
This is a repository copy of Arithmetic-based pretraining improving numeracy of pretrained
language models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/210589/

Version: Published Version

Proceedings Paper:
Petrak, D., Moosavi, N.S. orcid.org/0000-0002-8332-307X and Gurevych, I. (2023) 
Arithmetic-based pretraining improving numeracy of pretrained language models. In: 
Palmer, A. and Camacho-collados, J., (eds.) Proceedings of the 12th Joint Conference on 
Lexical and Computational Semantics (*SEM 2023). The 12th Joint Conference on Lexical 
and Computational Semantics, 13-14 Jul 2023, Toronto, Canada. Association for 
Computational Linguistics , pp. 477-493. ISBN 9781959429760 

https://doi.org/10.18653/v1/2023.starsem-1.42

© 2023 Association for Computational Linguistics. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution Licence 
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Proceedings of the The 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023), pages 477–493

July 13-14, 2023 ©2023 Association for Computational Linguistics

Arithmetic-Based Pretraining – Improving Numeracy of Pretrained
Language Models

Dominic Petrak† , Nafise Sadat Moosavi‡, Iryna Gurevych†

†Ubiquitous Knowledge Processing Lab (UKP Lab),

Department of Computer Science and Hessian Center for AI (hessian.AI),

Technical University of Darmstadt, Germany

https://www.ukp.tu-darmstadt.de
‡Department of Computer Science, The University of Sheffield, UK

Abstract

State-of-the-art pretrained language models

tend to perform below their capabilities when

applied out-of-the-box on tasks that require un-

derstanding and working with numbers. Recent

work suggests two main reasons for this: (1)

popular tokenisation algorithms have limited

expressiveness for numbers, and (2) common

pretraining objectives do not target numeracy.

Approaches that address these shortcomings

usually require architectural changes or pre-

training from scratch. In this paper, we propose

a new extended pretraining approach called

Arithmetic-Based Pretraining that jointly ad-

dresses both in one extended pretraining step

without requiring architectural changes or pre-

training from scratch. Arithmetic-Based Pre-

training combines contrastive learning to im-

prove the number representation, and a novel

extended pretraining objective called Inferable

Number Prediction Task to improve numer-

acy. Our experiments show the effectiveness

of Arithmetic-Based Pretraining in three differ-

ent tasks that require improved numeracy, i.e.,

reading comprehension in the DROP dataset,

inference-on-tables in the InfoTabs dataset, and

table-to-text generation in the WikiBio and Sci-

Gen datasets1.

1 Introduction

Numbers are ubiquitous in natural language. There-

fore, understanding and working with numbers

(usually referred to as numeracy) is a critical ca-

pability for pretrained language models such as

BART (Lewis et al., 2020) or T5 (Raffel et al.,

2019), cornerstones of modern NLP, in order to

utilize quantitative information for various NLP

tasks. Recent works question whether these mod-

els meet this requirement out-of-the-box (Wallace

et al., 2019; Zhang et al., 2020): Common pretrain-

ing objectives such as the denoising autoencoder of

1Code, data, and models trained using Arithmetic-
Based Pretraining are available here: https://github.com/
UKPLab/starsem2023-arithmetic-based-pretraining.

BART (Lewis et al., 2020), the masked language

modeling objective of BERT (Devlin et al., 2019),

or the span-corruption objective of T5 (Raffel et al.,

2019), are designed for understanding structure

and semantic meaning of language and not to learn

working with numbers. Furthermore, commonly

used subword-based tokenisation algorithms such

as Byte Pair Encoding (Sennrich et al., 2016) or

WordPiece (Wu et al., 2016) are designed to handle

patterns that are frequently observed during train-

ing, which is disadvantageous for numbers. For

instance, 0.72 and 0.73 are two similar numbers.

They should be processed similarly, but according

to their frequency in the pretraining data they might

be tokenised very differently, e.g., [0, ., 72] and [0,

., 7, 3], which will have an impact on their repre-

sentation in embedding space. To address these

shortcomings, various approaches have been pro-

posed recently. However, most of them introduce

additional components or rely on predefined fea-

tures that limit their application, e.g., they are only

applicable in a specific task like reading compre-

hension (Andor et al., 2019; Geva et al., 2020) or

require architectural changes (Herzig et al., 2020).

In this paper, we propose a new extended pre-

training approach called Arithmetic-Based Pretrain-

ing that targets both shortcomings for pretrained

language models in one extended pretraining step

without introducing new components or requiring

pretraining from scratch. It consists of:

• A contrastive loss that combines subword-

based with character-level tokenisation to im-

prove the representation of numbers.

• A denoising pretraining objective, called the

Inferable Number Prediction Task, to im-

prove the model’s capability of working with

numbers.

Our experiments show that Arithmetic-Based

Pretraining has a positive impact on BART (Lewis

477



et al., 2020), T5 (Raffel et al., 2019) and Flan-

T5 (Chung et al., 2022) in various tasks. It im-

proves the accuracy in case of reading compre-

hension and inference-on-tables, and the factual

correctness in case of table-to-text generation.

2 Related Work

Number Representations in Language Models.

State-of-the-art language models like BART (Lewis

et al., 2020) or T5 (Raffel et al., 2019) use subword-

based tokenisation algorithms (such as Byte Pair

Encoding (Sennrich et al., 2016)) to build vocab-

ularies based on frequently observed sequences

in a text corpus. While this is effective for com-

mon words, it is problematic for numbers. In an

extensive study, Wallace et al. (2019) shows that

models using character-level tokenisation, such as

ELMo (Peters et al., 2018), usually achieve better

results in numerical probing tasks and extrapolate

better to unseen numbers compared to models us-

ing subword-based tokenisation. Thawani et al.

(2021), Peng et al. (2021) and Zhang et al. (2020)

report similar findings. In our work, we use the

character-level tokenisation for numbers to address

this shortcoming in BART, T5, and Flan-T5 (Chung

et al., 2022).

Approaches for Improving Numeracy. Numer-

acy requires to understand and work with num-

bers, i.e., to do artihmetic operations, in order

to generate the expected result. To improve this

capability, recent approaches propose pretraining

from scratch or architectural changes to tailor pre-

trained language models towards specific tasks.

TAPAS (Herzig et al., 2020) targets question an-

swering with tabular data. It is pretrained from

scratch and extends BERT (Devlin et al., 2019) by

introducing additional embeddings for capturing

tabular structure. GenBERT (Geva et al., 2020)

reuses a pretrained BERT model and adds a de-

coder on top. It is then further trained using math

word problems and arithmetic operations for (1)

incorporating the character-level tokenisation for

numbers, and (2) to improve the numerical rea-

soning skills. It achieves state-of-the-art results

in the DROP (Dua et al., 2019) and SQUAD (Ra-

jpurkar et al., 2016) datasets. Andor et al. (2019)

also reuses the pretrained BERT model and tar-

gets reading comprehension. They add a new layer

on top that predicts and executes arithmetic op-

erations. Suadaa et al. (2021) target table-to-text

generation and propose a framework that uses the

template-guided text generation from Kale and Ras-

togi (2020) to inject pre-executed numerical oper-

ations into the pretrained GPT-2 (Radford et al.,

2019) and T5 (Raffel et al., 2019) models.

