ,Nb (22)

where ti is the starting sample for the block, li is the length

of the block and Nb is the number of bootstraps. The starting

sample of a block is drawn from a uniform distribution

P(ti = k) =
1

M
for k = 1, . . . ,M (23)

where M is the length of the training data set. The block

length is drawn at random from a geometric distribution

P(li = k) = (1−p)k−1 p for k = 1, 2, 3, . . . (24)

where 1/p is the mean value of the distribution. The value of

p was chosen as p = 0.001, which ensured that on average

1000 samples were used for each nominal bootstrap training

data set. The procedure was adjusted so that data sets with

fewer than 500 samples were discarded (because training

deep learning models requires a sufficient number of samples

to avoid over-fitting), or more samples than in the training set,

DT , were also discarded.

To implement the bootstrap, data sets Di were sampled

with replacement from the full training data set DT and

used to train Nb distinct LSTM and GRU recurrent models

fi for i = 1, . . . ,Nb. Training on the bootstrap data

sets took place in the usual way as described above

in Parameter Estimation using mini-batches of data. The

number of bootstrap replicates, Nb, was chosen here to be

100. In practice, this meant training 100 models, but these

models had a single hidden layer with relatively low state

dimension, 1 ≤ nx ≤ 100 that took on the order of 10-20

seconds each to train, so in total this resulted in less than

30 minutes of training time (on an Intel Core i7@3.2 GHz

with 6 cores and 16 GB RAM, with no GPU).

E. INTERPRETING MODEL BEHAVIOUR USING

NONLINEAR OUTPUT FREQUENCY

RESPONSE FUNCTIONS

This section describes the method used for interpreting

deep learning models for NSID in the frequency-domain via

NOFRFs. This method obtains the NOFRFs via time-domain

simulation of the recurrent network and is particularly simple

to implement.

1) NOFRF DEFINITION

A single output, yt , of a homogenous nonlinear system can be

defined in the frequency-domain as the sum of N nonlinear
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orders of frequency response Yn(jω) [1],

Y (jω) =

N
∑

n=1

Yn(jω) =

N
∑

n=1

Gn(jω)Un(jω) (25)

where j is the imaginary unit, ω is frequency in radians per

second, and Gn(jω) is the n-th order NOFRF defined as

Gn(jω)

=

∫∞
−∞ . . .

∫∞
−∞Hn(jω1, . . . , jωn)

∏n
i=1U (jωi)dω1 . . . dωn

∫∞
−∞ . . .

∫∞
−∞

∏n
i=1U (jωi)dω1 . . . dωn

(26)

where Hn is the n-th order GFRF [19],

Hn(jω1, . . . , jωn)

=

∫ ∞

−∞

. . .

∫ ∞

−∞

hn(τ1, . . . , τn) exp
−j(ω1τ1,...,ωnτn) dτ1 . . . dτn

(27)

where hn is the n-th order impulse response of the system,

or Volterra kernel, τ indexes over time, and Un(jω) ̸= 0 is an

input signal defined as

Un(jω) =
n−1/2

2πn−1

∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

U (jωi)dω1 . . . dωn

(28)

Note that the NOFRF definition is dependent on a specific

input Un and therefore the NOFRF is only defined for this

input and will change if the input signal is changed. The

consequence of this is that the system must be analysed for

specific input signals of interest. This is pragmatic because

systems will usually be operated with input characteristics

that are known a priori.

2) NOFRF ESTIMATION

The NOFRFs, Gn(jω), can be estimated using a data-driven

approach [1], by probing an identified recurrent network

model with a specific input signal of interest. The procedure

is extended here to include uncertainty quantification derived

from the bootstrap method:

1) Define the input probing signals,

u
(k)
t = αku

∗
t for k = 1, . . . ,K (29)

where a single waveform, u∗t , is designed to excite

some specific frequency band of interest, and is scaled

by increasing amplitudes defined by αk , where αK >

αK−1 > . . . > α1 > 0, where K is the number of

probing input signals chosen as K ≥ N .

2) Simulate each separate recurrent model identified

through bootstrap estimation K times, with the inputs

αku
∗
t , to produce the outputs

ŷ
(k,i)
t = fi

(

xt , u
(k)
t

)

for k = 1, . . . ,K and

i = 1, . . . ,Nb (30)

where fi is a specific instance of recurrent model

identified from bootstrapping and Nb is the number of

bootstrap models.

