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Abstract

Anaphoric reference is an aspect of language interpretation covering a variety of types of interpre-

tation beyond the simple case of identity reference to entities introduced via nominal expressions

covered by the traditional coreference task in its most recent incarnation in ONTONOTES and simi-

lar datasets. One of these cases that go beyond simple coreference is anaphoric reference to entities

that must be added to the discourse model via accommodation, and in particular split-antecedent

references to entities constructed out of multiple discourse entities, as in split-antecedent plurals

and in some cases of discourse deixis. Although this type of anaphoric reference is now annotated

in many datasets, systems interpreting such references cannot be evaluated using the Reference

coreference scorer (Pradhan et al., 2014). As part of the work towards a new scorer for anaphoric

reference able to evaluate all aspects of anaphoric interpretation in the coverage of the Universal

Anaphora initiative, we propose in this paper a solution to the technical problem of generalizing ex-

isting metrics for identity anaphora so that they can also be used to score cases of split-antecedents.

This is the first such proposal in the literature on anaphora or coreference, and has been successfully

used to score both split-antecedent plural references and discourse deixis in the recent CODI/CRAC

anaphora resolution in dialogue shared tasks.

Keywords: Coreference, Evaluation, Split-Antecedent Anaphors

1. Introduction

Anaphoric reference is the use of language expressions to refer to entities already introduced in

a discourse. The simplest case of anaphoric reference is identity reference, as in (1), where the
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anaphoric expression her is a mention of the same (discourse) entity 1 earlier introduced with

the nominal expression Mary (the antecedent),1 whereas anaphoric expression it refers to the same

discourse entity 2 first introduced with the nominal expression a new dress. Notice also that in both

cases, the discourse entity is explicitly introduced with a nominal phrase, and that the anaphoric

expressions refer to a single entity. We call this type of anaphoric reference single-antecedent

identity anaphora. In Computational Linguistics (CL) / Natural Language Processing (NLP), iden-

tity anaphora is better known as coreference (see next Section), and the task is equivalently defined

as that of clustering the sets of mentions referring to the same entity, or coreference chains.

(1) [Mary]1 bought [a new dress]2 but [it]2 didn’t fit [her]1.

The dataset that currently serves as universally accepted reference testbed for some aspects of

anaphoric interpretation including single-antecedent anaphora resolution is ONTONOTES (Pradhan

et al., 2012). The performance of models for single-antecedent anaphora resolution on ONTONOTES

has greatly improved in recent years (Wiseman et al., 2016; Clark and Manning, 2016; Lee et al.,

2017, 2018; Kantor and Globerson, 2019; Joshi et al., 2020). As a consequence, the attention of

the community has started to turn to cases of anaphora not annotated or not thoroughly covered

in ONTONOTES. Examples of this trend include, for instance, research on the cases of anaphora

whose interpretation requires some form of commonsense knowledge tested by benchmarks for the

Winograd Schema Challenge (Rahman and Ng, 2012; Liu et al., 2017; Sakaguchi et al., 2020), or

on pronominal anaphors that cannot be resolved purely using gender, for which benchmarks such

as GAP have been developed (Webster et al., 2018). In addition, more research has been carried out

on aspects of anaphoric interpretation that go beyond identity anaphora but are covered by a great

many existing datasets, such as ANCORA for Catalan and Spanish (Recasens and Martı́, 2010), AR-

RAU (Poesio et al., 2018; Uryupina et al., 2020) and GUM for English (Zeldes, 2017), or the Prague

Dependency Treebank for Czech (Nedoluzhko, 2013).2 These aspects include, e.g., bridging refer-

ence (Clark, 1975; Hou et al., 2018; Hou, 2020; Yu and Poesio, 2020), discourse deixis (Webber,

1991; Marasović et al., 2017; Kolhatkar et al., 2018) and, finally, split-antecedent anaphoric ref-

erence, the type of anaphoric interpretation on which we are focusing in this paper. The best known

example of split-antecedent are cases of plural anaphoric references such as pronoun They in (2)

(Eschenbach et al., 1989; Kamp and Reyle, 1993), a plural anaphoric reference to a set composed

of two or more discourse entities (John and Mary) introduced by separate noun phrases.

(2) [John]1 met [Mary]2. [He]1 greeted [her]2. [They]1,2 went to the movies.

Split-antecedent plural references are found in all corpora and in all languages, so that more and

more annotation schemes cover them, including ANCORA (Recasens and Martı́, 2010), ARRAU

(Poesio et al., 2018; Uryupina et al., 2020), FRIENDS (Zhou and Choi, 2018), GUM (Zeldes, 2017),

Phrase Detectives (Poesio et al., 2019), the Prague Dependency Treebank (Nedoluzhko, 2013),

1. The term ‘antecedent’ is often used to refer to a nominal expression–one of the nominal expressions referring to

the same discourse entity as the anaphoric expression (Lyons, 1977; Kamp and Reyle, 1993). In this paper we will

however follow the less widely adopted use of Cornish (Cornish, 2006) and use the term to refer to the discourse

entity itself. This is in part because the more traditional use of antecedent suggests that anaphora is a relation

between linguistic expressions, instead of between linguistic expressions and a discourse model. In part because the

antecedents of the anaphoric expressions studied here–split antecedent plurals and split-antecedent discourse deixis–

are not antecedents in this sense.

2. See (Poesio et al., 2016a) for a more detailed survey and (Nedoluzhko et al., 2021) for a more recent, extensive

update.
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and the recently created CODI/CRAC 2021 Shared Task corpus of anaphora resolution in dialogue

(Khosla et al., 2021; Yu et al., 2022a).3 Split-antecedent plural references are not always common

but e.g., in the FRIENDS corpus 9% of the mentions have more than one antecedent (Zhou and Choi,

2018). A number of computational models for the interpretation of split-antecedent plural anaphoric

references have been proposed, but so far, every model has been tested using different evaluation

scores (Vala et al., 2016; Zhou and Choi, 2018; Yu et al., 2020a, 2021).

But other types of anaphoric reference besides plural references can have multiple antecedents

introduced (‘evoked’) by separate text segments in exactly the same way. This can happen, for in-

stance, with discourse deixis, illustrated in (3), where the antecedent for discourse-deictic demon-

strative that in 4.2 is the plan formed by the actions in 1.5/1.6 and 3.1, evoked by utterances from

speaker M separated by utterances from speaker S.4

(3)

1.1 M all right system

1.2 we’ve got a more complicated problem

1.3 uh

1.4 first thing I’d like you to do

1.5 is [send engine E2 off with a boxcar to Corning to pick up oranges]1
1.6 uh [as soon as possible]1
2.1 S okay

3.1 M and [while it’s there it should pick up the tanker]2
4.1 S okay

4.2 and [that]1,2 can get

4.3 we can get that done by three

Split-antecedent plural references and discourse deictic references are important from the point of

view of our understanding of anaphora because they illustrate the fact that reference possibilities in

discourse models are not limited to entities introduced in the discourse model via nominals–indeed,

such cases were one of the reasons for, e.g., Webber’s development of the idea of discourse model

(Webber, 1979). Unlike simple cases of identity coreference, such cases of anaphora refer to entities

that need to be added to the discourse model at the point in which the anaphoric reference

is encountered via some form of inference. This operation on the discourse model is generally

called accommodation (Lewis, 1979; Beaver and Zeevat, 2007). Assigning an antecedent to split-

antecedent anaphors requires a particularly simple form of inference–creating a new plural object

out of two atomic objects–but more complex cases are known requiring additional inferences (as in,

e.g., context change accommodation (Webber and Baldwin, 1992; Fang et al., 2022)). These types

of anaphoric reference thus test the ability of an anaphora resolution system to create antecedents ex

novo instead of choosing them from the already introduced mentions, which is what differentiates

proper discourse models from simple history lists of referents.

Assessing this ability, however, requires a scorer that can evaluate the interpretation produced by

a system in cases that require accommodation. But even though split-antecedent plurals are cases of

identity anaphora, they are not covered by the Reference Coreference Scorer (Pradhan et al., 2014).

Simplified forms of evaluation for this type of references have been developed for discourse deixis

and used, e.g., in the 2018 CRAC Shared Task (Poesio et al., 2018), but have not become part of

3. See the COREFUD report prepared for the Universal Anaphora initiative for an extensive discussion of the coverage

of split-antecedent and other anaphors in the Universal Anaphora corpora (Nedoluzhko et al., 2021).

4. This example is from the TRAINS subset of the ARRAU corpus (Uryupina et al., 2020).
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a standardized scorer for anaphora, and the existing metrics for discourse deixis do not work for

split-antecedent discourse deixis cases such as (3). The previously proposed methods for scoring

split-antecedent plural anaphors (Vala et al., 2016; Zhou and Choi, 2018; Yu et al., 2021), either

work only for split-antecedent plurals in isolation, or require a substantial redefinition of the notion

of coreference chain, or only generalize one of the existing metrics for coreference, as discussed in

detail in Section 6.

The objective of this paper is to fill this gap in the literature, as part of the effort to develop

the new Universal Anaphora scorer (Yu et al., 2022b),5 an extension of the Reference Coreference

scorer (Pradhan et al., 2014; Moosavi and Strube, 2016; Poesio et al., 2018) that can evaluate all

aspects of anaphoric interpretation currently covered by the Universal Anaphora (UA) initiative,6

including bridging reference, discourse deixis, and some cases of accommodation, and was used as

the official scorer for the 2021 and 2022 CODI/CRAC Shared Tasks on Anaphoric Interpretation in

Dialogue (Khosla et al., 2021; Yu et al., 2022a).7 We start in Section 2 with a summary of the types

of anaphoric interpretation the new scorer is meant to cover and a more detailed discussion of ac-

commodation and split-antecedent plural reference. In Section 3 we review the current situation of

evaluation for coreference and provide a brief description of the metrics we set to extend. Crucially,

these include all the most widely used metrics for coreference evaluation (Luo and Pradhan, 2016):

mention and entity-based metrics such as B
3 (Bagga and Baldwin, 1998) and CEAF (Luo, 2005) re-

spectively, as well as link-based metrics such as MUC (Vilain et al., 1995), LEA (Moosavi and Strube,

2016), and BLANC (Luo et al., 2014; Recasens and Hovy, 2011). Our key contribution in this paper

is a method for scoring references to accommodated objects created out of antecedents separately

introduced that generalizes all existing metrics and thus can be used to score both single and split

antecedent anaphoric reference in exactly the same way. Our proposed extensions of these metrics

that can score both single and split-antecedent references are presented in Section 5 and illustrated

in detail with an example in Section 4.4. Our solution is compared with all alternative proposals

regarding the scoring of split antecedent anaphors in Section 6. For a more thorough demonstration

of how the metrics can be used, we use the new UA scorer incorporating these extended metrics to

score both split antecedent plural reference and discourse deixis with multiple antecedents. In this

paper, we use this scorer to show how the proposed generalization, unlike the proposal by Zhou

and Choi (2018) and our own proposal in (Yu et al., 2021), can be used to score both single and

split antecedent anaphora in exactly the same way, as well as to further illustrate and analyze the

behavior of our generalized metrics on the data used in previous work on split-antecedent plurals

(Section 7). Finally, in Section 8 we discuss how the approach proposed here could be extended to

cover other types of anaphoric interpretation requiring accommodation.

2. Anaphoric Phenomena Currently In the Scope of the Universal Anaphora

Initiative

The ultimate objective of the Universal Anaphora initiative is to develop guidelines for annotating

a broad range of anaphoric phenomena–not just identity anaphora–and evaluation methods to score

systems carrying out the interpretation of all these types of reference. We briefly summarize here the

5. https://github.com/juntaoy/universal-anaphora-scorer

6. http://www.universalanaphora.org

7. https://competitions.codalab.org/competitions/30312. https://codalab.lisn.

upsaclay.fr/competitions/614
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types of anaphoric reference covered by the current version of the Universal Anaphora scorer (Yu

et al., 2022b), and discuss in more detail the type of reference that is the focus of the present paper

because of the lack of widely accepted evaluation methods: reference to accommodated entities, as

exemplified by split-antecedent anaphora.

2.1 (Identity) Anaphora and Coreference

In much CL / NLP literature following the first Message Understanding Conference (MUC) shared

tasks (Chinchor and Sundheim, 1995) a distinction is made between anaphora resolution and coref-

erence resolution, and the term ‘anaphora’ is used to indicate pronominal anaphora only, whereas

the term coreference is supposed to cover anaphoric reference with all types of nominals as well as,

originally at least, predication. In this article, however, the terms ‘anaphora’ and ‘anaphoric refer-

ence’ is used in the more general sense of reference to entities in the discourse model adopted in

linguistics (see, e.g., Lyons (1977); Kamp and Reyle (1993)) psycholinguistics (see, e.g., Garnham

(2001)) and the pre-MUC computational work such as, e.g., Webber (1979); Carter (1987); Luperfoy

(1991) (see (Mitkov, 2002; Poesio et al., 2016b; Gundel and Abbott, 2019; Poesio et al., 2023) for

discussion). According to these theories of anaphoric reference, language is interpreted with respect

to a discourse model (or mental model) which, in its simplest form, consists of discourse entities

and their properties. Interpreting language involves, among other things, updating the discourse

model with new entities as they are mentioned, or referring back anaphorically to the entities al-

ready introduced in the discourse model. For instance, in possibly the most widely known linguistic

theory of interpretation in discourse, Discourse Representation Theory (DRT) (Kamp and Reyle,

1993), the first mention of Mary in example (1), proper name Mary, introduces a new discourse

entity 1 in the discourse model, and all subsequent mentions of Mary, whether using pronouns or

proper names, are considered (identity) anaphoric references to that entity 1.

The term coreference resolution was introduced for the Message Understanding Conference

(Chinchor and Sundheim, 1995) to specify a rather different task covering several interrelated as-

pects of language interpretation of interest for information extraction including not only identity

anaphora resolution as in the example above but also, e.g., the association of properties with enti-

ties in cases such as (4), where the NP an NLP researcher, normally considered predicative from a

linguistic perspective, would be considered ‘co-referent’ with Mary:

(4) [Mary]1 is [an NLP researcher]1.