In their experiments, all of these works show

that much of their performance improvements are

due to specific design decisions or multi-level pre-

training setups which result in new or task-specific

models. With Arithmetic-Based Pretraining, we

propose an approach that improves a model’s nu-

meracy with just one extended pretraining step and

without changing its architecture.

Domain-Adaptive Pretraining. The idea of

domain-adaptive pretraining is to bridge the gap

between the vocabulary of a model’s original pre-

training corpus and the target domain by continu-

ing pretraining using in-domain data (Gururangan

et al., 2020). In this work, we propose the Infer-

able Number Prediction Task which is similar to

domain-adaptive pretraining if the data used is from

the same domain as that of finetuning. However,

we show that this is not the only reason for perfor-

mance improvements (Section 5.3).

Contrastive Learning. Contrastive learning is a

general way to learn to map vector representations

of similar data points (usually called anchor and

positive) close to each other while pushing non-

similar data points apart. In NLP, it is commonly

used for learning sentence representations (Kim

et al., 2021; Giorgi et al., 2021) or semantic simi-

larities (Wang et al., 2021). In this work, we use

contrastive learning to improve the representation

of numbers.

3 Arithmetic-Based Pretraining

In this section, we propose Arithmetic-Based Pre-

training. It combines different tokenisation al-

gorithms, i.e., character-level and subword-based,

with contrastive learning to improve the represen-

tation of numbers in pretrained language models

(Section 3.1), while training on the Inferable Num-

ber Prediction Task (Section 3.2) to improve the

capability of working with numbers. Section 3.3

describes the joint loss function.

3.1 Contrastive Learning

We propose to use a contrastive loss as additional

training signal to improve the representation of

numbers. For example, the model should learn

a similar representation for the number 108.89,

478



whether it is initially tokenised as [1, 0, 8, ., 8, 9]

(character-level) or [10, 8, ., 89] (subword-based).

If a number frequently occurs in the pretraining

corpus, its corresponding subword-based encoding

may be more informative. If this is not the case, its

character-level tokenisation may be more informa-

tive. Therefore, our motivation is to benefit from

both embedding spaces for learning better number

representations. For implementation, we use the

Multiple Negative Ranking Loss as proposed by

Henderson et al. (2017)2:

LC = −
1

N

N
∑

i=1

esim(avg(p̂i),avg(p̂′i))

∑

j e
sim(avg(p̂i),avg(p̂neg))

(1)

For the contrastive loss, we consider all numbers

in the batch independently of the input sequences.

Each number is used twice, once in character-level

tokenisation (anchor), and once in subword-based

tokenisation3. Assume p is a list of all numbers

in the batch in character-level tokenisation. p′ is a

list of all numbers in the batch in subword-based

tokenisation. We consider pi and p′i as a positive

pair. Every other number in p and p′ is considered

as negative sample to pi (denoted as pneg). p̂i,
p̂′i, and p̂neg are the corresponding embeddings

after the encoder pass. sim represents the cosine

similarity and avg represents the mean-average of

the embedding. Averaging is a simple and effective

form of aggregation which is necessary at this point,

as the numbers are split into multiple tokens during

tokenisation.

3.2 The Inferable Number Prediction Task

The Inferable Number Prediction Task is a varia-

tion of the classic masked language modeling ob-

jective (Devlin et al., 2019), but aims on improving

a model’s capability on working with numbers by

focusing on data that requires arithmetic operations.

The task consists of input C and the correspond-

ing target sequence D. C consists of a pair of text

sequences, C1 and C2, that are separated with a

special character. C2 equals to D, but contains

a masked number that can be inferred from C1.

Given C, the task is to reconstruct D by correctly

2We use the implementation from the sentence-transformer
library (Reimers and Gurevych, 2019).

3Note that we use both only for Arithmetic-Based Pre-
training. For finetuning and during inference, we only use
character-level tokenisation for numbers.

predicting the masked number in C2
4. For instance,

for the task of table-to-text generation, C consists

of the linearized form of the input table (C1) and

its description with one masked number (C2). We

select data with the following criteria:

• D (C2 in C) and C1 should have at least one

overlapping entity, e.g., D should contain at

least one of the entities that appear in the row

or column headers of C1 if C1 is a table. This

ensures that D is relevant to the information

given in C1.

• D (C2 in C) should contain at least one num-

ber that either occurs in C1 or is inferable by

summation, subtraction, multiplication, divi-

sion or ordering. This ensures that the masked

number in C2 is arithmetically related to the

numbers given in C1.

Next, we reduce C to the necessary information.

If C1 is an extensive text or paragraph, we apply

each of these heuristics to each of the sentences and

retain only the matching ones (the same applies to

C2). If C1 is a table, we remove rows and columns

that do not share entities with C2 (see Appendix B

for further details and illustrations).

For training, we use the cross-entropy loss func-

tion:

LINP (x, y) =
1

N

N
∑

n=1

− log

(

e(xn,yn )

∑K
k=1 e

(xn,k)

)

(2)

where x represents the logits of the predicted input

sequence, and y = y1, ..., yN represents the indices

of the tokens of the output sequence. N is the size

of the target sequence. xn,yn is the logit of the xn
token corresponding to the output token yn. K is

the size of the model’s vocabulary.

3.3 Joint Loss Function

We combine the contrastive loss LC (Equation 1)

and the loss for the Inferable Number Prediction

Task LINP (Equation 2) as weighted sum in a joint

loss function:

L =
LC

2
+

LINP

2
(3)

4Preliminary experiments revealed that just reconstructing
the masked number, without its context, has a negative impact
on a model’s text generation capabilities.

479



4 Experimental Setup

We implement our approach using Python 3.10, Py-

Torch (Paszke et al., 2019) and Huggingface (Wolf

et al., 2020). As pretrained language models, we

use the large variant of BART (Lewis et al., 2020)

and the base variant of T5 (Raffel et al., 2019) and

Flan-T5 (Chung et al., 2022) as provided by the

Huggingface platform (see Appendix A for details

on hyperparameters)5. All models are pretrained

Transformer-based encoder-decoder models, but

different in size. BART-large consists of a total of

24 layers and 406M parameters. T5-base and Flan-

T5-base consist of 12 layers and 220M parameters.

Flan-T5 is based on T5, but trained on more tasks,

e.g., arithmetic reasoning, and chain-of-thought

data (instructions). It significantly improves the

results of the original model in many tasks (Chung

et al., 2022). We conduct all experiments on a Tesla

V100-SXM3 GPU with 32 GB memory. For ex-

periments using table-to-text datasets, we represent

tables as linearized sequence. We report the results

of the best single runs.