3) Obtain the input-output frequency spectra by using the

fast Fourier transform (FFT),

Y ∗k,i(jω) = FFT
(

ŷ
(k,i)
t

)

for k = 1, . . . ,K and

i = 1, . . . ,Nb (31)

U∗k (jω) = FFT
(

αku
∗
t )

)

for k = 1, . . . ,K (32)

where Y ∗k (jω) is the output spectrum and U∗k (jω) is the

input spectrum of the input-output signals respectively,

4) Construct a regression problem that can be solved

in closed form for the NOFRFs, Gn(jω), for each

frequency ω,

Ĝω,i =
(

UH
ωUω

)−1
UH

ωYω,i for i = 1, . . . ,Nb (33)

where UH
ω denotes the conjugate transpose of Uω and

Yω,i = UωGω,i (34)

Gω,i =
[

G1,i(jω), . . . ,GN ,i(jω)
]T

(35)

Yω,i =
[

Y ∗1,i(jω), . . . ,Y
∗
K ,i(jω)

]T
(36)

Uω =







α1U
∗
1 (jω) . . . αN1 U

∗
N (jω)

...
...

αKU
∗
1 (jω) . . . αNKU

∗
N (jω)






(37)

The main tuning parameter of the NOFRF estimation

procedure is the maximum nonlinear order, N . N should

be chosen such that there is negligible power at subsequent

orders.

Regarding design of the input probing signals, u
(k)
t , note

that the input signal for each model simulation, u
(k)
t = αku

∗
t ,

has the same waveform u∗t , with different amplitude scaling

defined by αk . The base probing input signal u∗t can be

designed according to user needs but a convenient form used

here is the following,

u∗t =
3

2π

sin(2× b× π × t)− sin(2× a× π × t)

t
(38)

where a and b define the lower and upper range of the

frequency excitation in Hz, and the amplitude spectrum is

approximately flat in this range.

3) NOFRF INTERPRETATION

Regarding model interpretation, a key point to note is that

the NOFRFs, Gn(jω), obtained from (33) can be analysed

to give insight into the system dynamics, particularly using

the magnitude spectrum given by |Gn(jω)|. The magnitude

|Gn(jω)| can be graphically analysed similarly to the mag-

nitude spectrum in a linear system Bode plot, and for the

nonlinear system can reveal behaviour such as resonances

occurring at different orders of nonlinearity n, and super/sub-

harmonics, as well as energy transfer across frequencies.

To interpret the model behaviour it is important to

understand how the nonlinear system can generate power at
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new frequency locations, which can be due to a combination

of the following effects:

• The nonlinear composition of the inputs Un(jω), which

generally contain a richer set of components than the

single input spectrum U (jω).

• The filtering effect of the NOFRF, Gn(jω), which

determines the contribution of each nonlinear order of

the system to the output frequency response.

• The inter-kernel interference between the different

orders of the nonlinear system, which arises from how

the output spectra, Yn(jω), are combined in (25), and

determines whether a system output is generated outside

the input frequency band.

So, to summarise, there are three distinct ways the nonlinear

system can affect the output spectrum: via the inputs,

Un(jω), the filtering effect of the NOFRF, Gn(jω), and inter-

kernel interference between NOFRFs. The interplay between

these effects ultimately determines whether energy will be

transferred to a certain frequency. An inspection of the

magnitude plot of the inputs |Un(jω)|, NOFRFs |Gn(jω)| and

outputs |Yn(jω)| is therefore essential to gain insight into

these phenomena and reveal themechanisms bywhich energy

is transmitted to specific frequencies. The analysis can be

performed in much the same way as the classical analysis of

linear systems using Bode plots [25]. Such an analysis has

real-world applications in, for example, condition monitoring

using audio signals [4] and damage detection in vibration

signals [72].

The full procedure for identifying the model, and analysing

and interpreting the model using NOFRFs is given in Fig. 1.

III. RESULTS

In this section, we report the results of applying the

frequency-domain model interpretation on both a synthetic

example, a nonlinear mass spring damper [1], [73], which

exhibits energy transfer between frequencies, and a real world

nonlinear system, a magneto-rheological damper [74], which

demonstrates the applicability of the approach to real-world

systems.