This term ‘coreference’ was maintained in NLP even when criticism of the original definition of

the coreference task (see, e.g., van Deemter and Kibble (2000)) led the field to adopt a revised

definition focusing exclusively on (a subset of) identity anaphora in the (psycho-) linguistic sense

(Passonneau, 1997; Poesio et al., 1999) adopted most notably in ONTONOTES (Pradhan et al., 2012).

We will use here ‘anaphora’ in the traditional sense from (psycho-)linguistics, but we will adopt the

characterization of identity anaphora interpretation and notation that have become standard in the

computational literature, in particular in the literature defining metrics for the evaluation of this task.

Most modern anaphoric annotation projects cover the basic case of identity anaphoric reference

to entities introduced via nominals in (1), although substantial differences exist regarding which

types of identity anaphora are covered. Equally, the several proposed metrics for evaluating ‘coref-

erence’ (reviewed in Section 3), and the Reference Coreference Scorer developed for the CONLL

shared task and incorporating many of these metrics (Pradhan et al., 2014) all focus exclusively on

5
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evaluating identity reference / identity anaphora in this sense. These metrics are defined by refer-

ence to mentions– the nominal phrases referring to a discourse entity–and a discourse entity i is

identified with the set (cluster) Ki of mentions referring to that entity: the coreference chain. 8

2.2 Beyond Identity Anaphora: The Universal Anaphora /CorefUD Specification of

Anaphoric Phenomena

As already mentioned, many other types of anaphoric reference exist beyond basic identity anaphora,

including, e.g., bridging references or associative anaphora (Clark, 1975; Hou et al., 2018; Hou,

2020; Yu and Poesio, 2020), and cases of anaphoric reference to entities not introduced using nom-

inals, such as the cases of split-antecedent anaphoric reference to accommodated entities which are

the focus of this paper. These other types of anaphoric reference are not covered, or are covered only

partially, in ONTONOTES because of complexity and cost reasons (see (Pradhan et al., 2012) as well

as the discussion in (Zeldes, 2022)), but as discussed above, they are annotated in the majority of the

most recent anaphoric corpora, including ANCORA (Recasens and Martı́, 2010), ARRAU (Poesio and

Artstein, 2008; Poesio et al., 2018; Uryupina et al., 2020), GUM (Zeldes, 2017), Phrase Detectives

(Poesio et al., 2019), the Prague Dependency Treebank (Nedoluzhko, 2013), the TÜBA-DZ corpus

(Versley, 2008) the recently created CODI/CRAC corpus of anaphoric reference in dialogue (Khosla

et al., 2021; Yu et al., 2022a), and many others (for a more complete list, see (Poesio et al., 2016a,

2023)). The objectives of the Universal Anaphora initiative include, first of all, identifying the

types of anaphoric reference most frequently annotated in current corpora; second, to define shared

guidelines for the annotation of these aspects of anaphoric reference; and third, to develop meth-

ods that can be used to evaluate anaphoric resolvers carrying out these types of interpretation. The

list of phenomena currently considered includes the distinction between referring and non-referring

expressions; identity anaphora also via zeros and split antecedent plurals; bridging reference; and

discourse deixis. (Details can be found in the draft proposal on the Universal Anaphora website,9

as well as in the CorefUD report (Nedoluzhko et al., 2021).) The Universal Anaphora scorer (Yu

et al., 2022b) can evaluate the interpretation of all of the types of anaphoric reference covered by

the current proposal.

2.3 Anaphoric References Requiring Accommodation

One of the types of anaphoric reference covered by the current Universal Anaphora proposal is

split-antecedent anaphora: anaphoric reference to a set of entities previously mentioned separately

from each other. In fact, split-antecedent anaphora is only one example of a more general class

of anaphoric references that require so-called accommodation of a new antecedent (Lewis, 1979;

van der Sandt, 1992; Beaver and Zeevat, 2007).10 In this paper we propose a general method for

scoring split-antecedent anaphora resolution that can be used both for split-antecedent plurals and

for split-antecedent discourse deixis. In this Section we briefly discuss accommodation in general

and the types of split-antecedent anaphoric references covered by the current proposal.

8. One of our reviewers pointed out that this use of sets of mentions as the ’referent’ of anaphoric expressions is only

really appropriate for anaphoric reference–a proper notion of entity is required for other types of reference, e.g., to

objects in the scene in situated dialogue.

9. https://github.com/UniversalAnaphora/UniversalAnaphora/blob/main/Universal_

Anaphora_1_0___Proposal_for_Discussion.pdf

10. Note that in fact bridging references discussed earlier require a form of accommodation as well: the entity related to

the entity already introduced has to be added to the discourse model.
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Accommodation One of the most powerful arguments for the discourse model view of anaphora,

as opposed to older history-list approaches11 is the fact that many cases of anaphoric reference

cannot be interpreted with respect to the entities already introduced in the discourse model with a

nominal, but require new entities to be added to the discourse model, or accommodated (Webber,

1979; Kamp and Reyle, 1993; Garnham, 2001). Accommodation as conceived by Lewis (1979) is

a general operation on the discourse model which involves adding new content that is required to

process a statement (Beaver and Zeevat, 2007). For instance, (5) presupposes that it was raining;

when processing the statement, that fact has to be added to the discourse model.

(5) Mary realized it was raining.

Webber (1979); Kamp and Reyle (1993) and Garnham (2001) discuss a number of cases of anaphoric

interpretation requiring new entities to be added to the discourse model to interpret anaphoric refer-

ence. We focus on the following two types of split-antecedent reference.

Split-antecedent plural reference In ONTONOTES, plural reference is only marked when the

antecedent is mentioned by a single noun phrase. However, split-antecedent plural reference is

also possible (Eschenbach et al., 1989; Kamp and Reyle, 1993), as in example (2). These are cases

of plural identity reference, but where the antecedents are sets whose elements are two or more

entities introduced by separate noun phrases, which have to be accommodated in (i.e., added to) the

discourse model (Kamp and Reyle, 1993; Beaver and Zeevat, 2007). Such references are annotated

in many modern datasets, including, e.g., ARRAU (Uryupina et al., 2020), GUM (Zeldes, 2017) and

Phrase Detectives (Poesio et al., 2019; Yu et al., 2023b).

The complexities involved in evaluating systems interpreting split-antecedent plural references

are illustrated in our reference (artificial) example (6). In this and other examples in the paper,

mentions are delimited by square brackets; the discourse entity realized by a mention is indicated

using a subscript; and the mention ID is indicated with a superscript. So, for instance, [him5]1 is

a mention via noun phrase him; it is the 5th mention in the text; and realizes discourse entity 1.

Split-antecedent references are indicated by listing all discourse entities that are part of the set, as

in [their6]1,2. Example (6) was designed to illustrate in a concise way some of the key properties

that a scorer for split-antecedent must have. First of all, that it would not be correct to interpret a

split-antecedent plural such as [their6]1,2 in the third sentence in terms of links between mentions

–say, stipulate that this plural pronoun should be interpreted by every system in terms of links

between this mention and mentions [She4]2 and [him5]1. Clearly, a scorer must be able to interpret

such a reference in terms of the constituent entities 1 and 2, so as to consider as equally correct

system interpretations of the pronoun linking it to any of the mentions of these entities. Second,

the example shows that plurals in a text may refer to sets of more than two entities. Third, different

split antecedent plurals may refer to different sets. We use example (6) in later sections to provide a

detailed illustration of how the extended metrics work.

(6) [John1]1 met [Mary2]2 after work and proposed to [her3]2 to go see a play.

[She4]2 liked the idea but suggested to [him5]1 to have dinner first.

On [their6]1,2 way to the restaurant, [they7]1,2 met [Bill8]3 and [Jane9]4 .

[The two10]1,2 were very happy to see [Bill11]3, as [they12]1,2,3 go way back.

[He13]3 introduced [Jane14]4 and [all four15]1,2,3,4 agreed to have dinner together to catch

up.

11. See e.g., Poesio et al. (2016b) for a review of early approaches to anaphoric interpretation.
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Our readers might wonder whether references such as [their6]1,2 should be treated as bridging

references–specifically, element-inverse associative references (Uryupina et al., 2020) to the enti-

ties referred to by the mentions [She4]2 and [him5]1 . This interpretation is not inaccurate,12 but it

is incomplete, as it fails to capture the fact that John and Mary are the entire set of entities referred

to by the plural pronoun [their6]1,2 .

Split-antecedent plural references are not evaluated either by the standard Reference Corefer-

ence Scorer (Pradhan et al., 2014) or by our own CODI/CRAC 2018 scorer (Poesio et al., 2018), and

therefore are not generally attempted by anaphoric resolvers. A few dedicated evaluation methods

concerned with evaluating this type of reference were however proposed, as discussed in Section 6;

but these proposals either work only for split-antecedent plurals in isolation, or require a substantial

redefinition of the notion of coreference chain, or only generalize one of the existing metrics. As

mentioned earlier, the key contribution of this paper is a method for scoring references to ac-

commodated objects created out of antecedents separately introduced that generalizes all existing

metrics and thus can be used to score both single and split antecedent plural anaphoric reference

in exactly the same way. This extension also applies to the (much more frequent) phenomenon of

split-antecedent discourse deixis, as discussed next.

Split-Antecedent Discourse deixis A second case of anaphoric reference that often also involves

split antecedents, but that has been the focus of more NLP research than split-antecedent plural ref-

erence is discourse deixis, or anaphora with non-nominal antecedents (Webber, 1991; Byron, 2002;

Gundel et al., 2003; Artstein and Poesio, 2006; Kolhatkar et al., 2018). Discourse deixis, exempli-

fied by this issue in (7), which refers to an abstract object (Asher, 1993) whose type would not be

easy to specify, is a type of abstract anaphora in which the antecedent is some type of abstract entity

‘evoked’ by the propositional content of a previous sentence. The evidence on discourse deixis in-

terpretation suggests that these antecedents are not introduced in the discourse model immediately,

but are accommodated upon encountering the anaphoric reference (Kolhatkar et al., 2018).

(7) The municipal council had to decide [whether to balance the budget by raising revenue or

cutting spending]i. The council had to come to a resolution by the end of the month. [This

issue]i was dividing communities across the country. (Kolhatkar et al., 2018)

Discourse deixis was not annotated in many early coreference corpora (Artstein and Poesio, 2006;

Kolhatkar et al., 2018), and when it was, the problem was simplified in a number of ways. In

ONTONOTES, for instance, only event anaphora, a subtype of discourse deixis, is marked, as ex-

emplified by that in (8), which refers to the event of a white rabbit with pink ears running past

Alice.13

(8) ... when suddenly a White Rabbit with pink eyes ran close by her. There was nothing so

VERY remarkable in [that]; nor did Alice think it so VERY much out of the way to hear the

Rabbit say to itself, ’Oh dear! Oh dear! I shall be late!’ ....

However, many of the more recent corpora–such as, e.g., ANCORA, GUM, ARRAU, and the CODI/CRAC

corpus–do annotate the whole range of discourse deixis, covering, in addition to event anaphora, ref-

12. At least according to the annotation scheme for bridging references in the ARRAU corpus; [their6]1,2 would not be

considered a bridging reference according to other annotation schemes such as, e.g., that for the ISNOTES corpus

(Markert et al., 2012).

13. This example is from the annotated version of Alice in Wonderland in the Phrase Detectives corpus (Poesio et al.,

2019; Yu et al., 2023b).
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erences such as this issue in (7). But even in these corpora the task of annotating discourse deixis

is simplified in a number of ways. One such simplification is that the annotators are not asked to

mark as antecedent the accommodated abstract entity, but the list of sentences or clausal units that

evoke the antecedent (e.g., the clause [whether to balance the budget by raising revenue or cutting

spending] in (7)). The result of this simplification is that many if not most discourse deictic refer-

ences annotated in such corpora are in fact cases of split antecedent discourse deictic reference, like

the example in (3). (In fact, whereas split antecedent plurals are relatively rare–see Section 7–split

antecedent discourse deictic references are very common in, e.g., ARRAU, from which example (3)

was taken, and in the CODI/CRAC corpus.)

No standard metric for scoring discourse deixis resolution exists, but typically systems are

scored by their ability to identify the sentence evoking the antecedent. The success @ N met-

ric, introduced by Kolhatkar et al. (2013), considers a response as correct if the key sentence is

among the top N candidate response sentences identified as ‘antecedent’ by the system. This met-

ric was used by Marasović et al. (2017) and in the CRAC 2018 shared task (Poesio et al., 2018).

The problem with this metric is that only one gold sentence per discourse deictic reference can be

specified, meaning that this metric cannot be used to evaluate discourse deictic references with split

antecedents, such as the example in (3).

In Universal Anaphora, discourse deixis is treated following the approach that has become stan-

dard for event anaphora (Lu and Ng, 2018). Discourse deictic references are marked in a separate

discourse deixis layer, and differs from identity reference only in that the antecedents of discourse

deixis are utterances rather than nominal phrases (Yu et al., 2023b). The interpretation of discourse

deictic references can then be scored using the same metrics developed for the interpretation of

identity reference (Yu et al., 2022b). Hence, the proposal in this paper for scoring split antecedent

plural references can also be used without any change to handle split antecedent cases of discourse

deixis such as the one in (3). (And was in fact used to score such cases in both editions of the

CODI/CRAC shared task on anaphora resolution in dialogue.)

Context Change Accommodation As a final example of split antecedent anaphoric reference

requiring accommodation we will mention the cases of context change accommodation discussed

by Webber and Baldwin (1992) such as (9), where a new entity, the dough, is obtained by mixing

together flour and water.

(9) Add [the water]i to [the flour]j little by little.

Then work [the dough]i,j .

Context-change accommodation has recently become again the object of interest in the community

and has been annotated in corpora including CHEMU-REF (Fang et al., 2021) and RECIPEREF

(Fang et al., 2022). Although the type of accommodation required by this type of reference is not

the focus of this paper as it involves more than combining separate entities in the discourse model

in sets, we will argue in Section 8 that a version of the proposal in this paper could be used to score

this type of anaphoric reference, as well, and could be argued to be more suited than the metrics

used e.g., in (Fang et al., 2021, 2022).