4.1 Original Datasets

Reading Comprehension. The task of reading

comprehension is to answer a question by reason-

ing over a related text passage. DROP (Dua et al.,

2019) is such a dataset. It contains over 96,567

open-domain question-answer pairs and 6,735 para-

graphs. According to the authors, 59.1% of an-

swers consist of numbers and therefore implicitly

require performing arithmetic operations to be pre-

dicted correctly. Each paragraph consists of 9.19%
numbers on average. We split the dev data into two

equally-sized subsets and use one for testing. Each

subset contains 4,828 question-answer pairs.

Inference-on-Tables. Given a premise and a hy-

pothesis, natural language inference (NLI) is the

task of deciding whether the hypothesis is en-

tailed, contradictory, or neutral to the premise. In-

foTabs (Gupta et al., 2020) extends NLI to using

semi-structured data, i.e., tables, as hypothesis. It

consists of 23,738 hypothesis for 2,540 Wikipedia

infoboxes from a variety of domains and provides

three different test sets: in-domain, cross-domain,

and an adversarial test set. The cross-domain test

set uses premises from domains not used for train-

ing. The adversarial test set uses a different set

5We could not use the large variant of T5 and Flan-T5 due
to hardware limitations (each model has 770M parameters).

of source tables. Furthermore, the wording of hy-

potheses was slightly changed by expert annotators.

According to the authors, InfoTabs requires nu-

merical and temporal reasoning (which implicitly

requires performing arithmetic operations) across

multiple rows and to a large extent. Each table

consists on average of 13, 89% numbers.

Table-to-Text Generation. Table-to-text genera-

tion is the task of summarizing tabular data (which

is often numerical) in a descriptive text. It requires

to implicitly perform arithmetic operations such

as ordering, summation or subtraction, or to cap-

ture magnitudes. SciGen (Moosavi et al., 2021)

is a table-to-text generation dataset that requires

to generate descriptions for scientific tables6. It is

designed for arithmetic reasoning and consists of

53,136 table-description pairs. Each table consists

of 41.55% numbers on average.

WikiBio (Lebret et al., 2016) is a dataset from

the biographical domain. It consists of 728,321

table-description pairs. The task is to reproduce the

first paragraph of biographical Wikipedia articles,

given the corresponding infobox. According to

the authors, dates, ages, and other quantities play

an important role. Each table consists of 16.83%
numbers on average. However, most values can be

directly copied from the tables and do not require

arithmetic operations.

4.2 Preprocessing for the Inferable Number

Prediction Task

To fulfill the requirements of the Inferable Number

Prediction Task, we apply the criterias described

in Section 3.2 to all datasets in an offline prepro-

cessing step. In case of InfoTabs (Gupta et al.,

2020), we only use the data labeled with entailed

in order to exclude contradictions (see Appendix B

for examples and illustrations). Table 1 shows the

resulting datasets.

Train Dev Test

SciGen 4,859 1,473 55

WikiBio 412,053 51,424 51,657

DROP 8,336 849 850

InfoTabs 1,981 1,800 1,800

Table 1: Data distribution for the Inferable Number Pre-

diction Task after applying the criterias to the original

dataset splits.

6NumericNLG (Suadaa et al., 2021) is a similar dataset.
As SciGen (Moosavi et al., 2021) provides more unsupervised
training pairs that we can use for Arithmetic-Based Pretraining,
we use SciGen in our experiments.

480



We also find that the resulting datasets have

slightly different number-to-word ratios. In the

case of DROP (Dua et al., 2019) and InfoTabs,

preprocessing increases the portion of numbers up

to 18.98% and 17.25% in paragraphs and tables.

In the case of WikiBio (Lebret et al., 2016) the

ratio remains unchanged and in the case of Sci-

Gen (Moosavi et al., 2021) it reduces the numbers

per table to 33.88%.

OCC ORD SUM SUB MUL DIV

DROP 0.41 0.32 0.04 0.07 0.13 0.02
InfoTabs 0.23 0.34 0.05 0.17 0.15 0.06
SciGen 0.11 0.06 0.03 0.12 0.41 0.27
WikiBio 0.24 0.38 0.03 0.10 0.20 0.03

Table 2: Distribution of arithmetic operations in the

preprocessed datasets.

Table 2 shows the ratio of samples per dataset

that we have identified as being inferable by

arithmetic operiations, i.e., occurence (OCC), or-

dering (ORD), summation (SUM), subtraction

(SUB), multiplication (MUL) or division (DIV).

Appendix C provides a detailed analysis.

5 Evaluation

In this section, we evaluate the impact of

Arithmetic-Based Pretraining on downstream appli-

cations with BART (Lewis et al., 2020), T5 (Raffel

et al., 2019) and Flan-T5 (Chung et al., 2022) using

in-domain data (Section 5.2), and out-of-domain

data (Section 5.3). For Arithmetic-Based Pretrain-

ing, we use the preprocessed subsets of the original

datasets as described in Section 4.2.

5.1 Evaluation Metrics

For inference-on-tables, we evaluate the results

using Exact Match (EM score). For reading com-

prehension, we additionally use F1 score. The

EM score evaluates the prediction accuracy, i.e., if

the prediction exactly matches the target. It is the

preferred metric for these tasks (Dua et al., 2019;

Gupta et al., 2020). The F1 score reports the over-

lap between the prediction and the target. This re-

sults in partial reward in cases where the prediction

is partially correct. In case of table-to-text genera-

tion, we conduct a human evaluation. This is due

to the shortcomings of common automatic metrics

for this task, as they are hardly able to assess the

correctness of information not directly contained

in the source data, i.e., information obtained by rea-

soning (Moosavi et al., 2021; Chen et al., 2020b;

Suadaa et al., 2021). We provide the results of the

automatic metrics in Appendix D.

For all experiments, Baseline represents the

BART (Lewis et al., 2020), T5 (Raffel et al., 2019),

and Flan-T5 (Chung et al., 2022) model directly

finetuned on the corresponding dataset without

Arithmetic-Based Pretraining. Ours represents

these models with Arithmetic-Based Pretraining.

We highlight statistically significant improvements

of Ours over the respective baseline in the tables

(independent two-sample t-test, p ≤ 0.05).

5.2 In-Domain Pretraining

This section discusses the results on downstream

tasks when using models that are pretrained using

Arithmetic-Based Pretraining with in-domain data.

For comparison, we will also report the results of

the specialised state-of-the-art model for each task.

Reading Comprehension. Table 3 shows the re-

sults achieved on DROP (Dua et al., 2019).

EM F1

BART
Baseline 36.00 39.26

Ours 45.60 49.50

T5
Baseline 10.40 14.60

Ours 11.00 15.20

Flan-T5
Baseline 46.34 94.41

Ours 72.18 97.65

QDCAT 85.46 88.38

Table 3: Evaluation on the DROP dataset. Our approach

outperforms the baseline in all cases.