A. NONLINEAR MASS SPRING DAMPER

The NOFRF method for interpreting deep learning models

is demonstrated in this section on a synthetic example,

a nonlinear mass-spring-damper (MSD) used in previous

studies of nonlinear systems analysis with frequency response

functions [1], [73] described by

m
d2x(t)

dt2
+ c

dx(t)

dt
+ k1x(t)+ k2x(t)

2 + k3x(t)
3 = u(t)

(39)

y(t) = x(t)+ v(t) (40)

where m is the mass, c is the damper coefficient and k1,

k2 and k3 are the spring coefficients; x(t) is displacement (the

output variable) at time t and u(t) is force (the input variable);

v(t) ∼ N (0, σ 2
v ) is zero mean Gaussian noise signal added

to the output variable, displacement, to give the measured

displacement signal y(t); the noise variance was tuned to give

a signal-to-noise ratio (SNR) of 20 dB. Parameter values were

set to m = 1, c = 20, k1 = 104, k2 = 107 and k3 = 5× 109,

as used in previous studies [1], [73].

An advantage of studying this nonlinear system is that

the GFRFs can be computed analytically for the purposes of

validation. Expressions for the system’s first and second order

GFRFs, H1 and H2, were obtained here using the probing

method [56], [73],

H1(ω) =
1

−mω2 + cjω + k
(41)

H2(ω1, ω2) = −
k2

2
H1(ω1)H1(ω2)H1(ω1 + ω2) (42)

To generate system identification data for this MSD

system, an input excitation signal was designed using an

APRBS (with amplitude range from −1 to 1, and passband

from 0 to 50 Hz) and the system was simulated with this

input using a 4th order Runge-Kutta method for 20 seconds

to produce an output signal. The signals were sampled at

200 Hz, a sample time of 0.005 seconds, giving a total of

4000 samples (Fig. 2(a)-(b)). The input-output data were both

normalised by their respective peak absolute values before the

application of system identification methods. The dataset was

split in the ratio 75:25 (15 seconds to 5 seconds) respectively

for training and validation.

The MSD system was identified using a single-layer GRU

network and a single layer LSTM network. A grid search was

performed on the GRU model only to select the number of

hidden units in the models, with nx approximately log-spaced

from 1 to 100, i.e. nx = 1, 3, 10, 30, 100, with corresponding

R2 values found of 0.34, 0.42, 0.52, 0.97, 0.97 on validation

data. Therefore a good accuracy-complexity trade-off was

found to be nx = 30 (and the LSTM model had an

R2 = 0.95 at this model order). The simulations of the models

against validation data also demonstrated the good accuracy

of the GRU and LSTM models (Fig. 2(c)).

The GRU and LSTM models as well as the true system

defined in (39) were then probed by an input signal as

defined in (38), with a flat amplitude spectrum between the

limits a = 30 Hz and b = 50 Hz and zero otherwise

(Fig. 2(d)-(e)). The output amplitude spectrum of the true

system was compared to the GRU and LSTM models using

an FFT. The magnitude of the output frequency response

of the data falls outside of the 95% confidence limits but

despite this, it can be seen that the main characteristics of

the output frequency response are captured by the models

(Fig. 2(f)). It is noticeable that the uncertainty is higher at

lower frequencies - a point that is not appreciable from the

time-domain simulations in Fig. 2(c). A striking feature of

the output amplitude spectrum in Fig. 2(f) at around 15 Hz is

the resonant peak, which results from energy transfer (which

we know because the system is not excited in this range). The

question for model interpretation is - why does this resonant

peak occur here?

11058 VOLUME 12, 2024



W. R. Jacobs et al:. Interpretable Deep Learning for Nonlinear System Identification

FIGURE 1. Model ensemble identification, and NOFRF analysis and interpretation procedure.
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FIGURE 2. Mass spring damper modelling and interpretation using frequency response functions. (a)-(b) System identification input-output data in
the time and frequency-domains. (c) GRU and LSTM model predictions compared to validation data. (d)-(e) NOFRF input data used to probe the
nonlinear system. (f) NOFRF probing output in the frequency-domain. (g)-(h) First and second order inputs. (i)-(j) First and second order NOFRFs.
(k)-(l) First and second order output frequency responses. In each plot, a shaded region indicates the 95% confidence interval derived from
uncertainty quantification using bootstrapping.
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To answer why the system exhibits these dynamics and

interpret the GRU and LSTM models, we examine the first

and second-order input FRFs, NOFRFs and output frequency

responses in Fig. 2(g)-(l): we can see that as expected the

first order FRFs (Fig. 2(g), (i), (k)) exhibit behaviour one

would associate with a linear system, with no energy transfer

or outputs outside of the excited frequency range (30-50 Hz).