3. Metrics for Scoring Identity Anaphora (Coreference)

One of the fundamental issues with anaphora resolution / coreference, and a reason of great dis-

satisfaction among many practitioners, in the fact that although the field has at various time points

9
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converged on an ‘official’ metric developed for particular shared tasks, and one such metric–the

CONLL score (Denis and Baldridge, 2007; Pradhan et al., 2014)–has become dominant in the last

ten years (see below), it is far from clear that this metric captures our intuitions about how anaphoric

interpretation should be evaluated–or indeed, what these intuitions are. This is not to say that the

field is completely divided. For instance, it is universally accepted that coreference evaluation

should be entity-based, in the sense that a system’s interpretation of, e.g., (10) should be evaluated

on the extent that system recognizes that 1, 2 and 3 are all mentions of the same entity (alternatively,

elements of the same coreference chains), as opposed to merely its ability to identify, say, mention

1 as the previous mention of entity i that is mentioned by mention 2 (‘link 2 to 1’) or mention 3 as

the previous mention for mention 2 (‘link 3 to 2’).

(10) [Mary1]i woke up late that morning, so [she2]i rushed out of bed– [she3]i had an important

meeting.

However, agreement that evaluation should be entity-centered still leaves many degrees of freedom,

with the result that different ways have been proposed of computing precision, recall and F1 by

comparing the entities (i.e., the coreference chains) in the gold annotation–in anaphora resolution

these gold coreference chains are generally known as the keys–with those produced by a system, or

responses (Vilain et al., 1995; Bagga and Baldwin, 1998; Luo, 2005) and no consensus has been

reached on which metric is most appropriate. This impasse was broken by Denis and Baldridge

(2007), who introduced a measure which was adopted in the CONLL 2011 and 2012 Shared Tasks

and has since become known as the CONLL score and adopted as semi-standard (Pradhan et al.,

2012, 2014), but this hasn’t stopped the development of new metrics (Recasens and Hovy, 2011;

Moosavi and Strube, 2016). Before introducing the proposed extensions to additionally evaluate

split-antecedent references, we briefly discuss in this Section the metrics standardly used to evaluate

single antecedent reference and their existing definitions. Please consult, e.g., (Luo and Pradhan,

2016) for more in-depth discussion.

3.1 Notation

The standard coreference evaluation metrics are based on the simplification discussed in Section 2.1

that discourse entities can be identified with coreference chains of mentions introduced in a text, and

the assumption that each mention refers to a single entity. We use the following notation to indicate

that an entity Ki is identified with a coreference chain of Mi mentions mi,j :

Ki = {mi,1,mi,2, ...,mi,Mi}

(As we will see in Section 5, one of the key proposals in this paper is a more complex representation

of entities for entities not introduced via mentions.) Following standard convention, we use K

and R to refer to entities from the key and from the response sets, respectively. The key entities

represent the gold standard, whereas the response entities are the entities proposed by a system to

be evaluated. The metrics to be described below adopt different approaches to comparing key and

response entities.

10
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3.2 The Standard Metrics for Anaphora / Coreference Resolution Evaluation

3.2.1 STANDARD MUC

MUC (Vilain et al., 1995) is a link-based metric that evaluates response entities on the basis of the

number of links they have in common with the entities in the key. It is standard practice to compute

this information indirectly, by counting the number of missing links, and discarding them from the

maximum number of possible links, as we are about to see.14 For the case of recall, this amounts

to:

RecallMUC =

∑

i |Ki| − |P(Ki;R)|
∑

i |Ki| − 1

In the equation above P(Ki;R) is a function called the partition function, that returns all the

partitions of key entity Ki with respect to the response R of a system:

P(Ki;R) =
{

Ki ∩Rj | 1 ≤ j ≤ |R|
}

⋃

ki,u∈Ki\R

{

{ki,u}
}

Notice how the number of partitions indicates the number of links found in the key entities but not

in the response entities. To compute precision, we simply swap the key and response sets:

PrecisionMUC =

∑

i |Ri| − |P(Ri;K)|
∑

i |Ri| − 1

The MUC metric reports as a final value an F1-measure, which is the harmonic mean between

the precision and recall presented above:

F =
2× Precision × Recall

Precision + Recall

3.2.2 STANDARD B
3

One problem with the MUC metric is that, by definition, it only scores a system’s ability to identify

links between mentions; its ability to recognize that a mention does not belong to any coreference

chain–i.e., its ability to classify a mention as a singleton–does not get any reward (Bagga and Bald-

win, 1998; Luo and Pradhan, 2016). The B
3 metric (Bagga and Baldwin, 1998) was proposed to

correct this problem.

B
3 is a mention-based metric: the evaluation measures the number of mentions common be-

tween the entities in the key and in the response. Recall is computed by calculating recall for every

mention, which is:

r(m) =
|Ki ∩Rj |

|Ki|

And then summing all these mention recalls up. This can be done by finding all |Ki ∩Rj | mentions

in the intersection of key entity Ki and response entity Rj , summing up recall for these:

r(i, j) =
∑

m∈Ki∩Rj

r(m) = |Ki ∩Rj | ∗
|Ki ∩Rj |

|Ki|
=

|Ki ∩Rj |
2

|Ki|

14. In MUC the maximum number of links in an entity is the minimum number of links needed to connect its mentions.
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and then summing up across all i, j pairs and averaging by the total number of mentions. The result

is:

RecallB3 =

∑

i,j

(

|Ki∩Rj |
)2

|Ki|
∑

i |Ki|

Precision is computed in a similar way, again by swapping the key entities and the response entities.

An F1 measure can then be computed from precision and recall in the usual way.

3.2.3 STANDARD CEAF

B
3 also suffers from a problem–namely, that a single chain in the key or response can be credited

several times. This leads to anomalies–e.g., if all coreference chains in the key are merged into

one in the response, B
3 recall is one (Luo, 2005; Luo and Pradhan, 2016). The solution proposed

by Luo (2005), CEAF, is an entity-level metric: it aligns one to one the entities in the key with

those in the response, and then it computes their similarity following the same function used for the

alignment step. The metric comes in two flavors, depending on the similarity function used to align

and compare the entities. Given a key entity Ki and a response entity Rj , mention-based CEAF is

calculated using a similarity function measuring their mention overlap:

φM (Ki, Rj) = |Ki ∩Rj |

Whereas in entity-based CEAF, the similarity between the two entities, is computed using the DICE

coefficient:

φE(Ki, Rj) =
2
(

|Ki ∩Rj |
)

|Ki|+ |Rj |

At the alignment step, the Kuhn-Munkres algorithm (Kuhn, 1955; Munkres, 1957) is used to

find the optimal one-to-one mapping between the entities in the key and the response such that

their cumulative similarity is maximal. Let K∗ ⊂ K and R∗ ⊂ R be the key and the response

entities for which an alignment was established, respectively, and let g : K∗ → R∗ be an alignment

function storing the one-to-one mappings. Then recall is defined as the sum of the similarities over

the maximal possible similarity:

RecallCEAF =

∑

i φ(K
∗
i , g(K

∗
i ))

∑

i φ(Ki,Ki)

And again, precision is computed by swapping the entities from the key with those from the response

set, and F1CEAF is computed from RecallCEAF and PrecisionCEAF as usual.

3.2.4 STANDARD LEA

LEA (Moosavi and Strube, 2016) is a link-based, but entity-aware metric which measures the res-

olution score of entities while taking into consideration their importance. So for instance for recall

we have:

RecallLEA =

∑

i importance(Ki)× resolution-score(Ki)
∑

i importance(Ki)

The importance of an entity could be defined in a different ways depending on the task, but for

instance, it could be defined as being proportional to the entity’s size so that more weight is given

12
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to more frequently mentioned entities:

importance(Ki) = |Ki|

The resolution score, for recall, measures the proportion of links in the key that are recovered in the

response:

resolution-score(Ki) =
∑

j

links(Ki ∩Rj)

links(Ki)

In LEA the number of links in an entity is counted as the total number of links that can be formed

between their mentions. For example, for an entity Ki, we have:

links(Ki) =

(

|Ki|

2

)

As with the other metrics seen so far, Precision is evaluated by swapping the key with the response

entities, and F1 is computed as usual.

3.2.5 STANDARD BLANC

Finally, BLANC (Recasens and Hovy, 2011; Luo et al., 2014) is an adaptation for coreference reso-

lution of the Rand Index used in clustering (Rand, 1971). The key feature of the Rand Index is that

it is computed assessing not only a clustering algorithm’s decisions to put two entities in the same

cluster, but also its decisions to put them in different clusters. BLANC adapts this approach to the

case of coreference also taking into account the imbalance between the number of coreference (same

cluster, aka coreference chain) vs. non-coreference (different cluster / coreference chain) links. To

compute BLANC we need to determine the number of common coreference and non-coreference

links found in the key and in the response entities. For a key Ki the coreference links are computed

as follows:

CK(i) = {(mi,u,mi,v) | mi,u ∈ Ki,mi,v ∈ Ki,mi,u ̸= mi,v}

Whereas the non-coreference links between two key entities Ki and Kj are computed as follows:

NK(i, j) = {(mi,u,mj,v) | mi,u ∈ Ki,mj,v ∈ Kj}

It follows that the set of all coreference and non-coreference links from the keys are:

CK = ∪iCK(i), NK = ∪i ̸=jNK(i, j)

The coreference links CR and the non-coreference links NR for the response entities are computed

in a similar way. Precision and recall values are then computed for both coreference and non-

coreference links. For example, for recall, we have:

RecallC =
|CK ∩ CR|

|CK |
, RecallN =

|NK ∩NR|

|NK |
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3.3 The Case for Diversity in Anaphora / Coreference Resolution Evaluation

Some subfields of NLP appear to have standardized on a single evaluation metric. The stereotypical

example of this situation is perhaps Machine Translation, where the BLEU metric (Papineni et al.,

2002) would appear to have been accepted as the de facto standard for measuring progress in the

field. Another example is Summarization, where ROUGE (Lin, 2004) and its variants are equally

dominant. The situation for coreference evaluation is apparently very different, and one might ask

whether this should be a worry– shouldn’t we just choose one of these metrics and generalize that?

We are not going to argue for choosing a particular metric in this paper. First of all, that would

require providing experimental evidence that one metric is ‘best’ in some sense, which would be

well beyond the scope of this paper. But we should also keep in mind, secondly, that the existence

of multiple evaluation metrics in an NLP subfield is not unusual, and not necessarily problematic;

other areas of NLP are also characterized by the existence of multiple metrics. The situation of

coreference is very similar to the situation of parsing (Kakkonen, 2007), where in addition to the

widely used PARSEVAL metric, developed in connection with a shared task (Black et al., 1991), a

great number of other metrics exist, including, e.g., leaf-evaluation, cross-bracketing, minimum tree

edit distance, and their variants. In fact, we would argue that the field has converged on a single

metrics only for tasks which involve assigning a single label to a linguistic expression (e.g., part

of speech tagging, named entity recognition), or for sub-fields in which the progress is driven by

shared tasks organized by governments or industry, such as machine translation. Multiple metrics

are the norm for tasks where the ‘labels’ to be compared are more complex, and it’s far from obvious

how these metrics should be compared. And even in fields which have converged on a single metric,

such as machine translation, the debate is still raging–other metrics exist, and are often argued to be

superior (see, e.g., the case of METEOR for MT (Banerjee and Lavie, 2005)).

Thirdly, we should point out that a de facto convergence has been reached in anaphora / coref-

erence, on the CONLL metric proposed by Denis and Baldridge (2007) as the average among the

F1 values obtained using MUC, B
3 and CEAF. This score was used in the CONLL Shared Tasks in

2011 and 2012 (Pradhan et al., 2012) and since then has become the standard for the field. But

this metric is an average of three of the metrics introduced in this Section; so computing it requires

generalizing all component metrics. We believe, therefore, that until the field reaches a new con-

vergence, the best approach to promote the development of coreference resolvers able to resolve

split antecedents is to extend all the current metrics in a way that is completely transparent to the

developers of those systems in particular by extending all three metrics on which the computation

of the current reference score, the CONLL score, is based, as done in this paper.

4. Generalizing Standard Metrics to Allow for Split-Antecedent References: Key

Ideas and Terminology

The standard metrics for coreference resolution discussed in the previous Section all expect men-

tions to refer to a single entity. In this Section we describe an extension of these metrics that also

allows for references to multiple entities, as in the cases of split-antecedent anaphors illustrated in

(2). The generalization we propose follows the spirit of the existing metrics. The existing metrics

assess the proposed single-antecedent references in the response on the basis of whether they refer

to the same entity as the key; we propose that split-antecedent references should be evaluated in the

same way, i.e., on whether the entities they refer to are the same. This ensures that two systems

which propose as antecedents of a split-antecedent anaphor different mentions, but that refer to the
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same entities, will be considered equivalent. Conversely, two systems will be considered different

when a split antecedent anaphor is taken to refer to different entities by the two systems.

The key idea on which our generalisation is based on is to compare the entities referred to by

a split-antecedent anaphor using the very same metrics we set to extend. So, for example, when

scoring a system using MUC, we propose to score split-antecedent anaphora resolution according

to how well the component entities of an accommodated set in the response match the key (gold)

entities according to the same MUC metric. Similarly, for B
3 evaluation we use the B

3 metric, and

so on for the other metrics. In this way, we can handle split-antecedent anaphora evaluation within

coreference evaluation without altering the existing evaluation paradigm. We assess both single and

split-antecedent references using the very same metrics, preserving their individual strengths and

weaknesses, as evolved over years of research. A second important characteristic of our proposed

extension is that when no split-antecedents are present, the scores produced by the extended metrics

are identical to the scores obtained using their standard formulation.

In this Section, we introduce the technical ideas underlying our proposal–accommodated sets,

their alignment, and the δ term responsible for comparing them–which will then used in Section 5

in which we introduce the proposed generalizations one by one, and demonstrate their computation

with reference to our main example (6).