In all cases, Arithmetic-Based Pretraining im-

proves the results over the baseline. Based on our

analysis of the test results, i.e., by comparing the

predictions of Baseline with Ours, we find that our

approach reduces the incorrectly predicted num-

bers by 14.27% in case of BART (Lewis et al.,

2020), 16.62% in case of T5 (Raffel et al., 2019),

and 30.56% in case of Flan-T5 (Chung et al., 2022).

The results achieved with Flan-T5 even outperform

the results reported by Geva et al. (2020) for Gen-

BERT (EM 68.6)7. Regarding the performance

differences between BART and T5, we attribute

this to the difference in model size. In this con-

text, the performance difference between BART

and Flan-T5 is particularly interesting. We attribute

this to the fact that among other things, Flan-T5

was trained in arithmetic reasoning. QDCAT (Chen

7We also did preliminary experiments with the math word
problems dataset provided by Geva et al. (Geva et al., 2020)
as a first pretraining task but found that this does not improve
the results (see Appendix G).

481



et al., 2020a) is the current state-of-the-art in the

DROP task. It was built for reading comprehension

and is based on RoBERTa (Liu et al., 2019), but

adds an additional question-conditioned reasoning

step on top (using a graph-attention network).

Inference-on-Tables. Table 4 presents the pre-

diction accuracies (EM score) achieved on the In-

foTabs (Gupta et al., 2020) dataset.

In-Domain Cross-Domain Adversarial

BART
Baseline 33.30 23.67 27.68

Ours 67.20 54.40 57.20

T5
Baseline 32.00 11.76 13.00

Ours 32.30 18.07 15.25

Flan-T5
Baseline 27.23 25.14 29.17

Ours 34.04 26.14 29.04

BPR 78.42 71.97 70.03

Table 4: Evaluation on the InfoTabs dataset. Our ap-

proach significantly improves the results on the in-

domain data.

Similarly to reading comprehension, Arithmetic-

Based Pretraining significantly improves EM

scores in all cases. This applies especially to the in-

domain test set. For the other two test sets, our ap-

proach also shows improvements over the baselines

(mostly for BART (Lewis et al., 2020)), indicating

to improve the model’s robustness and capability

to extrapolate to unseen data. We attribute perfor-

mance differences to model sizes. Furthermore,

analysis of the in-domain test results shows that

T5 and Flan-T5 are biased toward predicting en-

tailment. Since we observe this in both Baseline

and Ours, we do not attribute this to how the data

was preprocessed for the Inferable Number Predic-

tion Task (Section 4.2). This is different for BART.

An analysis of the in-domain test results shows

that the model correctly predicts 60.30% of entail-

ments, 75.50% of contradictions, and 65.83% of

neutrals. BPR (Neeraja et al., 2021) is the current

state-of-the-art in the InfoTabs task. It is based

on BERT (Devlin et al., 2019) but built for infer-

ence over tabular data. It provides an improved

representation of the input data, is pretrained on

MultiNLI (Williams et al., 2018), and incorporates

external knowledge.

Table-to-Text Generation. For human evalua-

tion8, we follow the approach used by Moosavi

et al. (2021) for evaluating the results on SciGen.

As this is very time-consuming, we only analyse

8The human evaluation was conducted by one of the au-
thors.

100 random table-description pairs from each, the

SciGen and WikiBio (Lebret et al., 2016) dataset,

and also only from the BART (Lewis et al., 2020)

experiments. For SciGen, we use the results from

the large split experiment9.

For annotation, we break down each generated

output to its corresponding statements (facts). We

create one CSV file for each dataset that contains

these statements in random order. This way, the

annotator can not see whether a statement was gen-

erated by Ours (BART with Arithmetic-Based Pre-

training) or Baseline (BART without Arithmetic-

Based Pretraining). Alongside with the generated

statements, this CSV file contains the original ta-

bles and gold descriptions. The annotator then de-

cides for each of the statements whether it belongs

to one of the following labels:

• Entailed: The statement is entailed in the gold

description, e.g., a fact that is mentioned ei-

ther in a similar or different wording in the

description.

• Extra: The statement is not entailed in the

gold description but is factually correct based

on the table’s content.

• Incorrect: The statement is relevant to the

table, i.e., it contains relevant entities but is

factually incorrect. For instance, the state-

ment says system A outperforms system B by

2 points while based on the table system A

has a lower performance than system B.

• Hallucinated: The statement is not relevant to

the table.

Based on these labels, we then

compute the recall (#entailed/#gold),

precision (#entailed/#generated), correct-

ness ((#entailed + #extra)/#generated), and

hallucination (#hallucinated/#generated) scores

for the generated facts. #gold and #generated refers

to the respective number of included statements,

not complete sequences. Table 5 shows the results.

Arithmetic-Based Pretraining improves the pre-

cision, recall, and correctness for both SciGen and

WikiBio. In case of WikiBio, it improves the pre-

cision by 0.06 points, suggesting that generated

9For SciGen, BART is the current state-of-the-art, and the
baseline results of our human evaluation are comparable with
those reported by Moosavi et al. (2021). We are not aware
of a comparable human evaluation for WikiBio. Appendix D
shows a comparison of automatic metrics for both datasets.

482



Prec. Rec. Cor. Hall.

SciGen

Baseline 0.08 0.02 0.31 0.29

Ours 0.09 0.03 0.40 0.33

WikiBio

Baseline 0.22 0.07 0.33 0.03

Ours 0.28 0.09 0.46 0.02

Table 5: Results of the human evaluation. In both cases,

our approach improves the correctness of the generated

facts.

statements are more concise and closer to the target

description. It also improves the ratio of statements

that are factually correct by 0.13 points. In case

of SciGen, the baseline results reflect the results

reported by Moosavi et al. (2021), who also used

the large variant of BART for their experiments.

Ours improves the results in almost every aspect

(especially in case of factual correctness, where it

improves the results by 0.09 points). However, we

observe a slight increase in hallucinations, which

is a minor deterioration. We found that while Base-

line seems to generate descriptions close to the

target, Ours is somewhat more oriented towards

the tabular values, whereby these values are used

out-of-context in some cases which might be the

reason for this deterioration. Nevertheless, all mod-

els generate fluent and valid-looking descriptions

(see Appendix H for examples). This suggests that

Arithmetic-Based Pretraining has no negative im-

pact on a model’s text generation capability. This

is also supported by the results achieved using au-

tomatic metrics (see Appendix D).