In contrast, the second order input FRF has power in the range

0-20 Hz (Fig. 2(g)), the second order NOFRF (Fig. 2(j)) has

a resonant peak around 15 Hz, and the second order output

frequency responses (Fig. 2(k)) exhibits this resonant peak as

a result of the input and the filtering effect of the NOFRF.

This, therefore, explains why the overall output in Fig. 2(f)

contains this resonant mode, and thus we can explain and

interpret the model behaviour.

We can also validate the NOFRF analysis from the analytic

solution obtained from the GFRF equations defined in (41)

and (42) - notice that there is good agreement between the

analytic solution and the NOFRFs derived from the identified

GRU and LSTM models (Fig. 2(i)-(l)).

It is also notable that the lower frequency contents (below

20 Hz) have larger uncertainties - this may be due to

the fact that in finite data records, there will always be

less low-frequency data than high-frequency, for example,

in 20 seconds of data, there are effectively 20 (non-

overlapping) examples of 1 Hz waves, but 200 examples

of 10 Hz waves, so when bootstrapping, the model variability

will be much higher at the lower frequencies because

there are fewer examples of low-frequency behaviour.

An additional interpretation we might draw from this is

that the model behaviour at low frequency will be more

uncertain and therefore might be more prone to drift

over time.

Finally, it is worth noting that although the GRU and

LSTMmodel equations are completely different, the NOFRF

analysis gives close agreement between the two models

and therefore provides a unifying insight into the system

dynamics, emphasising that irrespective of the form of black

box model equations, this interpretation procedure can be

consistently applied across deep learning model descriptions.

B. MAGNETO-RHEOLOGICAL DAMPER

The NOFRF method for interpreting deep learning models

is demonstrated in this section on a real world system,

a magneto-rheological (MR) damper using measurements

of its velocity (input) and the damping force (output)

sampled at 200 Hz. The experimental data is described in

Wang et al. [74] and is obtained here as a standard dataset

provided in the Mathworks Matlab System Identification

Toolbox [75].

MR dampers typically consist of magnetically polarizable

particles dispersed in a fluid such as oil. The viscosity of

this fluid can be altered by the application of an mag-

netic field acting across the magnetic particles. Therefore,

MR dampers can be used to actively control damping force

by manipulating the viscosity via an electromagnet, which in

turn is controlled by voltages/current. In this dataset, the MR

damper was fixed to the ground at one end and connected

at the other end to a shaker table generating vibrations. The

input-output data was sampled every 0.005 s, giving a total of

3499 samples. The input-output data were both normalised by

their respective peak absolute values before the application

of system identification methods. The dataset was split in the

ratio 75:25 for training and validation sets respectively.

The MR system was identified using a single-layer LSTM

network and a single layer GRU network. A grid search

was performed to select the number of hidden units in

the GRU and LSTM models, with nx approximately log-

spaced from 1 to 100, i.e. nx = 1, 3, 10, 30, 100, with

corresponding R2 values found to be−0.38, 0.72, 0.93, 0.96,

0.98. Therefore, a good accuracy-complexity trade-off was

found to be nx = 10 (and the LSTM model had an R2 =

0.94 at this model order). The simulations over validation

data also demonstrated the good accuracy of each model (see

Fig. 3(c)).

The GRU and LSTMmodels were then probed by an input

signal as defined in (38), with a flat amplitude spectrum

between the limits a = 8 Hz and b = 10 Hz (Fig. 3(d)-(e)).