4.1 Accommodated Sets

In order to handle split-antecedent references, we generalize the notion of entity introduced in Sec-

tion 3.1 to also allow entities consisting of the merge of an accommodated object Ko
i constructed

from the discourse model (e.g., a set constructed from the existing entities in the case of split an-

tecedent anaphors) and a traditional coreference chain Km
i of mentions of that object. We indicate

this using the following notation:

Ki = Ko
i ⊕Km

i

Different types of accommodated objects are involved in anaphoric reference, as discussed earlier in

Section 2.3 and then later in Section 8. In the case of split-antecedents anaphors, we use the notation

Ks
i to refer to the accommodated object–the set that serves as antecedent for the split-antecedent

reference. By definition, Ks
i is a set composed of two or more entities:

Ks
i = {Ki,1,Ki,2, ...,Ki,Si}

We use the term accommodated set to refer to Ks
i , i.e., the set of two or more entities in the

discourse model which was accommodated in the context to serve as the antecedent of a split an-

tecedent anaphor.

The antecedent entities of a split-antecedent pronoun, in our representation above, are atomic

entities, –i.e., entities all of whose mentions refer to a single antecedent. It is however possible for

a split-antecedent anaphor to refer to an entity which in turn contains a split antecedent anaphor

among its mentions. For instance, in the following example, the split antecedent anaphor they all

has as split antecedents the entity Bill and the set consisting of John and Mary, which in turn was

accommodated in the discourse as a consequence of the split antecedent anaphor they in the second

utterance. (We omit mention indices in this example.)
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(11) [John]1 met [Mary]2.

[They]1,2 went to the movies, and met [Bill]3.

Afterwards, [they all]1,2,3 went to dinner.

In this case, we recursively replace the antecedents which are themselves accommodated sets (i.e.,

{1,2} = {John,Mary}) with their element entities, so that the larger accommodated set (the an-

tecedent of they all) has only ‘atomic’ entities as its elements, i.e., only entities referred to using

single-antecedent anaphors: ({1,2,3} = {John,Mary,Bill}).15 Note that this does not lead to any

loss of generality; we resolve the split-antecedent references to sets of atomic entities as those are

the actual antecedents if you unpack the recursive references. (See Section 4.4 for a more detailed

discussion of such cases.)

We use the following notation to indicate the set of all accommodated sets, and the set of all

regular mentions (i.e., the single-antecedent references), respectively:

Ks =
⋃

i

Ks
i , Km =

⋃

i

Km
i

The notation above was introduced for the entities in the key, but the corresponding notions will also

be used for the entities in the response. Also, the formulation of the coreference metrics involves

computing the cardinality of an entity. We generalize the notion of cardinality to complex entities

Ks
i ⊕Km

i in the obvious way as follows:

|Ks
i ⊕Km

i | = 1 + |Km
i |

Finally, notice how an entity without a split-antecedent has the same representation as seen before

in Section 3.1, where only single-antecedent references were allowed:

Ki = Km
i = {mi,1,mi,2, ...,mi,Mi}

4.2 Aligning Accommodated Sets

All the standard coreference evaluation metrics assume an implicit ‘alignment’ between the men-

tions in the key and in the response (the single-antecedent references). We say a mention in the key

and one in the response are aligned if they share the same boundaries. We need to know which

mentions align to compute the metrics: depending on the metric, the aligned mentions or the links

between these mentions are used to compare the key and response entities following that metric’s

strategy, as discussed in Section 3. If only single-antecedent anaphors are present, and if response

entities are well-formed, i.e., if mentions are not repeated across entities, each mention from the key

is aligned with at most one mention in the response.

However, only aligning mentions is not sufficient if we also have split-antecedent anaphors. As

discussed in Section 4.1, split-antecedent anaphors result in the introduction of entities containing

accommodated sets. Thus, evaluating split-antecedent anaphora interpretation requires additionally

aligning accommodated sets. We align the accommodated sets by aligning their element entities. If

we did not specify a one-to-one alignment, the metrics would be ill-defined, i.e., contributions from

multiple partially-overlapping accommodated sets may accumulate and inflate the scores.

15. This assumption amounts to adopting what has become known as the ’union’ theory of plurals (Link, 1983;

Schwarzschild, 1996). See (Link, 1984; Landman, 1989) for alternative views, and (Schwarzschild, 1996; Winter

and Scha, 2015) for discussion.
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As with the evaluation strategy briefly mentioned in the beginning of this section, we propose

to align the accommodated sets using the very same metric that a system is to be evaluated with, for

both single and split-antecedent anaphora. I.e., we propose to align the accommodated sets in the

key entities and in the response entities for the purpose of computing metric µ using the F1µ scores

that the same metric µ returns for the element entities of those accommodated sets. For example,

when computing a MUC score, we compute the alignment score between a key accommodated set

Ks
i included in an entity i and a response accommodated set Rs

j from an entity j as follows:

φ(Ks
i , R

s
j) = F1MUC(K

s
i , R

s
j)

The alignment process involves finding the pairs of accommodated sets from the key and the re-

sponse that lead to the largest cumulative F1 score. Since a brute-force approach to this problem can

be computationally unfeasible, we use the Kuhn-Munkres algorithm (Kuhn, 1955; Munkres, 1957)

adopted also in CEAF, which solves the alignment problem in polynomial time. Let Ks′ ⊂ Ks and

Rs′ ⊂ Rs be the subsets of the aligned key and response accommodated sets; then we will use the

following function (and its inverse for the reverse mappings) to access the aligned split-antecedent

pairs:

τ : Ks′ → Rs′

4.3 The δ Term

The generalization of the existing evaluation metrics that can be used to score both single and

split-antecedent references proposed in this paper is uniform across all metrics and only requires

an additional δ term responsible for the comparison between accommodated sets or between links

involving accommodated sets, depending on the metric. As noted earlier in this Section, to compute

the score between accommodated sets for metric µ we compute the score according to µ between

the component entities of these accommodated sets. The accommodated sets will receive scores

between 0 and 1 for how well they are resolved by a system.

As we will see in Section 5, the δ score has different interpretations for different metrics. How-

ever, two principles apply to all generalizations. The first is that if entity i contains no accom-

modated sets, the value of the generalized metric is equivalent to that of the original formulation

(see Section 3). Second, when accommodated sets are perfectly resolved, the contribution from the

accommodated sets equals that from regular mentions in the entity; they are after all just another

element of the coreference chains.

4.4 The (Artificial) Illustrative Example, Revisited

We will illustrate the terminology just introduced using example (6), repeated here as example (12).

(12) [John1]1 met [Mary2]2 after work and proposed to [her3]2 to go see a play.

[She4]2 liked the idea but suggested to [him5]1 to have dinner first.

On [their6]1,2 way to the restaurant, [they7]1,2 met [Bill8]3 and [Jane9]4 .

[The two10]1,2 were very happy to see [Bill11]3, as [they12]1,2,3 go way back.

[He13]3 introduced [Jane14]4 and [all four15]1,2,3,4 agreed to have dinner together to catch

up.

Only the mentions of entities referred to by split-antecedent anaphors are marked in (12); other

mentions that would be interpreted by coreference resolvers in a normal way, such as a a play or
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the restaurant, are left out from our discussion, to keep things simpler, although their interpretation

would also be scored by our (generalized) scorer of course.

The key entities mentioned in the example above are as follows (again, we use subscripts to

indicate entities, and indicate the mention number using superscripts):

K1 = {[John1], [him5]}

K2 = {[Mary2], [her3], [She4]}

K3 = {K1,K2} ⊕ {[their6], [they7], [The two10]}

K4 = {[Bill8], [Bill11], [He13]}

K5 = {[Jane9], [Jane14]}

K6 = {K1,K2,K4} ⊕ {[they12]}

K7 = {K1,K2,K4,K5} ⊕ {[all four15]}

The first entities are atomic entities K1 (John) and K2 (Mary). The first accommodated set com-

ponent appears with K3: this is the set with elements entities K1 and K2. Notice next the accom-

modated set component of K6. The anaphor [they12] refers to entity K4 (Bill) and to entity K3

referred to by [The two10] but entity K3 in turn contains an accommodated set with elements the

entities K1 (John) and K2 (Mary). As described in Section 4.1, we normalize the representation of

accommodated sets so that they only contain atomic entities as constituents:

K6 = {K3,K4} ⊕ {[they12]}

= {K1,K2,K4} ⊕ {[they12]}

In our illustrations of the metrics we will compare the responses produced by two hypothetical

coference resolvers on example (12). Let us call the first coreference resolver ‘system A’. System

A outputted the following response:

RA,1 = {[John1], [him5]}

RA,2 = {[Mary2], [She4]}

RA,3 = {RA,1, RA,2} ⊕ {[their6], [they7], [The two10], [they12]}

RA,4 = {[Bill8], [Bill11], }

RA,5 = {[Jane9], [Jane14]}

RA,6 = {RA,1, RA,2, RA,5} ⊕ {[all four15]}

System A made several mistakes. It did not include mention [her3] in RA,2 and [He13] in RA,4,

respectively, and mistakenly interpreted [they12] as a reference to John and Mary instead of to

John, Mary and Bill. Also, System A only produced a partially-correct interpretation of the split

antecedent anaphor [all four15] which in the key refers to John, Mary, Bill, and Jane, whereas

A only recovered 3 of the 4 constituent entities. Using the method discussed in Section 4.2, the

accommodated sets in the response from system A align with those in the key as follows:16

16. This alignment is optimal irrespective of the similarity metric used.
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τ(Ks
3) = Rs

A,3, τ(Ks
6) = ∅, τ(Ks

7) = Rs
A,6, τ(Rs

A,3) = Ks
3 , τ(Rs

A,6) = Ks
7

We will compare the score assigned to system A with those assigned to systems B, C and D whose

output is a variation on how the accommodated set in K7 may be resolved that raise interesting

questions about the way our proposed generalizations operate:

RB,6 = {RA,1, RA,2, RA,4, RA,5} ⊕ {[all four15]}

RC,6 = {RA,1, RA,2, RA,4} ⊕ {[all four15]}

RD,6 = {RA,2, RA,4, RA,5} ⊕ {[all four15]}

Compared with RA,6, the accommodated set in RB,6 proposed by system B for mention [all four15]

correctly includes all 4 entities: John, Mary, Bill and Jane. The entity RC,6 in C’s response includes

an accommodated set consisting of the entities John, Mary and Bill, that aligns better with the

accommodated set in the key interpretation for mention [they12] K6, than with the key interpretation

for mention [all four15] K7. System D’s interpretation for [all four15], RD,6, also proposes 3 entities

as antecedents for the anaphor, like RA,6, but the interpretation is slightly worse than that proposed

in A (RA,1 = K1, but RA,4 = K4 \ {[He13]}).

5. Generalized Definitions for the Coreference Metrics

We are now in the position to provide generalizations of the existing evaluation metrics that can

be used to score both single and split-antecedent references. In this Section, we go through the

standard coreference metrics one by one, showing how they are generalized using the δ term, and

then illustrating their computation using example (12).

Note that it is not possible to evaluate the new generalized metrics in the traditional way, i.e.,

by showing that they produce more intuitive outputs than existing metrics on some examples, as

done in papers introducing new coreference metrics such as (Bagga and Baldwin, 1998; Luo, 2005;

Recasens and Hovy, 2011; Moosavi and Strube, 2016), for the simple reason that no generalization

of all existing metrics to cover split antecedent references has been proposed before. (We discuss in

Section 6 the existing proposals regarding scoring such cases, none of which involves generalizing

all existing metrics, and all of which have other limitations, as discussed there.) Instead, we illustrate

our generalizations and make a case for them as follows.

In this Section, we describe in detail how the scores for each metric are computed under the

proposed extension with reference to example (12), with the dual objective of illustrating how our

generalization works in practice and showing that the results obtained are sensible in the sense that

systems producing intuitively ‘better’ responses get better scores. However, showing a step-by-

step computation of all of the metric scores, for both single and split-antecedent references, would

be tedious. Since the proposed generalization does not modify the computation of the metrics on

single-antecedent anaphors, but just adds an additional δ term for the evaluation of split-antecedent

references, we only illustrate here the computation of this term. For a step-by-step guide to the

computation of the standard version of the metrics, i.e., defined only for single-antecedent refer-

ences, see (Luo and Pradhan, 2016). Then, in Section 6, we compare our generalization metrics in
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detail to the few existing and very partial previous proposals. Finally, in Section 7, we show that

the extended metrics work in practice, in that they are effective at differentiating between systems

which are intuitively better at the task and systems which are intuitively worse, and compare to the

existing metrics, by using them to evaluate a system carrying out split-antecedent reference reso-

lution on the datasets used in the papers in which the two most recent proposals for scoring split

antecedent plural reference were made, Yu et al. (2021) and Zhou and Choi (2018).

5.1 Generalized B
3

5.1.1 DEFINITION

The simplest illustration of how the δ term is used to generalize an existing metric is our generaliza-

tion of B
3. We illustrate this with Recall∗

B3 . Again, the aim is to give a system full credit when the

component entities in an accommodated set in the response exactly match those in the key. (E.g., in

example (12), a system would get full credit for their interpretation of [their6] if this interpretation

refers to an accommodated set R with two constituent entities R1 and R2 which perfectly match the

two constituent entities K1 and K2 in the gold interpretation of [their6].) Such perfectly resolved

split-antecedent references should make the same contribution to Recall∗
B3 as correctly identified

single-antecedent references. When these conditions are not met, i.e., when the system either does

not produce an accommodated set as the interpretation of a split-antecedent anaphor, or this accom-

modated set is not aligned with that in the key, no credit should be given. (See Section 4.2 for why

alignment is necessary.) In intermediate cases, when the accommodated set in the response partially

matches the accommodated set in the key, a recall score between 0 and 1 should be obtained for that

mention. When the document does not contain any accommodated sets, generalized B
3 should be

equivalent to standard B
3.

These goals are achieved by adding to the standard formula for Recall
B3 (discussed in Section

3.2.2) a δ term responsible for evaluating the resolution of split-antecedent references, if any.

r∗(m) =
|Km

i ∩Rm
j |+ δi,j

|Ki|

Notice that most of the B
3 formula stays unchanged (see Section 3.2.2 for a direct comparison).

What has changed is that the cardinality of an entity, if it contains a split-antecedent reference, is

one greater than the cardinality of the entities with single-antecedent references only.