5.3 Out-of-Domain Pretraining

To investigate whether the effectiveness of

Arithmetic-Based Pretraining is a result of using

in-domain data for pretraining (domain-adaptive

pretraining) or improved numeracy, we evaluate

our approach using out-of-domain data for pretrain-

ing. We focus on BART (Lewis et al., 2020) for

this experiment and perform Arithmetic-Based Pre-

training on a different dataset before finetuning

on DROP (Dua et al., 2019) and InfoTabs (Gupta

et al., 2020). For instance, for the DROP exper-

iments, we pretrain models on WikiBio (Lebret

et al., 2016), SciGen (Moosavi et al., 2021), and

InfoTabs, which all include data from a different

domain, before finetuning. For SciGen, we use the

large split in this experiment.

Table 6 shows the results. Overall, the models

pretrained using SciGen achieve the best out-of-

EM F1

DROP

DROP (in-domain) 45.60 49.50

Wikibio → DROP 6.00 33.50

InfoTabs → DROP 35.50 39.63

SciGen → DROP 47.70 51.60

InfoTabs

InfoTabs (in-domain) 67.20 -

WikiBio → InfoTabs 33.15 -

DROP → InfoTabs 32.80 -

SciGen → InfoTabs 64.70 -

Table 6: Results of the out-of-domain pretraining (see

Tables 3 and 4 for the in-domain experiments).

domain results in both cases. In case of DROP,

the results even exceed the ones achieved with

in-domain pretraining. We find that the extent to

which the pretraining dataset requires understand-

ing and working with numbers has a major im-

pact on the downstream performance (the more,

the greater the impact). Among the datasets used,

SciGen is in particular designed for the task of text

generation based on arithmetic reasoning. It has

a high number-to-word ratio and the subset used

for pretraining on the Inferable Number Predic-

tion Task (see Section 3.2) predominantly depends

on arithmetic operations such as multiplications

or divisions (see Table 2) instead of lookups or

orderings (like in the other datasets).

6 Ablation Study

In this section, we investigate the impact of

Arithmetic-Based Pretraining on the numeracy of

a pretrained language model. Due to the short-

comings of automatic metrics in table-to-text gen-

eration (see Section 5.1) and because we want

to be able to compare and discuss the impact of

each component across datasets, we use the Infer-

able Number Prediction task for this and evaluate

the number of correctly predicted context-related

masked numbers (please see Appendix E for abla-

tion experiments in downstream tasks)10. We use

the preprocessed subsets of the original datasets for

the Inferable Number Prediction Task (see Sec-

tion 4.2). For evaluation, we use Exact Match

(EM score) and F1 score (see Section 5.1). Table 7

shows the results.

We consider the large variant of BART (Lewis

et al., 2020) with its default tokenisation (DT)

and masking procedure (DM) as baseline for this

10In case of the contrastive loss, we also experiment with
other number representations (see Appendix F).

483



EM F1

WikiBio

BART 29.69 48.12

CLT + INP 43.13 69.97

Ours 77.38 74.69

SciGen

BART 7.04 32.21

DT + INP 7.20 35.11

CLT + INP 12.26 36.78

Ours 24.68 45.81

Ours - INP 21.49 40.51

InfoTabs

BART 12.43 22.17

DT + INP 23.20 46.17

CLT + INP 59.09 73.88

Ours 60.45 74.33

Ours - INP 59.66 72.71

DROP

BART 7.20 7.20

DT + INP 6.33 55.51

CLT + INP 29.40 66.43

Ours 30.58 67.07

Ours - INP 25.37 59.83

Table 7: Ablation study on the Inferable Number Predic-

tion Task. We conduct DT + INP and Ours - INP once

for each task and with SciGen (Moosavi et al., 2021) as

representative for table-to-text generation.

experiment. DT + INP uses the default tokenisa-

tion but our masking procedure (INP). CLT + INP

then uses the character-level tokenisation for num-

bers (CLT). Ours finally combines CLT and INP

with the contrastive loss (CL) as supporting signal

to improve the representation of numbers. As last

ablation, Ours - INP combines CLT with the con-

trastive loss but uses DM instead of INP and shows

the contribution of our masking procedure to the

effectiveness of Arithmetic-Based Pretraining.

In comparison with BART, DT + INP shows

that our masking procedure improves the results

across all tasks. This is most significant in case

of InfoTabs (up to 10.77 points in EM score). In

case of DROP, it raises the F1 score from 7.20 to

55.51 points, meaning that there is a significantly

larger overlap between predicted numbers and tar-

get numbers. Using character-level instead of de-

fault tokenisation for numbers (CLT + INP) again

improves the results across all datasets, indicat-

ing improved capabilities for arithmetic operations.

Compared to DT + INP, it improves the EM score

by 35.89 points in case of InfoTabs, and by 23.07
points in case of DROP. Ours further improves the

results across all datasets. This is most significant

in case of the table-to-text datasets, where it im-

proves the EM score by 34.25 points in case of

WikiBio (Lebret et al., 2016), and 12.42 points

in case of SciGen (Moosavi et al., 2021). Since

we create the pairs for the contrastive loss batch-

wise, i.e., we consider all numbers in a batch inde-

pendently from the samples (see Section 3.1), an

advantageous number-to-word ratio favors a good

positive-negative pair ratio for the contrastive loss,

as in the case of SciGen which has the highest

number to word ratio in input tables (33.88%, see

also Section 4.1). This is counteracted by WikiBio

which has a lower number-to-word ratio (16.32%).

However, with 728, 321 samples, Wikibio is the

largest dataset. We therefore assume that more data

compensates for a poor number-to-word ratio. Ours

- INP deteriorates the EM score by 5.21 points in

case of DROP, 3.19 points in case of SciGen, and

0.79 points in case of InfoTabs. This shows the

contribution of our masking procedure to the effec-

tiveness of Arithmetic-Based Pretraining.

7 Conclusions

In this paper, we propose Arithmetic-Based Pre-

training, an approach for jointly addressing the

shortcomings of pretrained language models in un-

derstanding and working with numbers (usually

referred to as numeracy). In contrast to existing

approaches, Arithmetic-Based Pretraining does not

require architectural changes or pretraining from

scratch. It uses contrastive learning to improve

number representation and a novel extended pre-

training objective, the Inferable Number Prediction

Task, to improve numeracy in just one extended

pretraining step. Our experiments show perfor-

mance improvements due to better numeracy in

three different state-of-the-art pretrained language

models, BART, T5, and Flan-T5, across various

tasks and domains, including reading comprehen-

sion (DROP), inference-on-tables (InfoTabs), and

table-to-text generation (SciGen and WikiBio). We

show that the effectiveness of our approach is not

limited to in-domain pretraining, but rather depends

on the extent to which the dataset used in the In-

ferable Number Prediction Task requires under-

standing numbers. For example, pretraining on the

SciGen dataset improves the results achieved on

DROP. Our ablation studies show that contrastive

learning and the Inferable Number Prediction Task

are key to improving the numeracy of the examined

models.