In this case, the probing output of the models could not

be compared to the true system, which was not available

to experiment on with custom inputs. However, the output

amplitude spectra of the GRU and LSTM models were

compared to each other using an FFT, which demonstrated

good agreement, particularly within the 95% confidence

limits (Fig. 3(f)). A striking feature of the output amplitude

spectrum in Fig. 3(f) is that there is power in the response

at low frequency (<5 Hz), which must result from energy

transfer because we know because the system is not excited in

this range. Once again, the question for model interpretation

is - why does the system exhibit this effect?

To answer why the system exhibits these dynamics and

interpret the GRU and LSTM models, we examine the first

and second order input FRFs, NOFRFs and output frequency

responses in Fig. 3(g)-(l): the first order FRFs (Fig. 3(g),

(i), (k)) exhibit standard behaviour with no energy transfer

or outputs outside of the excited frequency range (8-10 Hz).

In contrast, the second order input FRF has power in the

range 0-2 Hz (Fig. 3(g)), the second order NOFRF (Fig. 3(j))

also has power in this range, and the second order output

frequency responses (Fig. 3(k)) therefore exhibit power in

this range as a result of the input and the filtering effect of

the NOFRF. This, therefore, enables us to interpret the model

behaviour and explain why the overall output in Fig. 3(f)

contains this low frequency response.

IV. DISCUSSION

The aim of this paper was to develop a model interpretation

approach for deep learning models used in nonlinear system

identification. We proposed a frequency-domain approach

because this gives insight into why a system generates

particular dynamic behaviour. Specifically, we used NOFRFs

VOLUME 12, 2024 11061



W. R. Jacobs et al:. Interpretable Deep Learning for Nonlinear System Identification

FIGURE 3. MR damper modelling and interpretation using frequency response functions. (a)-(b) System identification input-output data in the time
and frequency-domains. (c) GRU and LSTM model predictions compared to validation data. (d)-(e) NOFRF input data used to probe the nonlinear
system. (f) NOFRF probing output in the frequency-domain. (g)-(h) First and second order inputs. (i)-(j) First and second order NOFRFs. (k)-(l) First and
second order output frequency responses. In each plot, a shaded region indicates the 95% confidence interval derived from uncertainty
quantification using bootstrapping.
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to interpret model behaviour because they have the advantage

of being one-dimensional functions that are therefore simple

to analyse graphically.We also enhanced theNOFRF analysis

method using uncertainty quantification via the stationary

bootstrap method. This was particularly useful for comparing

models and revealing the increased uncertainty at low

frequencies in the models, compared to high frequencies.

The approach was demonstrated on two different systems: a

numerical example of a nonlinear mass-spring-damper and a

real-world example of a magneto-rheological damper. In both

cases the nonlinear systems exhibited effects such as energy

transfer between frequencies - the results demonstrated how

the NOFRFs could be used to explain why the output

exhibited these phenomena, via the input spectra and the

filtering effect of the NOFRFs.

To date, NOFRFs have mainly been used to analyse

nonlinear systems using NARX models [1], [25] and so the

extension to investigating wider classes of deep learning

model would be interesting for future work. The approach

reported here, for interpreting deep learning models in NSID,

is flexible and extensible to other model classes because

both the NOFRF analysis and the uncertainty quantification

rely on time-domain identification and simulation of the

model, therefore the approach can be extended to complex

networks with multibranch pathways. In addition, the method

for uncertainty quantification used here, the bootstrap, is both

simple and flexible, but also computationally intensive.

It is worth noting that a study on image classification

found that resampling the data was unnecessary and

that random sampling of the parameters was sufficient

to quantify uncertainty [41], which would be interesting

to investigate for recurrent models in NSID problems.

Additionally, it would be of interest to investigate how

modern variational inference methods in deep learning for

NSID [35], [36] could be linked to more efficient meth-

ods of uncertainty quantification in the frequency-domain.

This has been done for NARX models [45], resulting in

significant improvements in computational efficiency, and so

highlights a future research gap to address for deep learning

models.

V. SUMMARY

In summary, we have demonstrated an approach for deep

learning model interpretation in NSID, using frequency

response functions combined with uncertainty quantification

derived from the bootstrap. The approach was successfully

applied to two different nonlinear systems demonstrating that

it is possible to gain valuable insight and interpretation of the

system in a way that is not possible by just analysing the black

box model equations.

VI. DATA AVAILABILITY

The datasets generated during and/or analysed during the

current study are available from the corresponding author on

reasonable request.
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