δ for B
3 is defined as follows. When a key Ki and a response Rj contain an aligned accommo-

dated set, i.e., τ(Ks
i ) = Rs

j , δi,j should specify how well the system resolved the component entities

of the accommodated set. We do this using the very same Recall metric used for the evaluation of

the single antecedents:

δi,j = Recall
B3

(

Ks
i , R

s
j

)

In this way, the system is given full credit (δi,j = 1) if the component entities in the accommo-

dated set in the response exactly match (recall-wise) those in the key. I.e., perfectly resolved split-

antecedent references make a contribution to recall identical to that of correctly identified single-

antecedent references. By contrast, when the system does not produce an accommodated set as the

interpretation of a split-antecedent anaphor or this accommodated set is not aligned with that in the

key, δi,j = 0. When the document does not contain any accommodated sets, δi,j = 0 as well, so
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that Recall∗
B3 is equivalent to Recall

B3 . In the intermediate cases–the system response for a split-

antecedent anaphor is aligned with an accommodated set in the key, but the match is not perfect–

δ gets a intermediate value between 0 and 1 reflecting how well the response matches the key, as

desired. (See 5.1.2.)

To get overall Recall, all the r(m) are summed up as before, giving:

r∗(i, j) =
∑

m∈Ki∩Rj

r∗(m) = (|Km
i ∩Rm

j |+ δi,j) ∗
|Km

i ∩Rm
j |+ δi,j

|Ki|
=

(|Km
i ∩Rm

j |+ δi,j)
2

|Ki|

and the following formula for overall recall:

Recall∗
B3 =

∑

i,j

(

|Km
i ∩Rm

j |+δi,j

)2

|Ki|
∑

i |Ki|

To compute precision, we proceed in the usual way and replace the keys with the responses and

vice-versa. F1∗
B3 is also computed in the usual way.

5.1.2 COMPUTING GENERALIZED B
3

ON THE EXAMPLE

Let us now see in more detail how Recall∗
B3 works with reference to example (12). Again, we

focus on computing recall, as precision proceeds in the same way. The key entities K1,K2,K4 and

K5 are only referred to using single-antecedent mentions. This means that there is no link to an

accommodated set that the response should recover; thus, w.r.t. these entities, all the δ terms are

0, for all the systems we are considering, A, B, C and D. In these particular cases the value of the

metric is not affected by our generalization.

Moving forward, let us focus first on system A. When a key and a response entity contain

aligned accommodated sets, we need to credit the system for how well it resolved the accommodated

set in the key. Looking at the mappings specified by the alignment function, this only happens in

two cases. The first case involves the accommodated sets from the K3 and RA,3 entities:

δA,3,3 = RecallB3

(

Ks
3 , R

s
A,3

)

= RecallB3

(

{K1,K2}, {RA,1, RA,2}

)

=

|K1∩RA,1|
2

K1
+

|K2∩RA,2|
2

K2

|K1|+ |K2|

=
2

3

The second is between the accommodated sets in K7 and RA,6:

δA,7,6 = RecallB3

(

Ks
7 , R

s
A,6

)

= RecallB3

(

{K1,K2,K4,K5}, {RA,1, RA,2, RA,5}
)

=
8

15
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In all other cases, i.e., ∀(i, j) ∈ {1, 2, ..., 7} × {1, 2, ..., 6} \ {(3, 3), (7, 6)}, δA,i,j = 0.

Let us now compare how system A resolved the split-antecedent references with the results of

systems B, C, and D, similarly computed. The relevant δ terms are the following:

δA,7,6 =
8

15
, δB,7,6 =

2

3
, δC,7,? = 0, δC,6,6 =

7

12
, δD,7,6 =

7

15

Among the four systems, system B (correctly) gets the highest credit for identifying all 4 entity

elements of the accommodated set in K7. System C gets no credit for K7 as that accommodated

set does not align with any coreference chain in C’s response (we indicate this using the notation

δC,7,?)–RC,6 aligns best with entity K6. Finally, system D gets a slightly lower score compared with

system A which makes intuitive sense since entity RA,1 is better resolved compared with RA,4.

5.2 Generalized MUC

5.2.1 DEFINITION

The MUC metric, as well, can be generalized to score both single and split-antecedent references

by including into the original formula an additional δ term responsible for scoring split-antecedent

references using the MUC metric being generalized, but there is an additional complication.

As with B
3, we indicate generalized RecallMUC as Recall∗MUC. When computing Recall∗MUC,

the additional δ term again measures how well the system resolves the links in the key involving

accommodated sets, just as in the case of Generalized B
3. However, δ is used in a different way for

MUC–instead of being added to recall, it is used to compute a penalty term by subtracting it from

1, defined as 1− δ. If an entity Ki does not contain an accommodated set, then there is no such link

for the response to recover, and therefore we want the penalty to be 0: this is obtained by having

δi,j = 1. When this is the case for all entities (i.e., when no split-antecedent anaphor is present in

a document) then Recall∗MUC is equivalent to standard RecallMUC. When a key entity does contain

an accommodated set, however, we need to score the response for how well it recovers the link to

this accommodated set. A response link is credited if one of its nodes matches a split-antecedent

anaphor in the key and the other consists of the aligned accommodated set. When the match is

perfect, we again want the penalty to be zero, but we want it to grow as the match becomes less

perfect. This is done by again computing δi,j using RecallMUC, as follows (where i is the index of

a gold entity and j the index of a response entity). If ∃(Rm
j , Rs

j) s.t. Rm
j ∈ Km

i and τ(Ks
i ) = Rs

j

then:

δi,j = RecallMUC

(

Ks
i , R

s
j

)

Again, notice that we are comparing the accommodated sets in the key and in the response using the

very same metric (RecallMUC) used to evaluate the system for both single and split-antecedent ref-

erences. If the key accommodated set Ks
i and the aligned response accommodated set Rs

j (τ(Ks
i ))

match perfectly, i.e., if their component entities are the same, we have δi,j = 1, and so the system

is fully rewarded for correctly producing the link to a split-antecedent contained by the key. A

partial penalty is applied for an accommodated set in the response with RecallMUC < 1, i.e., when

the component entities of the accommodated set are not perfectly resolved by the system. If there

is no link in the response that satisfies the aforementioned conditions, i.e., either its nodes do not

contain a regular mention matching with the key, or the aligned accommodated set, then a missing

link penalty is applied, and we set δi,j = 0.
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Recall∗MUC is computed by substracting the penalty term from the standard definition, as follows:

Recall∗MUC =

∑

i |Ki| − |P(Km
i ;Rm)| − (1− δi,j)

∑

i |Ki| − 1

The partition function P() takes as arguments the regular mentions portion of the entities, i.e., the

single-antecedent references (cfr. Section 4.1), so that part of the MUC formula stays unchanged.

As in the case of B
3, what changes is that the cardinality of an entity, if it contains a split-antecedent

reference, is one greater than the cardinality of the entities with single-antecedent references only (

Section 3.2.1).

To generalize MUC precision, we simply swap the entities in the key and the response, as per

standard practice:

Precision∗MUC =

∑

i |Ri| − |P(Rm
i ;Km)| − (1− δi)

∑

i |Ri| − 1
, δi = PrecisionMUC

(

Ks
i , R

s
j

)

Note also that this time the δ term is computed using the precision of the metric, in accordance with

the principle discussed earlier of using the very same metric for both single and split-antecedent

references. F1MUC is computed as usual.

5.2.2 COMPUTING GENERALIZED MUC ON THE EXAMPLE

We will again focus on Recall. And again, we focus on the entities in the key that do contain

split-antecedent references, whose interpretation must be found in the responses and assessed.

We start with the response provided by system A. The accommodated set in entity K6 cannot be

optimally aligned with any accommodated set in RA; therefore, a missing link penalty is applied in

this case, i.e., δA,6,? = 0. In the case of the other two entities in the key containing an accommodated

set, K3 and K7, links to an accommodated set are recovered in the response (as the conditions

to have a matching regular mention and aligned accommodated sets are satisfied) and need to be

evaluated. The accommodated set in RA,3, {RA,1, RA,2}, is an example of a system identifying

the correct number of antecedents for a split antecedent anaphor, but resolving imperfectly the

antecedent entities. Its δA,3,3 value is as follows:

δA,3,3 = RecallMUC

(

Ks
3 , R

s
A,3

)

= RecallMUC

(

{K1,K2}, {RA,1, RA,2}

)

=

∑

Ki∈{K1,K2}
|Ki| − |P(Ki; {RA,1, RA,2})|

∑

Ki∈{K1,K2}
|Ki| − 1

=
2

3

The logic of this is that the entities included in the response accommodated set above have a recall

of 2/3, so 1/3 is deducted from System A’s Recall for the link to the accommodated set. (Note

that the ‘mention’ component of RA,3, Rm
A,3, is also incorrect as it includes an extra mention in

comparison with K3, but this aspect of the interpretation is not discussed here as it is not affected

by our generalization.)
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In the case of the accommodated set in K7, system A recovers only 2 of the 3 antecedents; the

missing link penalty is computed as follows:

δA,7,6 = RecallMUC

(

Ks
7 , R

s
6

)

= RecallMUC({K1,K2,K4,K5}, {RA,1, RA,2, RA,5})

=
1

2

Let us now compare the penalty applied to system A for the interpretation of [all four15] with those

applied to B,C and D. The relevant δ terms are:

δA,7,6 =
1

2
, δB,7,6 =

2

3
, δC,7,? = 0, δC,6,6 = 0, δD,7,6 =

1

2
Resulting in the following penalty (1 - δ) being deducted from the overall recall:

(1− δA,7,6) =
1

2
, (1− δB,7,6) =

1

3
, (1− δC,7,?) = 1, (1− δC,6,6) = 1, (1− δD,7,6) =

1

2
We can see that system B receives a smaller penalty compared to system A, which makes sense

considering B recovers all 4 entity references. System C is the one most heavily penalised by the

scorer, because, first of all, the optimal alignment for the accommodated set produced by C is not

the one in K7, but that in K6, so that C ends up completely missing the accommodated set in K7

that the other systems get some credit for. Still, when computing recall with respect to K6, system

C continues to get a full penalty even though the accommodated sets align this time around, but

a link cannot be determined because no regular mentions match. Finally, system D gets the same

penalty as system A. This is because RA,1 and RA,4, the entities that are different between the

accommodated sets from A and D, both contribute with one link when computing MUC recall. (We

saw when discussing the B
3 metric earlier that system A does a boost in score over system D with

that metric–this might perhaps be considered a problem with MUC).

5.3 Generalized CEAF

5.3.1 DEFINITION

As discussed in Section 3.2.3, central to computing the CEAF metric are the similarity functions

used to both align and compare the key and response entities. To extend the metric to evaluate

split-antecedent references as well we use, as in the other cases, an additional δ term which, as in

the case of B
3, is added to both the similarity function used in the computation of mention-based

CEAF, and to that used in entity-based CEAF:

φM (Ki, Rj) = |Km
i ∩Rm

j |+ δMi,j , φE(Ki, Rj) =
2
(

|Km
i ∩Rm

j |+ δEi,j

)

|Ki|+ |Rj |

It is only when a key Ki and a response Rj contain aligned accommodated sets –i.e., τ(Ks
i ) = Rs

j–

that we need to evaluate how well their component entities were resolved. δ for recall is computed

as follows:

δMi,j = RecallCEAFM

(

Ks
i , R

s
j

)

, δEi,j = RecallCEAFE

(

Ks
i , R

s
j

)

When there are no accommodated sets or they are not aligned, δi,j = 0. Otherwise, RecallCEAF is

computed exactly as discussed in Section 3.2.3, and so for PrecisionCEAF and F1CEAF.
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5.3.2 COMPUTING GENERALIZED CEAF ON THE EXAMPLE

As with B
3, it is only when a key and a response entity contain aligned accommodated sets that we

need to evaluate how well the two match. Again, we start with the computations for system A. We

have seen there is an alignment in two cases, one between the accommodated sets in entities K3 and

R3:

δ
M/E
A,3,3 = Recall

CEAFM/E

(

Ks
3 , R

s
A,3

)

=

{

4
5 for mention-based CEAF

9
10 for entity-based CEAF

The calculation is done for recall, precision is analogous. The other accommodated set alignment is

between those in the K7 and RA,6 entities:

δ
M/E
A,7,6 = Recall

CEAFM/E

(

Ks
7 , R

s
A,6

)

=

{

3
5 for mention-based CEAF

7
10 for entity-based CEAF

All other cases either involve entities without accommodated sets, or whose accommodated sets do

not align, so we have δ
M/E
i,j = 0. We now introduce, for comparison, the relevant δ terms for the

other systems:

δMA,7,6 =
3

5
, δMB,7,6 =

4

5
, δMC,7,? = 0, δMC,6,6 =

3

4
, δMD,7,6 =

3

5

δEA,7,6 =
7

10
, δEB,7,6 =

9

10
, δEC,7,? = 0, δEC,6,6 =

13

15
, δED,7,6 =

13

20

As with the other metrics presented so far system B gets the highest score for identifying all four

entities from the split-antecedent reference in K7. System C is not allocated any credit for the ac-

commodated set in K7, only for the one from K6, because of how the split-antecedents get aligned.

And system D is found on par with system A when using mention-based CEAF and slightly worse

(as it intuitively should) when the evaluation is conducted using entity-based CEAF. This is another

illustration of the strengths and weaknesses of the existing metrics for coreference evaluation which

our scorer inherit. For the computation of the rest of the metrics, the observations for systems B,

C, and D will be similar to those expressed so far, and will be omitted. From now on, we will only

calculate the scores for system A to illustrate the methods, as the calculations for the other metrics

are the same.