484



8 Limitations

Our work is subject to some limitations. First of

all, due to hardware limitations, we could not use

the large variant of T5 (Raffel et al., 2019) and

Flan-T5 (Chung et al., 2022) in a setting com-

parable to our BART-large experiments. Further-

more, BART (Lewis et al., 2020) restricts the max-

imum length of input sequences to 1024 char-

acters11. For better comparability, we also use

T5 and Flan-T5 accordingly. This limitation is

due to the increased computational complexity of

longer input sequences, but it is problematic with

table-to-text generation datasets. For example, Sci-

Gen (Moosavi et al., 2021) consists in large parts

of tables that exceed this sequence length when rep-

resented as a linearized sequence. While we have

tried to take this into account by reducing the input

data to necessary information, it was not guaran-

teed that the model always sees the complete infor-

mation, which certainly has a negative impact on

the evaluation results achieved on the downstream

tasks. We guess that the results would have been

more expressive if we would have used a different

representation for tables, or focused on models that

do not have this sequence length limitation.

Another limitation of our work concerns the im-

pact of contrastive learning. According to Hen-

derson et al. (2017), the impact of contrastive loss

is favored by large batch sizes. Due to hardware

limitations, we were only able to use small batch

sizes (see Appendix A). The models might have

adapted better if we would had the possibility to

train with larger batch sizes. Regarding the weight-

ing of contrastive and masked loss in the joint loss

function, we only use equal weighting for our ex-

periments, since we found that this already leads to

good results, and due to the already large number

of experiments conducted in this paper, we did not

experiment with other weightings. However, opti-

mizing this hyperparameter could further improve

the results.

Evaluation is also a critical point. Although

metrics such as PARENT (Dhingra et al., 2019)

try to measure the factual correctness of generated

descriptions, it requires a more individual exam-

ination in many cases. Especially in such highly

specialized scenarios such as SciGen. Therefore,

we conduct a human evaluation in order to analyse

11
https://huggingface.co/docs/transformers/

model_doc/bart#transformers.BartConfig, last ac-
cessed on 10/02/23.

the impact of our Arithmetic-Based Pretraining on

the downstream tasks. However, due to limited re-

sources, we were only able to conduct a small-scale

human evaluation. At this point, we would also like

to mention that our evaluation setup in general is

subject to limitations. As an extended pretrain-

ing approach, Arithmetic-Based Pretraining might

have a negative impact on a model’s general ap-

plicability, i.e., downstream performance in tasks

used for pretraining, e.g., translation in case of T5,

or other non-number related tasks commonly used

in model benchmarking, such as question answer-

ing, text classification, or sentiment analysis. We

only examined the impact on text generation as

part of our human evaluation and with automatic

metrics (see Appendix D). However, since (1) the

Inferable Number Prediction Task (Section 3.2) is

a variation of the widely used masked language

modeling objective (Devlin et al., 2019), and (2)

character-level tokenisation does not introduce new

embeddings into a pretrained language model, we

don’t expect a negative impact here.

Another limitation concerns the evaluation of

the Inferable Number Prediction Task on a model’s

numeracy. Since it is not reliably traceable whether

and which arithmetic operation was used by a

model to come to a specific result, we can only infer

improved capabilities for arithmetic operations by

performance improvements in the Inferable Num-

ber Prediction Task. We cannot clearly distinguish

performance improvements on specific arithmetic

operations.

9 Acknowledgements

This research work has been funded by the Ger-

man Federal Ministry of Education and Research

and the Hessian Ministry of Higher Education, Re-

search, Science and the Arts within their joint sup-

port of the National Research Center for Applied

Cybersecurity ATHENE. It also received funding

from the German Research Foundation (DFG) un-

der grant № EC 503/1-1 and GU 798/21-1.

References

Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler.
2019. Giving BERT a calculator: Finding opera-
tions and arguments with reading comprehension. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5947–

485



5952, Hong Kong, China. Association for Computa-
tional Linguistics.

Kunlong Chen, Weidi Xu, Xingyi Cheng, Zou Xi-
aochuan, Yuyu Zhang, Le Song, Taifeng Wang, Yuan
Qi, and Wei Chu. 2020a. Question directed graph
attention network for numerical reasoning over text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6759–6768, Online. Association for Computa-
tional Linguistics.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020b. Logical natural lan-
guage generation from open-domain tables. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7929–
7942, Online. Association for Computational Lin-
guistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895, Florence, Italy. Asso-
ciation for Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language

models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958, Online. Association for Computa-
tional Linguistics.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.
2021. DeCLUTR: Deep contrastive learning for un-
supervised textual representations. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 879–895, Online.
Association for Computational Linguistics.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. INFOTABS: Inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2309–2324, Online. Association
for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. arXiv preprint arXiv:1705.00652.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for BERT sentence
representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2528–2540, Online. Association for
Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

486



Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Nafise Moosavi, Andreas Rücklé, Dan Roth, and Iryna
Gurevych. 2021. Scigen: a dataset for reasoning-
aware text generation from scientific tables. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks, volume 1.

J. Neeraja, Vivek Gupta, and Vivek Srikumar. 2021.
Incorporating external knowledge to enhance tabular
reasoning. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2799–2809, Online. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. Advances in Neural Information Processing
Systems 32, pages 8024–8035.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.
2021. Mathbert: A pre-trained model for math-
ematical formula understanding. arXiv preprint
arXiv:2105.00377.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language

models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Clément Rebuffel, Marco Roberti, Laure Soulier, Geof-
frey Scoutheeten, Rossella Cancelliere, and Patrick
Gallinari. 2021. Controlling hallucinations at word
level in data-to-text generation.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Kotaro
Funakoshi, Manabu Okumura, and Hiroya Takamura.
2021. Towards table-to-text generation with numer-
ical reasoning. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1451–1465, Online. Association for
Computational Linguistics.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–656, Online. As-
sociation for Computational Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods

487



in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.
2021. CLINE: Contrastive learning with semantic
negative examples for natural language understand-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2332–2342, Online. Association for Computational
Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language
embeddings capture scales? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4889–4896, Online. Association for Computa-
tional Linguistics.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

A Hyperparameters for Experiments

Table 8 shows the hyperparameter configuration for

our experiments. In order to not train longer than

necessary, we have determined the optimal number

of epochs for each experiment by using early stop-

ping with a patience of 10. For the downstream

tasks, we have used the MoverScore (Zhao et al.,

2019) with the table-to-text generation datasets.

For DROP (Dua et al., 2019) and InfoTabs (Gupta

et al., 2020), we have used the EM score. All mod-

els were trained for the same amount of epochs.

Batch Size Epochs Learning Rate

Inferable Number Prediction Task

SciGen 8 50 3e-5

WikiBio 8 3 3e-5

InfoTabs 8 21 3e-5

DROP 8 48 3e-5

Downstream Tasks

SciGen 8 27 3e-5

WikiBio 8 9 3e-5

InfoTabs 8 14 3e-5

DROP 8 10 3e-5

Table 8: Hyperparameter Configuration.