5.4 Generalized LEA

5.4.1 DEFINITION

To extend LEA to evaluate both single and split-antecedent references we modify both the impor-

tance and the resolution-score functions. Starting with the former, we define the importance func-

tion to additionally include a β term to further reward entities which contain an accommodated

set:

importance(Ki) = βi|Ki|
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The resolution score function is defined as in the standard version of the metric, but computed

differently to also consider split-antecedent references:

resolution-score(Ki) =
∑

j

links(Ki ∩Rj)

links(Ki)

Counting the number of links in Ki is trivial: links(Ki) =
(

|Ki|
2

)

. But special attention needs to be

paid when counting the number of links between the set of mentions in common between a key Ki

and a response Rj :

links(Ki ∩Rj) =

(

|Km
i ∩Rm

j |

2

)

+ δi,j ×
(

|Km
i ∩Rm

j | − 1
)

We distinguish two types of links between the mentions common to both a key and a response

entity. First, we have links between regular mentions present in both entities, i.e., links between

single-antecedent references. The number of these links is expressed in the first term of the equation

above. The second type are links involving an accommodated set. When a key Ki and a response

Rj contain aligned accommodated sets, i.e., τ(Ks
i ) = Rs

j , we need to assess how well their element

entities compare. Again, this can be done just using LEA’s notion of Recall:

δi,j = RecallLEA

(

Ks
i , R

s
j

)

After evaluating how well the key and the response accommodated sets compare, we use this infor-

mation to weigh the number of links that can have an accommodated set as a node; this is expressed

in the second term from the link counting formula presented earlier. When there are no accommo-

dated sets in the entities, or when they are not aligned, we set δi,j = 0.

The generalized version of the metric is equivalent to the standard version presented in Sec-

tion 3.2.4 when the entities in the key and response do not contain any accommodated sets (when

δi,j = 0, we have link(Ki ∩Rj) =
(|Km

i ∩Rm
j |

2

)

). When accommodated sets do exist, however, and

they were perfectly resolved by a system, the scorer allocates full credit to each of these links involv-

ing accommodated sets, just as it does for the links between correctly identified single-antecedent

references: when δi,j = 1, links(Ki ∩ Rj) =
(|Km

i ∩Rm
j |+1

2

)

. For imperfectly resolved accommo-

dated sets the credit allocated to a system lies in-between the two extremes.

5.4.2 COMPUTING GENERALIZED LEA ON THE EXAMPLE

When computing LEA, for those key and response sets that contain aligned accommodated sets, we

need to evaluate how well these accommodated sets compare. For recall, we have:

δi,j =















RecallLEA

(

Ks
3 , R

s
A,3

)

for i = j = 3

RecallLEA

(

Ks
7 , R

s
A,6

)

for i = 7, j = 6

0 otherwise

When computing precision, LEA precision is used instead to evaluate accommodated sets.
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5.5 Generalized BLANC

5.5.1 DEFINITION

We saw back in Section 3.2.5 that to compute BLANC we need to establish the coreference and the

non-coreference links found in the key and in the response entities. In the standard version of the

metric these links are only between regular mentions, i.e., between single-antecedent references.

In the generalized version, in which entities may also include accommodated sets, we additionally

distinguish two types of links: (i) links where both nodes are accommodated sets,17 and (ii) links

where one node is an accommodated set, and the other is a single-antecedent reference.

BLANC evaluates a response by comparing the coreference and non-coreference links in the

response set with those in the key. In standard BLANC this is done by simply computing the inter-

section of these sets. In the generalized version of the metric, however, we cannot do this anymore,

due to the introduction of accommodated sets and the additional types of links that get created, as

discussed above. To help us compare different types of links we introduce a new function δ() that

takes as argument two links–one from the key (mk
1,m

k
2), the other from the response (mr

1,m
r
2)–and

specifies how to allocate them credit. In short, this function will allocate full credit (i.e., a value

of 1) to links between regular mentions that match, and partial credit (a value between 0 and 1) to

those key and response links whose nodes involve aligned accommodated sets. The partial credit

in this case will depend on how well the element entities in the accommodated sets compare. The

function will not allocate any credit (a value of 0) to all other pairs of links. We can assess how

the coreference and the non-coreference links in the response compared to those in the key by eval-

uating the credit allocated by the function above to all pairs of links found between these sets. If

no accommodated sets are present in the entities in the key and the response, using the function as

described has the same effect as the set intersection operation mentioned before used in standard

BLANC.

We illustrate below how the δ() function is used to compute recall for the non-coreference links:

RN =
1

|NK |

∑

(mk
1
,mk

2
)∈NK

(mr
1
,mr

2
)∈NR

δ
(

(mk
1,m

k
2), (m

r
1,m

r
2)
)

A link from the key and one from the response whose nodes are regular mentions receive a credit

of 1 if their mentions match. Formally, if mk
1,m

k
2 ∈ Km,mr

1,m
r
2 ∈ Rm, and mk

1 = mr
1,m

k
2 = mr

2

(or mk
1 = mr

2,m
k
2 = mr

1), then:

δ
(

(mk
1,m

k
2), (m

r
1,m

r
2)
)

= 1

Two links one of whose nodes is a regular mention while the other is an accommodated set are

scored based on how well the accommodated sets compare, assuming they are aligned, and that the

regular mentions match. In line with the rest of the metric extensions, we compare accommodated

sets by comparing their element entities using the very same metric we are evaluating the system

with overall, for both single and split-antecedent references. The current example is for the recall

of the non-coreference links, so this is the metric that is used here as well. Formally, if ∃mk
s ,m

k
m ∈

{mk
1,m

k
2} s.t. mk

s ∈ Ks,mk
m ∈ Km, and ∃mr

s,m
r
m ∈ {mr

1,m
r
2} s.t. mr

s ∈ Rs,mr
m ∈ Rm, and

17. These can occur among the non-coreference links.
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mk
m = mr

m, τ(mk
s) = mr

s then:

δ
(

(mk
1,m

k
2), (m

r
1,m

r
2)
)

= RecallN (mk
s ,m

r
s)

Two links whose nodes are aligned accommodated sets receive credit on the basis of how well their

element entities compare. Formally, if mk
1,m

k
2 ∈ Ks,mr

1,m
r
2 ∈ Rs, and τ(mk

1) = mr
1, τ(m

k
2) =

mr
2

(

or τ(mk
1) = mr

2, τ(m
k
2) = mr

1

)

then:

δ
(

(mk
1,m

k
2), (m

r
1,m

r
2)
)

= RecallN

(

mk
1, τ(m

k
1)
)

× RecallN

(

mk
2, τ(m

k
2)
)

All other links in the key and response are unrelated and receive no credit. For these, we have:

δ
(

(mk
1,m

k
2), (m

r
1,m

r
2)
)

= 0

All the other computations required by BLANC, i.e., the precision of the non-coreference links, to-

gether with both the precision and the recall of the coreference links, are computed in a similar

fashion. BLANC then reports as its final value the arithmetic mean of the F1 values for the corefer-

ence and the non-coreference links.

5.5.2 COMPUTING GENERALIZED BLANC ON THE EXAMPLE

For this metric we need to determine how the coreference and the non-coreference links in the key

and response entities compare. The link space is large, but let us look, for example, at NK(3, 7) and

NR(3, 6), the sets of non-coreference links between keys K3 and K7, and response entities RA,3

and RA,6, respectively. Starting with the former, we have:18

NK(3, 7) =
{

(Ks
3 ,K

s
7), (K

s
3 , 15), (6,K

s
7), (6, 15), (7,K

s
7), (7, 15), (10,K

s
7), (10, 15)

}

The non-coreference links between the response entities RA,3 and RA,6 are:

NR(3, 6) =
{

(Rs
A,3, R

s
A,6), (R

s
A,3, 15), (6, R

s
A,6),

(6, 15), (7, Rs
A,6), (7, 15), (10, R

s
A,6), (10, 15), (12, R

s
A,6), (12, 15)

}

Let us now consider how matching links are determined in a recall-based evaluation. Two links, one

from the key, and the other from the response, whose nodes are regular mentions, get full credit if

their mentions match. In our example that happens in 3 cases:

δ
(

(6, 15), (6, 15)
)

= 1

δ
(

(7, 15), (7, 15)
)

= 1

δ
(

(10, 15), (10, 15)
)

= 1

18. We shall use the id of the mentions, single or split-antecedent, for a more concise representation.
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Two links, where one of the nodes is a regular mention, and the other an accommodated set, are

given credit if the regular mentions match and the accommodated sets are aligned. The allocated

credit depends on how well the accommodated sets evaluate:

δ
(

(Ks
3 , 15), (R

s
A,3, 15)

)

= BLANCRN
(Ks

3 , R
s
A,3)

δ
(

(6,Ks
7), (6, R

s
A,6)

)

= BLANCRN
(Ks

7 , R
s
A,6)

δ
(

(7,Ks
7), (7, R

s
A,6)

)

= BLANCRN
(Ks

7 , R
s
A,6)

δ
(

(10,Ks
7), (10, R

s
A,6)

)

= BLANCRN
(Ks

7 , R
s
A,6)

Two links both of whose nodes are accommodated sets receive credit if the accommodated sets are

aligned, and the score depends on how well the response evaluates against the key:

δ
(

(Ks
3 ,K

s
7), (R

s
A,3, R

s
A,6)

)

= BLANCRN

(

Ks
3 , R

s
A,3

)

× BLANCRN

(

Ks
7 , R

s
A,6

)

There is no alignment for all other key and response links, so no credit can be allocated in these

cases, and δ = 0. Finally, notice we used RN to compare the entities included in the accommodated

sets, as the computations above were used to determine the credit allocated to non-coreference links

in a recall-based evaluation. Computing the credit for the coreference links involves the same steps,

but using RC instead. And when turning to precision, PN and PC , the precision related metrics

from BLANC are used.

6. Alternative proposals to score split-antecedent anaphora

There is limited previous work on split-antecedent anaphora resolution and its evaluation. We are

aware of four proposals, two of which we put forward ourselves in previous work.

Metrics for gold evaluation only Vala et al. (2016) and Yu et al. (2020a) only evaluate their mod-

els on split-antecedent selection task that assumes gold anaphors and mentions were provided. They

compute precision, recall, and F1 measures based on the links between split-antecedent anaphors

and their antecedent. Recall is defined as the percentage of gold split-antecedent anaphoric links

that are correctly identified by the system (where each atomic antecedent of a split-antecedent is

counted as a separate link). Precision is the percentage of split-antecedent anaphoric links proposed

by a system that is correct. Because they only evaluate on the split-antecedent selection task, the

evaluation is much simpler, i.e. it does not require any form of alignment. However, such an eval-

uation has a number of limitations: it is not entity-based, and is not realistic, as it is based on the

assumption that the gold mentions and gold anaphors will be provided.

Distributing the plural mentions among the coreference chains for singular entities Zhou

and Choi (2018) propose a method to evaluate split-antecedent plural references resolution using

the standard CONLL scorer. This is done by adding the plural mention to each of the clusters for its

atomic elements: for example, they would represent the coreference chain

{{Johni, Maryj}, Theyt}
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encoded in this paper as the discourse entity Kt including an accommodated set :

Ki = {Johni1i , ...Johnimi }

Kj = {Mary
j1
j , ....Mary

jn
j }

Kt = {Ki,Kj} ⊕ {Theyt1t }

by adding [Theyt1]t to the coreference chains for John and Mary, i.e., as the following two gold

coreference chains each consisting of all mentions in one individual entity plus the split-antecedent

reference:

{[Johni1]i, . . . [Johnim]i, [Theyt1]t}
{[Maryj1]j , . . . [Maryjn]j , [Theyt1]t}.

First of all, this representation clearly violates the fundamental assumption behind the notion of

coreference chain, i.e., that all mentions in the chain refer to the same entity. In the two coreference

chains, mention [Theyt1]t does not refer to the same entity as mention [Johnik ]i of John or mention

[Maryjl]j of Mary: it refers to the set consisting of John and Mary. In addition, this approach also

causes problems with the evaluation and may produce counterintuitive results.

One example of a problem is that the proposed representation cannot be used with the MUC

metric. MUC relies on the partition function to compute the number of links in common between

the key and response entities, and the function requires all mentions to participate in a single cluster.

As a result, the authors do not use the MUC metric in their evaluation. Regarding counterintuitive

results, the authors themselves point out that the approach may have unpredictable effects on the

alignment of the CEAF
E score. The following example illustrates this. Suppose we have a text

which first introduces the entity John, mentioned four times; the entity Mary, mentioned once; the

entity Bill, also mentioned once; followed by three mentions of the set {John,Mary,Bill}. This

situation is schematically encoded by the following key entities:

K1 = {John1, John2, him3, he4}

K2 = {Mary5}

K3 = {Bill6}

K4 = {K1,K2,K3} ⊕ {they7, them8, their9}

And suppose that the response entities predicted by a system are as follows:

R1 = {John1}

R2 = {Mary5}

R3 = {R1, R2} ⊕ {they7, them8, their9}

In the approach proposed by Zhou and Choi (2018), the plural mentions [they7], [them8] and [their9]

would be represented by distributing them into the singular clusters (e.g. K1, R1) –i.e., the key and

response entities would be represented as follows:
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K1 = {John1, John2, him3, he4, they7, them8, their9}

K2 = {Mary5, they7, them8, their9}

K3 = {Bill6, they7, them8, their9}

R1 = {John1, they7, them8, their9}

R2 = {Mary5, they7, them8, their9}

Intuitively, the system’s coreference chain for John, R1, should be aligned with K1; distributing the

plurals should not change this alignment. But in reality, R1 will be aligned with K3, because after

adding the plurals the similarity score between R1 and K3 is 3/8, which is higher than the score

of 4/11 between R1 and K1. By contrast, our approach will correctly align the singular and plural

clusters (i.e. K1 and R1; K2 and R2, and K4 with R3).

Generalizing LEA Finally, in our own previous work (Yu et al., 2021), we proposed an extension

of the LEA metric to score split-antecedent plural references. A first obvious difference between the

proposal in this paper and that earlier proposal is that back then we only proposed a generalization

for LEA, whereas here we generalize every one of the most used coreference metrics discussed in

Section 5. But another reason for the current proposal is that after publishing that paper we found

issues with the approach to alignment we had used.

The generalization proposed in that paper scores split-antecedent references in two steps, each of

which requires an alignment step. In the first step, the singular coreference chains in the response are

aligned with the gold coreference chains. The atomic antecedents of the split-antecedent references

found in the response are then replaced by the aligned gold coreference chains. The alignment

between the coreference chains in the key and response in this step is established using CEAF
E .

After that, a second alignment step is used between the converted split-antecedents when computing

the link scores in the LEA. Using the notation introduced in Section 4.1, our early approach can be

formulated as follows. A gold accommodated set Ks
i is aligned with an accomodated set Rs

j in the

response, i.e., τ(Ks
i ) = Rs

j , if Rs
j is the accommodated set in the system entities that has the largest

number of coreference chains in common with Ks
i , i.e., Rs

j = argmaxRs
j∗
|Ks

i ∩ Rs
j∗|. Following

our presentation of LEA in Section 5.4, the aligned accommodated sets, when evaluating recall, are

assessed based on the recall of their mentions:

δi,j =
|Ks

i ∩Rs
j |

|Ks
i |

However, a one-to-one alignment between the accommodated sets was not imposed, hence there

might be multiple accommodated sets in the key being aligned to the same accommodated sets in

the response, and vice-versa. This is potentially problematic as the coreference metrics are based on

the assumption that a mention can only participate in one coreference chain. The following example

shows how the alignment used in our early approach might cause some instability in the metrics.
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Suppose we have the following key and response entities:

K1 = {John1, John2, him3, he4}

K2 = {Mary5}

K3 = {Bill6}

K4 = {K1,K2} ⊕ {they7}

K5 = {K1,K2,K3} ⊕ {all three8}

R1 = {John1, John2, him3, he4}

R2 = {Mary5}

R3 = {Bill6}

R4 = {R1, R2} ⊕ {they7}

R5 = {R1, R3} ⊕ {all three8}

(I.e., the system correctly resolved atomic entities 1, 2 and 3 and plural entity 4, but then only

identified two of the antecedents for split antecedent reference [all three8].) In our approach in Yu

et al. (2021), we will first align the singular coreference chains (e.g. K1, R2) without accommodated

sets using CEAF
E , and then replace the ‘atomic’ coreference chains that are part of accommodated

sets in the response with the aligned gold atomic coreference chains. As a result, R4 and R5 will

become:

R4 = {K1,K2} ⊕ {they7}

R5 = {K1,K3} ⊕ {all three8}

After that, when computing the actual LEA score, the accommodated set part of K4, Ks
4 ({K1,K2}),

will be aligned to Rs
4, which is expected as they are identical. Ks

5 ({K1,K2,K3}) intuitively should

be aligned to Rs
5, since Rs

4 has already been aligned. But because there is no one-to-one alignment

restriction, Ks
5 is equally likely to be aligned to either Rs

4 or Rs
5, as both have the same δi,j of

2/3 (two out of three clusters are overlapping). The actual outcome solely depends on the order in

which the response split-antecedents are presented. By contrast, with the new method proposed in

this paper, Ks
5 will be aligned correctly with Rs

5 due to the one-to-one alignment constraint.

A second drawback of Yu et al. was caused by the pre-alignment step on the atomic entities

using the CEAF
E score. The pre-alignment step is deterministic, and imposes a hard alignment be-

tween key and response coreference chains; and the later scoring step does not take into account

how good the alignments are. This is problematic as the hard alignment in this stage is not ro-

bust enough to align multiple equivalent response clusters, as illustrated by the following example.

Suppose we have the following key entities:

K1 = {John1, John2, him3, he4}

K2 = {Mary5}

K3 = {K1,K2} ⊕ {they6}
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And consider the following two responses, which differ on the interpretation of [they6]:

R1 = {John1, him3}

R2 = {John2, he4}

R3 = {Mary5}

R4 = {R1, R3} ⊕ {they6}

R′
4 = {R2, R3} ⊕ {they6}

The two system predictions for [they6], R4 and R′
4, should be equivalent, since they both get half

of K1 and all of K2. However, because the pre-alignment step requires a hard alignment, either R1

or R2 will be aligned with K1. Suppose R1 is aligned with K1; the Yu et al.’s scorer will then give

a score of 100% to {R1, R3} but 50% to {R2, R3}. By contrast, the new scorer proposed in this

paper will correctly assign the same scores to both interpretations.

In order to provide a more empirical comparison between our new approach to evaluation and

the one we proposed in Yu et al. (2021), in the next Section we use our new generalizations to score

the same system tested by Yu et al. (2021) on the same corpus. We also test the same systems on

the FRIENDS corpus used by Zhou and Choi (2018) to provide a baseline for future work.

7. Using the Metrics for Scoring Generalized Anaphoric Reference

Because no generalizations of the existing coreference metrics to cover split-antecedent anaphoric

reference was previously proposed, it is not possible to compare the proposal in this paper to previ-

ous ones except on individual examples, as done in the previous Section. However, it is possible to

show that, unlike the existing and partial solutions discussed in the previous Section, the generalized

metrics proposed here can be used to compare anaphoric resolvers in exactly the same way as done

using the existing coreference metrics.

Our generalized metrics were incorporated in the new Universal Anaphora scorer, a new scorer

for anaphora that can also score split antecedent anaphora resolution (as well as non-referring men-

tions identification, bridging reference resolution and discourse deixis resolution) (Yu et al., 2022b,

2023a), and this scorer was then used to score the performance of a state of the art system able to

carry out split-antecedent anaphora resolution on real data (Yu et al., 2021) and to compare it with

simpler baselines, both on the corpus used by Yu et al. (2021) and on the corpus used by Zhou and

Choi (2018). In this Section we present the results of this evaluation.

Split-antecedent anaphoric references are rarer compared to single entity anaphoric references,

at least for the case of plural split antecedent references (split discourse deictic references are much

more common). As a result, they typically do not make a significant contribution to the overall

evaluation score. Thus, to offer a clear picture of the performance of a system on split-antecedents,

our scorer also reports separate scores for the split-antecedent references only. The scores for the

separate evaluation of split-antecedents are the micro-average F1 of all the aligned gold and sys-

tem pairs. Those accommodated sets for which an alignment could not be found (e.g., missing or

spurious accommodated sets ) were paired with empty sets when computing the scores.

7.1 The models being compared

In order to evaluate the generalized coreference metrics on the output of a real system, we obtained

the best-performing output and all the baselines from the system by Yu et al. (2021), the only mod-
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MUC B3 CEAFE CoNLL

R P F1 R P F1 R P F1 F1

Recent 2 76.6 77.3 76.9 78.8 76.1 77.5 78.0 74.3 76.1 76.8

Recent 3 76.7 77.3 77.0 78.9 76.2 77.5 78.0 74.4 76.1 76.9

Recent 4 76.8 77.3 77.0 79.0 76.2 77.5 78.0 74.4 76.1 76.9

Recent 5 76.7 77.3 77.0 79.0 76.2 77.5 78.0 74.3 76.1 76.9

Random 76.5 77.1 76.8 78.8 76.0 77.4 77.9 74.2 76.0 76.7

Single Ant 76.3 78.4 77.4 78.7 76.9 77.8 78.0 74.4 76.2 77.1

Yu et al. 77.1 77.9 77.5 79.1 76.5 77.8 78.1 74.5 76.3 77.2

Oracle 77.6 78.4 78.0 79.5 76.8 78.1 78.3 74.6 76.4 77.5

(a) MUC, B
3, CEAF

E and CONLL F1.

CEAFM BLANC LEA (β=1) LEA(β=10)

R P F1 R P F1 R P F1 R P F1

Recent 2 77.2 75.4 76.3 75.3 71.5 73.4 70.3 66.9 68.6 59.7 61.2 60.5

Recent 3 77.3 75.4 76.3 75.3 71.5 73.4 70.4 66.9 68.6 60.3 61.3 60.8

Recent 4 77.3 75.4 76.3 75.3 71.6 73.4 70.4 66.9 68.6 60.7 61.5 61.1

Recent 5 77.3 75.4 76.3 75.3 71.6 73.4 70.4 66.9 68.6 60.7 61.1 60.9

Random 77.2 75.3 76.2 75.3 71.5 73.3 70.3 66.7 68.4 59.3 59.9 59.6

Single Ant 77.2 75.8 76.5 75.2 72.3 73.7 70.3 67.4 68.8 59.0 67.4 62.9

Yu et al. 77.4 75.7 76.6 75.5 71.9 73.6 70.7 67.2 68.9 62.8 64.7 63.7

Oracle 77.8 75.9 76.8 75.9 72.1 74.0 71.2 67.6 69.4 65.9 68.4 67.1

(b) CEAF
M , BLANC and LEA with different split-antecedent importance (β).

Table 1: Evaluation of Yu et al. (2021)’s model and of the baselines on ARRAU using the new

Universal Anaphora scorer.

MUC B3 CEAFE CEAFM BLANC LEA CoNLL

Recent 2 25.6 22.2 15.9 23.6 15.8 21.9 21.2

Recent 3 27.1 24.2 20.8 26.3 18.2 23.5 24.0

Recent 4 28.0 25.2 21.0 27.5 17.5 24.4 24.7

Recent 5 26.6 23.6 19.0 26.0 15.9 22.9 23.1

Random 19.6 15.3 7.9 16.8 11.4 14.8 14.3

Yu et al. 35.8 31.9 37.0 32.8 18.2 30.9 34.9

Oracle 70.1 63.7 62.9 68.1 68.6 61.4 65.6

Table 2: Split-antecedent F1 scores only for Yu et al. (2021)’s system on ARRAU evaluated using

our extension of the coreference scorers.

ern system that can process both single- and split-antecedent anaphors, and ran our scorer on all

six predictions. The results are illustrated in Tables 1 -3. Yu et al. (2021)’s model is an extension

of the system proposed by Yu et al. (2020b) which further interprets split-antecedents. The model

shares most of the network architecture proposed by Yu et al. (2020b), but in addition, it includes

a dedicated feed-forward network for split-antecedents. The baselines are based on heuristic rules

or random selection. The same candidate split-antecedent anaphors/singular clusters are used in
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Yu et al. Our approach

Lenientsplit LEA (β=1) LEA (β=10) LEAsplit LEA (β=1) LEA (β=10)

Recent 2 12.4 68.7 61.4 21.9 68.6 60.5

Recent 3 17.0 68.7 61.4 23.5 68.6 60.8

Recent 4 16.0 68.7 61.5 24.4 68.6 61.1

Recent 5 13.1 68.7 61.3 22.9 68.6 60.9

Random 4.5 68.5 60.4 14.8 68.4 59.6

Yu et al. 36.4 69.0 64.1 30.9 68.9 63.7

Table 3: Comparison between our generalized scores and the score proposed in Yu et al. (2021) on

the Yu et al.’s system output evaluated on the ARRAU corpus.

the baselines as in the Yu et al. (2021) model. Then these baselines attempt to interpret the men-

tions belonging to a small list of plural pronouns which could be interpreted as split antecedent

anaphor (e.g., they, their, them, we) but were classified as not having an atomic antecedent by

the single-antecedent anaphoric resolver, and attempt to resolve them as split-antecedent anaphors.

The random baseline randomly assigns two to five antecedents to these candidate split antecedent

anaphors. After that, the recent-x baseline uses the x closest singular clusters as antecedents to each

chosen anaphor. In addition, we also include scores for the system only resolving single antecedent

anaphors (Single Ant) and system augmented with the gold split-antecedent anaphors (Oracle)19.

7.2 Evaluation on ARRAU

Table 1 shows the overall scores (single and split-antecedent anaphors) on ARRAU evaluated using

the new scorer.20 The general direction of the results doesn’t change from those reported in Yu et al.

(2021) (see below). What changes is that whereas in Yu et al. (2021) the system’s performance

on split antecedents could only be evaluated using a single, ad-hoc metric (see, e.g., Tables 3 and

5 in that paper), thanks to the extension proposed in this paper it is now possible to score both

single-antecedent and split-antecedent anaphors using the same metrics.

The results with all the metrics confirm the results obtained by Yu et al. with their specialized

metric. First of all, as already observed by Yu et al., the difference between the baselines and

the best model is small when single- and split-antecedent anaphors are evaluated together, because

the number of split-antecedents is low (only 0.8% of the clusters containing split-antecedents).

However, the difference becomes very clear when considering the performance on split antecedents

only (see Table 2): up to 20 percentage points in CONLL score. The Oracle setting has again much

better split-antecedent F1 scores, and this results in considerable improvements on all the scores

when evaluated with singular clusters. Confirming our hypothesis on the need for partial credit on

split-antecedents, we find that only 16% of the split-antecedents were fully resolved by the Yu et al.

model. The vast majority of the split-antecedents that were partially resolved rely on the partial

credit to get a fair assessment.

19. For oracle setting we allow the system to use the gold split-antecedent anaphors annotations when possible. Please

note the system is still constrained by the quality of singular clusters. This simulates a better system on resolving the

split-antecedent anaphors.

20. Following Yu et al. (2021), we only report scores for documents in which at least one split-antecedent anaphor is

annotated.
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We further compare our new and previous approaches (Yu et al., 2021) in Table 3. Since Yu et al.

only generalised the LEA score, the comparison is primarily based on LEA. For each approach,

LEA scores were computed with two different split-antecedent importance (β ∈ {1, 10}). A large

β means more weight is given to the split-antecedents. We additionally include the most relevant

split-antecedent-only score (Lenientsplit and LEAsplit for Yu et al. and our approach respectively)

to assess the correlation between the split-antecedent-only scores and the LEA scores. A s we can

see from the Table, when β = 1 both approaches successfully register a difference between the Yu

et al. and the baselines, but do not show a visible difference between the baselines apart from the

‘Random’ setting that has a lower score overall. This is not surprising given that the number of split-

antecedent anaphors is small. When we increase the split-antecedent importance (i.e. β = 10) the

score differences become more visible; however, we noticed that the LEA score from our previous

approach does not correlate well with the split-antecedent only score. Even though the ‘Recent 3’

baseline has a higher Lenientsplit than ‘Recent 2’ and ‘Recent 4’, it has the same LEA score (61.4%)

as ‘Recent 2’ and lower than ‘Recent 4’ ’s 61.5%. On the other hand, the new approach reports

LEA scores that follow the same trend as its split-antecedent scores (i.e. LEAsplit), which makes

the evaluation more consistent between the split-antecedent only and overall scores.