B Inferable Number Prediction Task –

Example Input Data

For table-to-text generation, Figure 1 shows an ex-

ample of a (linearized) table from SciGen (Moosavi

et al., 2021) with its caption as C1, concatenated

to its masked description C2 using </s>. <s> and

</s> are special tokens used by BART (Lewis et al.,

2020) to represent the beginning and ending of a

sequence. In case of WikiBio (Lebret et al., 2016),

the input data is represented accordingly.

Figure 1: Illustration of a linearized table that is used

for the Inferable Number Prediction Task. <R>, <C>

and <CAP> symbolize the beginning of a new row, cell,

and the table’s caption.

For DROP (Dua et al., 2019), Figure 2 shows

an example. It consists of the paragraph C1, and a

488



question C2. The question contains a number (2)

that also occurs in the paragraph.

Figure 2: Illustration of an input sample for the Inferable

Number Prediction Task using DROP.

Figure 3 shows an example for the In-

foTabs (Gupta et al., 2020) datasets. It is basically

the same as for the table-to-text generation datasets,

but uses the hypothesis as C2.

Figure 3: Illustration of an input sample for the Inferable

Number Prediction Task using InfoTabs.

C Inferable Number Prediction Task –

Dataset Details

In this section, we want to provide more details

on the distribution of arithmetic operations across

datasets used for the Inferable Number Prediction

Task. Table 9 shows the ratio of each arithmetic

operation on the overall number of samples for each

split for the InfoTabs (Gupta et al., 2020) dataset.

OCC ORD SUM SUB MUL DIV

Train 0.24 0.35 0.05 0.16 0.15 0.05

Dev 0.15 0.34 0.07 0.18 0.20 0.06

Test 0.22 0.16 0.09 0.23 0.23 0.07

Table 9: Ratio of arithmetic operations for each split of

the InfoTabs dataset.

Table 10 shows this ratio for the DROP (Dua

et al., 2019) dataset.

OCC ORD SUM SUB MUL DIV

Train 0.41 0.32 0.4 0.07 0.13 0.03

Dev 0.42 0.31 0.05 0.05 0.14 0.03

Test 0.43 0.30 0.04 0.05 0.15 0.03

Table 10: Ratio of arithmetic operations for each split

of the DROP dataset.

Table 11 shows this ratio for the Sci-

Gen (Moosavi et al., 2021) dataset.

OCC ORD SUM SUB MUL DIV

Train 0.11 0.06 0.04 0.12 0.40 0.27

Dev 0.11 0.05 0.04 0.12 0.43 0.25

Test 0.15 0.09 0.02 0.19 0.43 0.13

Table 11: Ratio of arithmetic operations for each split

of the SciGen dataset.

Table 12 shows this ratio for the WikiBio (Lebret

et al., 2016) dataset.

OCC ORD SUM SUB MUL DIV

Train 0.25 0.38 0.03 0.10 0.20 0.03

Dev 0.25 0.38 0.03 0.10 0.19 0.04

Test 0.25 0.38 0.03 0.11 0.20 0.03

Table 12: Ratio of arithmetic operations for each split

of the SciGen dataset.

D Evaluation Using Automatic Metrics

This section presents the evaluation of our results

on table-to-text datasets using automatic metrics.

For this, we use a variety of metrics commonly

used for this task, i.e., BLEU (Papineni et al., 2002),

MoverScore (Zhao et al., 2019), BLEURT (Sellam

et al., 2020), and PARENT (Dhingra et al., 2019).

While BLEU calculates the concordance between

the predicted description and the actual target on

word-level, MoverScore and BLEURT measure the

semantic concordance between the predicted de-

scription and the target using BERT (Devlin et al.,

2019). BLEURT also takes the fluency of the pre-

dictions into account. PARENT estimates the fac-

tual correctness by comparing the predicted de-

scription to the original table and the target descrip-

tion, and especially rewards correct information

that is contained in the table but not in the target. It

has a higher correlation with human judgment. Ta-

ble 13 reports the results. We highlight statistically

significant improvements of our approach over the

respective baseline in the tables (independent two-

sample t-test, p ≤ 0.05).

489



MoverS BLEU BLEURT PARENT

SciGen

BART

Baseline

Few 52.48 4.60 -0.63 3.38

Medium 53.76 4.26 -0.69 3.72

Large 53.43 4.87 -0.70 3.68

Ours

Few 53.30 1.73 -0.76 3.81

Medium 53.40 2.71 -0.78 3.45

Large 55.00 9.30 -0.76 3.82

BART (Moosavi et al.) Large 14.00 5.04 -0.71 -

T5

Baseline

Few 52.30 2.96 -0.94 6.39

Medium 51.79 2.67 -0.95 4.08

Large 53.00 3.40 -0.70 5.18

Ours

Few 52.00 2.83 -0.98 4.32

Medium 52.00 2.51 -0.86 4.70

Large 53.40 2.96 -0.89 6.72

BART (Moosavi et el.) Large 6.00 3.38 -0.79 -

Flan-T5

Baseline

Few 53.03 2.76 -0.67 7.89

Medium 53.56 3.03 -0.68 6.14

Large 54.15 3.54 -0.65 7.94

Ours

Few 54.22 3.14 -0.65 8.54

Medium 54.76 3.25 -0.71 8.12

Large 55.12 3.34 -0.61 9.32

WikiBio

BART
Baseline 61.50 17.98 -0.64 45.18

Ours 62.78 18.54 -0.27 44.32

T5
Baseline 60.30 17.94 -0.86 43.97

Ours 60.10 20.00 -0.22 45.25

Flan-T5
Baseline 59.81 17.56 -0.78 44.67

Ours 62.51 21.11 -0.18 46.10

MBD - 41.56 - 56.16

Table 13: Evaluation of our results on table-to-text

datasets using automatic metrics. Baseline presents

the results of the BART-large and Flan-T5-base models

without Arithmetic-Based Pretraining. Ours shows the

results of these models with Arithmetic-Based Pretrain-

ing.

The results show that Arithmetic-Based Pretrain-

ing slightly improves the performance in most ex-

periments (based on PARENT and MoverScore),

and has no negative impact text generation capa-

bilities. However, as outlined in Section 5.1, none

of these metrics can really assess the correctness

of a fact that might be reasoned from the source

data (Moosavi et al., 2021; Chen et al., 2020b;

Suadaa et al., 2021). PARENT tries to address

this, which is why this metric is the most appro-

priate one. Like BLEURT, Moverscore measures

the semantic concordance between target and pre-

diction. The advantage of MoverScore is that it is

easier to interpret.

In case of SciGen, even our baseline results for

BART (Lewis et al., 2020) are better than reported

by Moosavi et al. (2021). We attribute this to dif-

ferent training hyperparameters (they did not re-

port hyperparameters). While BART (Lewis et al.,

2020) and T5 (Raffel et al., 2019) are state-of-the-

art in SciGen (Moosavi et al., 2021), MBD (Re-

buffel et al., 2021) is the state-of-the-art in Wik-

iBio (Lebret et al., 2016). It is a multi-branch de-

coder that was build to reduce the hallucination in

data-to-text tasks.

E Ablation Study – Downstream Tasks

This section shows the results of our downstream

ablation experiments. For experiments, we use the

same setup as described in Section 6, i.e., we con-

sider the large variant of BART (Lewis et al., 2020)

with its default tokenisation (DT) and masking pro-

cedure (DM) as baseline for this experiment. Addi-

tionally, we finetune the models in the downstream

task (using the hyperparameters described in Ap-

pendix A). For evaluation, we use the respective

test splits (in-domain in case of InfoTabs (Gupta

et al., 2020)). Table 14 and Table 15 show the re-

sults of our ablation experiments in downstream

tasks. We conduct the same experiments as for

the general ablation study (Section 6): DT + INP

uses the default tokenisation but our masking pro-

cedure (the Inferable Number Prediction Task, Sec-

tion 3.2), CLT + INP uses the character-level to-

kenisation for numbers (CLT), Ours combines CLT

and INP with the contrastive loss (CL), and Ours

- INP combines CLT with the contrastive loss but

uses DM instead of INP. Overall, the results reflect

the findings described in Section 6. We highlight

statistically significant improvements of our ap-

proach over the respective baseline in the tables

(independent two-sample t-test, p ≤ 0.05).

MoverScore BLEU

WikiBio

BART 61.50 17.98

DT + INP 61.74 17.31

CLT + INP 62.01 18.42

Ours 62.78 18.54

Ours - INP 62.15 18.25

SciGen

BART 53.43 4.87

DT + INP 53.76 4.65

CLT + INP 54.12 6.45

Ours 55.00 9.30

Ours - INP 54.87 7.32

Table 14: Downstream ablation study for SciGen and

WikiBio.

According to automatic metrics, the impact on

table-to-text generation is rather limited. We sus-

pect that this is partly due to their shortcomings

in assessing the correctness of information not di-

rectly included in the source data (see also Sec-

tion 5.1). DT + INP shows that pretraining using

our masking procedure slightly improves the re-

sults in both cases. Using the character-level to-

kenisation for numbers further improves the results

(CLT + INP). In case of SciGen, the comparison be-

tween Ours and Ours - INP suggests that using the

490



character-level tokenisation and contrastive learn-

ing to improve the number representation has more

impact than pretraining using INP. In case of Wik-

iBio, the differences are rather negligible (although

Ours outperforms the baseline). This might be due

to the characteristics of the dataset. As described in

Section 4.1, WikiBio rather requires copying num-

bers from input tables to output text, than inferring

context-related numbers (which is different in the

other datasets).

EM F1

DROP

BART 36.00 39.26

DT + INP 39.87 43.77

CLT + INP 42.19 46.09

Ours 45.60 49.50

Ours - INP 43.68 47.45

InfoTabs

BART 33.30 -

DT + INP 48.21 -

CLT + INP 61.56 -

Ours 67.20 -

Ours - INP 62.56 -

Table 15: Downstream ablation study for DROP and

InfoTabs

In case of DROP (Dua et al., 2019) and In-

foTabs (Gupta et al., 2020), the results are more

expressive. In both cases, we find that just us-

ing INP (DT + INP) as an extended pretraining

task already brings a significant improvement over

the baselines. This is further improved by using

character-level tokenisation for numbers (CLT +

INP) and contrastive learning (Ours). Ours - INP

shows that in both cases, INP has a significant im-

pact on performance improvements.

F Experiments using other Contrastive

Representations

Regarding the contrastive representation, we also

experiment with number representations other than

the default subword-level one in order to improve

the representation of numbers using the character-

level tokenisation, i.e., exponent-mantissa (Zhang

et al., 2020), a verbalized representation, and a com-

bination of all of them using the Inferable Number

Prediction Task. We focus on BART (Lewis et al.,

2020) (the large variant) for this experiment. We

conduct this experiment using the large split of the

SciGen dataset (Moosavi et al., 2021). Table 16

shows the results.

None of the other representations improves the

Experiment EM F1

BART (verb. repr.) 15.69 41.01

BART (exp.-mant. repr) 18.13 36.78

BART (subword-based tok.) 24.68 45.81

BART (combined) 17.92 38.43

Table 16: Comparison of results when using different

representations for incorporating the character-level to-

kenisation.

results over using the default subword-level tokeni-

sation.

G Preliminary Math Experiments

With GenBERT, Geva et al. (2020) propose to

start pretraining with math word problems in or-

der to improve the model’s number understanding

and capabilities for arithmetic operations. There-

fore, following this idea would be an obvious

step in order to improve the numeracy of gen-

eral purpose pretrained language models. Table 17

shows the results of a preliminary experiment using

GenBERT’s math word problems dataset (MWP),

BART (Lewis et al., 2020), and SciGen (Moosavi

et al., 2021) on the Inferable Number Prediction

Task. We highlight statistically significant improve-

ments of our approach over the respective base-

line in the tables (independent two-sample t-test,

p ≤ 0.05).

Experiment EM F1

Baseline 7.20 35.11

MWP-pretrained Baseline 15.19 34.18

MWP-pretrained Baseline + CLT 22.94 42.55

MWP-pretrained Baseline + CLT + CL 22.78 43.14

Ours 24.68 45.81

Table 17: Results achieved on the Inferable Number

Prediction Task with and without pretraining using math

word problems.

Baseline refers to the BART-large model. MWP-

pretrained Baseline shows the results for Baseline,

but further pretrained on MWP. MWP-pretrained

Baseline + CLT represents the results for the

MWP-pretrained Baseline, but uses the character-

level representation (CLT) for numbers instead of

BART’s default tokenisation. Accordingly, MWP-

pretrained Baseline + CLT + CL incorporates the

contrastive loss (CL) as additional training signal.

The results show that pretraining using math word

problems as a first step, in general, improves the

results for the Inferable Number Prediction Task,

but not over using Arithmetic-Based Pretraining

491



(Ours).

In case of SciGen, the Inferable Number Predic-

tion Task, only uses samples with target descrip-

tions that contain numbers that are inferable from

the input table by lookup or arithmetic operations

(see Section 4.2). Therefore, even though it is a

synthetic task, the results give insights on how ef-

fective pretraining on math word problems is for

improving a model’s numeracy.

H Examples from the Human Evaluation

Figure 4 shows two sample generations from our

approach and the BART (Lewis et al., 2020) base-

line from the SciGen (Moosavi et al., 2021) experi-

ment using the medium split. Both read fluent and

plausible.

492



Figure 4: Generation from our approach and the BART baseline from the SciGen experiment using the medium

split.

493