7.3 Evaluation on FRIENDS

In order to compare our metrics in practice with the evaluation approach proposed by Zhou and

Choi (2018), we further tested our extended metrics on the FRIENDS corpus used in their paper,

which contains a larger percentage of split-antecedent plural references. We follow Zhou and Choi

(2018) in using episodes 1 - 19 for training, 20, 21 for development and 22, 23 for testing. The

original corpus is annotated for entity linking, so the coreference clusters are created by grouping

the mentions that refer to the same entity (a character in the show FRIENDS). 14.5% of those

clusters contain split-antecedents. In contrast, in the original annotation, split-antecedent anaphors

represent 9% of all mentions; this is because in the original version of the FRIENDS corpus all

subsequent mentions of a set accommodated using a split-antecedent anaphor are also marked as

split-antecedents instead of being coreferent with the first mention. (E.g. in our illustrative example

(12), [they7] and [The two10] are treated as single-antecedent by putting them in the same cluster as

[their6], whereas in the FRIENDS corpus would be annotated as split-antecedent references as well.)

We transformed all of these cases into single-antecedent anaphors; after this transformation, 4.1%

of the mentions remain split-antecedent anaphors.

To obtain the system predictions, we trained the Yu et al. (2021) system on the FRIENDS corpus

and computed all the baselines in the same way as for the ARRAU corpus.21 As shown in Table

4, the Yu et al. model outperforms the baselines by a large margin according to all the metrics

even though the performance improvements on split-antecedent anaphors (see Table 5) are smaller

than those we observed with the ARRAU evaluation. This was expected, as the FRIENDS corpus

contains many more split-antecedent anaphors. When comparing the Yu et al. model with the

single-antecedent only system (Single Ant), the model has a better recall but a lower precision,

overall having similar F1 scores for most of the matrices. This is because system performance on

the split-antecedent part is not good enough to make a clear difference. With the oracle setting,

however , the better performance on split-antecedent anaphors contributed to a robust improvement

21. We contacted the authors of Zhou and Choi (2018) to obtain their system’s outputs but did not get a reply. It should

also be noted that they evaluated their system in a gold mention setting which is not realistic.
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MUC B3 CEAFE CoNLL

R P F1 R P F1 R P F1 F1

Recent 2 80.0 80.4 80.2 71.0 72.0 71.5 59.1 61.7 60.4 70.7

Recent 3 80.0 80.6 80.3 71.1 72.1 71.6 59.3 61.6 60.4 70.8

Recent 4 80.1 81.0 80.6 71.1 72.5 71.8 59.9 61.9 60.9 71.1

Recent 5 79.6 81.3 80.4 70.6 72.9 71.7 60.2 61.8 61.0 71.1

Random 79.8 79.9 79.9 71.0 71.4 71.2 60.6 61.3 61.0 70.7

Single Ant 77.9 85.0 81.3 69.1 77.0 72.8 64.0 63.0 63.5 72.6

Yu et al. 80.7 82.2 81.4 71.7 73.5 72.6 63.6 64.8 64.2 72.7

Oracle 81.5 83.9 82.7 72.5 75.3 73.9 66.5 65.3 65.9 74.2

(a) MUC, B
3, CEAF

E and CONLL F1.

CEAFM BLANC LEA (β=1) LEA(β=10)

R P F1 R P F1 R P F1 R P F1

Recent 2 70.8 71.8 71.3 73.1 75.9 74.5 60.9 62.0 61.4 43.1 42.8 42.9

Recent 3 70.8 71.9 71.3 73.3 76.2 74.7 61.1 62.0 61.5 43.4 42.6 43.0

Recent 4 70.8 72.2 71.5 73.3 76.5 74.9 61.3 62.3 61.8 43.5 43.8 43.7

Recent 5 70.5 72.3 71.4 73.2 76.9 75.0 60.9 62.5 61.7 40.9 43.9 42.3

Random 71.1 71.5 71.3 73.5 75.7 74.6 60.8 61.1 61.0 42.5 39.8 41.1

Single Ant 70.4 74.7 72.5 72.4 80.1 76.0 60.5 65.5 62.9 34.8 65.5 45.5

Yu et al. 72.0 73.3 72.6 73.6 76.8 75.2 63.0 64.2 63.6 47.6 50.5 49.0

Oracle 73.0 74.1 73.6 74.6 78.1 76.3 64.6 66.2 65.4 53.4 61.2 57.1

(b) CEAF
M , BLANC and LEA with different split-antecedent importance (β).

Table 4: Evaluation of Yu et al. (2021)’s model and of the baselines on the FRIENDS Corpus using

the new Universal Anaphora scorer (Yu et al., 2022b, 2023a).

MUC B3 CEAFE CEAFM BLANC LEA CoNLL

Recent 2 43.4 37.5 30.9 42.7 28.3 36.1 37.3

Recent 3 45.1 38.9 32.0 43.8 30.7 37.3 38.6

Recent 4 44.0 37.7 31.2 42.7 30.2 36.0 37.6

Recent 5 42.8 36.3 28.5 41.4 30.6 34.5 35.9

Random 43.5 36.9 34.2 42.2 31.1 35.3 38.2

Yu et al. 52.3 44.9 43.3 50.8 37.8 43.3 46.8

Oracle 65.5 57.1 65.6 65.1 50.9 54.8 62.7

Table 5: Split-antecedent F1 scores only for Yu et al.’s systems evaluated on the FRIENDS corpus

using our generalization of the coreference scorers.

on overall performance on both single- and split-antecedent anaphors. This indicates a better split-

antecedent anaphora resolver is needed to achieve a significant improvement when compared with

systems that only resolve single-antecedent anaphors. If split-antecedent anaphors are the main

focus of the evaluation, one can use the split-antecedent F1 scores to look at the split-antecedent

only scores (see Table 5) or the LEA metric with appropriate split-antecedent importance (e.g.

β = 10) to prioritise split-antecedent anaphors.
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Zhou&Choi Our approach

B3 CEAFE BLANC B3 CEAFE BLANC

Recent 2 71.2 53.1 76.5 71.5 60.4 74.5

Recent 3 71.2 53.1 76.4 71.6 60.4 74.7

Recent 4 71.2 52.9 76.3 71.8 60.9 74.9

Recent 5 70.8 52.4 76.0 71.7 61.0 75.0

Random 70.7 51.8 75.8 71.2 61.0 74.6

Sing Ant 70.2 54.1 75.0 72.8 63.5 76.0

Yu et al. 74.2 59.1 79.0 72.6 64.2 75.2

Oracle 75.9 62.6 80.3 73.9 65.9 76.3

Gold Sing Ant 89.3 82.2 89.1 96.1 95.0 97.0

Table 6: Comparison between our generalization of the coreference scorers and the Zhou and Choi

(2018) method on the Yu et al.’s system output evaluated on the FRIENDS corpus.

In Table 6 we compare in detail our scorer with that of Zhou and Choi (2018). We use the scorer

developed by Zhou and Choi to score the baselines and system output and compare all three metrics

proposed by them with our equivalents. As we can see from the Table, the main difference is that the

Zhou and Choi approach heavily penalises systems that do not predict split-antecedents: the ‘Sing

Ant’ system that only predicts references to coreference chains without accommodated antecedents

scores lower than the baselines in most of the cases. We suggest this is a result of the decision to put

the split-antecedent anaphors into the relevant singular clusters. By doing so, the plural mentions

are credited multiple times in the evaluation, hence the split-antecedent anaphors gain more weight

than normal mentions. To give a clearer picture of the scorer’s behaviour on penalising the missing

split-antecedents, we also provide in Table 6 the scores on evaluating the gold singular clusters

(Gold Sing Ant). You can see this as a system that predicts all singular clusters correctly and only

misses the links between the split-antecedent anaphors with their antecedents. Given that about 4%

of mentions in the corpus are split-antecedent references, we would expect the scores to be close

to 96%. The Zhou and Choi scorer, however, penalises the system by 10% - 18%, way beyond

the credit that should be assigned to split-antecedent anaphors. In contrast, our scorer gives scores

between 95% - 97% ,which is close to the expectation. Although in some circumstances one might

want to give more credit to split-antecedent anaphors if this is the main focus, it might not be a good

idea to assume this is the mainstream. Instead of permanently boosting the importance of split-

antecedent anaphors as done in Zhou and Choi, we posit that it would be better to allow users (e.g.

the shared task organizers) to decide how important should the split-antecedent anaphors be, as we

have done in LEA, using the split-antecedent importance parameter (β) to configure the importance

of split-antecedent plurals flexibly.

8. Scoring other types of split-antecedent anaphora and of anaphora involving

accommodation

As discussed in the Introduction and in Section 2, split-antecedent plurals are just one example

of anaphoric reference referring to an entity which wasn’t previously mentioned, thus requiring

accommodation of a new antecedent (Beaver and Zeevat, 2007; van der Sandt, 1992). In all of these
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cases, the new entity is composed of a part constructed out of the pre-existing discourse model,

together with a ‘coreference chain’ part–i.e., the structure proposed here for split antecedent plurals:

Ki = Ko
i ⊕Km

i

The difference is the relation linking the new entity to existing entities in the context. For split

antecedents, this relation is set membership: the new set is the set of the entities mentioned by the

split antecedents. This type of accommodation is required not just for plurals, but for discourse

deixis as well. In the case of bridging references, the relation is associative, not coreference. In the

case of context change accommodation, the new entity is typically the result of an action carried out

over the entities in the context. So, the proposed notation could potentially also serve as the basis

for extensions covering these cases.

Split-antecedent discourse deixis As discussed in Section 2, discourse deixis (Webber, 1991;

Kolhatkar et al., 2018), may also involve split-antecedents, as shown by example (3). We also men-

tioned there that in Universal Anaphora, discourse deixis is treated following the approach that has

become standard for event anaphora (Lu and Ng, 2018)–i.e., the interpretation of discourse deictic

references is scored using the same metrics developed for the interpretation of identity reference

(Yu et al., 2022b). (Discourse deictic references are marked in a separate discourse deixis layer,

but this layer differs from the identity reference only in that the antecedents of discourse deixis are

utterances rather than nominal phrases.) The extension of these metrics proposed in this paper can

therefore be immediately used for cases of split-antecedent discourse deixis such as (3). And in-

deed, this approach was used to score discourse deixis, including split-antecedent discourse deixis,

in the CODI/CRAC shared tasks (Khosla et al., 2021; Yu et al., 2022a).

Context change accomodation A more complex case of split-antecedent anaphoric reference are

the cases of context change accommodation discussed by Webber and Baldwin (1992), where a

new entity, the dough, is obtained by mixing together flour and water.

(13) Add [the water]i to [the flour]j little by little.

Then work [the dough]i+j

Context change accommodation was not annotated in any of the best-known datasets for anaphoric

reference discussed in Section 2, so no evaluation method was proposed to our knowledge. How-

ever, as mentioned earlier, the community has started to study context-change accommodation again

recenly, and it has been annotated in CHEMU-REF (Fang et al., 2021) and RECIPEREF (Fang et al.,

2022). In these corpora, context-change anaphoric references are treated as cases of bridging ref-

erences, and systems interpreting them have been evaluated in this way. This approach suffers

however from the same problem as treating split-antecedent plural references as cases of bridging

discussed in Section 2.3–namely, that it fails to capture the fact that the water and the flour are all of

the antecedents of ‘the dough,’ and therefore there is no way of rewarding a system for identifying

all antecedents, or penalizing a system for recovering only some of them. Using the approach pro-

posed in this paper would better reflect the semantics of these cases, although some work is needed

to work out the implications of the fact that the water and the flour are not simply elements of a set,

but the two components of a piece of matter.
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9. Conclusions

In order to push forward the state of the art in anaphora resolution beyond the simplest form of iden-

tity anaphora it is not sufficient to create suitable datasets annotated with the more general cases of

anaphora, although that is an important effort. It is also necessary to develop methods for evalu-

ating the performance of anaphoric resolvers on these cases. In this paper we proposed a method

for evaluating one of these more general cases–the case of anaphoric reference to entities that need

introducing in a discourse model via accomodation, exemplified by split-antecedent anaphors but

including other cases as well, such as discourse deixis–that is a straightforward extension of exist-

ing proposals for coreference evaluation and thus does not require introducing additional metrics,

an issue in a field already over-rich with proposals in this direction.
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and Carolyn Rosé. The CODI-CRAC 2021 shared task on anaphora, bridging, and discourse

deixis in dialogue. In Proceedings of the CODI-CRAC 2021 Shared Task on Anaphora, Bridg-

ing, and Discourse Deixis in Dialogue, pages 1–15, Punta Cana, Dominican Republic, 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.codi-sharedtask.1. URL

https://aclanthology.org/2021.codi-sharedtask.1.

Varada Kolhatkar, Heike Zinsmeister, and Graeme Hirst. Interpreting anaphoric shell nouns using

antecedents of cataphoric shell nouns as training data. In Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing, pages 300–310, Seattle, Washington,

USA, 2013. Association for Computational Linguistics. URL https://aclanthology.

org/D13-1030.

Varada Kolhatkar, Adam Roussel, Stefanie Dipper, and Heike Zinsmeister. Anaphora with

non-nominal antecedents in computational linguistics: a Survey. Computational Linguistics,

44(3):547–612, 2018. doi: 10.1162/coli a 00327. URL https://www.aclweb.org/

anthology/J18-3007.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2(1-2):83–97, 1955.

Fred Landman. Groups I. Linguistics and Philosophy, pages 559–605, 1989.

42



SCORING COREFERENCE CHAINS WITH SPLIT-ANTECEDENT ANAPHORS

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural coreference res-

olution. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing, pages 188–197, Copenhagen, Denmark, 2017. Association for Computational Lin-

guistics. doi: 10.18653/v1/D17-1018. URL https://www.aclweb.org/anthology/

D17-1018.

Kenton Lee, Luheng He, and Luke Zettlemoyer. Higher-order coreference resolution with coarse-to-

fine inference. In Proceedings of the 2018 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),

pages 687–692, New Orleans, Louisiana, 2018. Association for Computational Linguistics. doi:

10.18653/v1/N18-2108. URL https://www.aclweb.org/anthology/N18-2108.

David K. Lewis. Scorekeeping in a language game. Journal of Philosophical Logic, 8:339–359,

1979.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Workshop on Text

Summarization Branches Out, pages 74–81, Barcelona, Spain, 2004. Association for Computa-

tional Linguistics. URL https://aclanthology.org/W04-1013.

Godehard Link. The logical analysis of plurals and mass terms: A lattice- theoretical approach.
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