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Abstract

Low back pain is the leading cause of disability worldwide and is strongly associated with degeneration of the intervertebral disc (IVD).
During degeneration the nucleus pulposus (NP) in the core of the IVD, is affected by altered matrix synthesis, increased degradation, and
cell loss. Strategies combining regenerative cell sources with injectable biomaterials could provide a therapeutic approach to treating
IVD-degeneration related back pain. The juvenile cells of the NP, known as notochordal cells (NC), could provide both anabolic and
anti-catabolic responses for disc regeneration. However, their behaviour within biomaterial delivery systems has not been investigated.
Here, porcine NCs were incorporated into three injectable hydrogels: Albugel (an albumin/hyaluronan hydrogel), NPgel (a L-pNIPAM-
co-DMAc hydrogel) and NPgel with decellularized NC-matrix powder (dNCM). The NCs and biomaterial constructs were cultured for up
to 4 weeks under 5 % oxygen (n = 3 biological repeats). The ability of biomaterials to maintain NC viability, phenotype and extracellular
matrix synthesis and deposition was investigated through histological, immunohistochemical and glycosaminoglycans analysis. NCs
survived in all three biomaterials after 4 weeks, whilst phenotype and cell clustering were maintained to a greater extent in NPgel and
Albugel. Thus, these biomaterials could facilitate maintenance of the NC phenotype, support matrix deposition and be a basis for future
IVD regeneration strategies.
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Introduction

Lower Back Pain and Intervertebral Disc Degeneration

Low back pain (LBP) is the biggest cause of disabil-
ity worldwide; around 80 % of adults will suffer from
LBP in their lifetime (Hartvigsen et al., 2018; Traeger
et al., 2019). Most people experience mild pain and re-
cover quickly, however, in some cases LBP lasting longer
than 6 weeks progresses to chronic LBP (CLBP) which
can contribute to lifelong disability and societal burden
(Hartvigsen et al., 2018; Maetzel & Li, 2002). Current
treatments to combat LBP may be pharmacological or non-
pharmacological, such as: non-steroidal anti-inflammatory
drugs, opioids, anti-depressants, exercise, massage, and

manipulation (NICE, 2020; Qaseem et al., 2017). Whilst
CLBP can be tackled with surgery in some situations, but
this is invasive, expensive, and only targets the end-stage
of disease in the spine having limited effectivity to manage
CLBP in many patients (Bogduk, 2004; Foster et al., 2018;
Phillips et al., 2003; Steffens et al., 2016). In around 40 %
of cases, the underlying cause of CLBP is associated with
degeneration of the intervertebral disc (IVD) (Luoma et al.,
2000; Sakai & Andersson, 2015). Importantly, none of the
current treatments target the regeneration of the IVD.

Intervertebral Disc and Notochordal Cells

The IVD permits range of motion and supports biome-
chanical forces applied to the spine (Risbud & Shapiro,
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2011). The core of the disc contains an aggrecan-rich gel-
like tissue called the nucleus pulposus (NP), which is en-
closed circumferentially by the ligamentous annulus fibro-
sus (AF). The composition of the NP changes as a human
IVD matures. The NP of a neonate is populated by noto-
chordal (NC) cells, which are large, vacuolated, and mor-
phologically distinct cells. In humans, some canine breeds,
and other species, such as ovine and caprine, large vacuo-
lated NCs (morphotypic NCs) gradually disappear during
disc maturation, substituted by more smaller NP cells as the
primary cell type (Bach et al., 2022; Sheyn et al., 2019).
However, certain species retain morphotypic NCs within
the NP region throughout most of their lifespan, including
porcine, leporine, and murine species (Alini et al., 2008;
Sheyn et al., 2019). Interestingly, an association between
morphotypic NC loss and the onset of disc degeneration has
been highlighted, where natural degeneration is only seen
in species which lose their morphotypic NCs prior to adult-
hood (Bergknut et al., 2012; McCann & Séguin, 2016; Jill
P.G. Urban & Roberts, 2003). As a result, NCs have be-
come a trending research topic regarding their promise for
therapeutic application to mediate disc regeneration (Bach
et al., 2022; Humphreys et al., 2018).

Regenerating the Intervertebral Disc with
Cell-biomaterial Treatments

Of the cell types which have been considered for the
purposes of regenerating a degenerative IVD, less than 3 %
of the papers utilised NCs as the choice of regenerative cell
source in a recent review (Williams et al., 2021). The re-
view highlights that NCs have been successfully extracted
from several species, however, these studies have mainly
focused on 3D in vitro culture, with a distinct lack of pro-
gression into in vivo studies (Williams et al., 2021). The
limited use in studies so far may have been due to the dif-
ficulties in NC handling, such as: the inability to main-
tain their phenotype in monolayer culture (Gantenbein et
al., 2014; Potier & Ito, 2014; Spillekom et al., 2014), har-
vesting insufficient numbers due to limited amplification
and inability to passage whilst maintaining phenotype (Kim
et al., 2009; Potier et al., 2014; Spillekom et al., 2014;
Williams et al., 2023). Nonetheless, NCs could provide an
excellent cell source for regenerating the degenerate IVD,
due to their capabilities of synthesising extracellular matrix,
being highly viable in the conditions within the IVD and
producing anti-angiogenic, and anti-catabolic effects (Gan-
tenbein et al., 2014; Potier et al., 2014; Purmessur et al.,
2013; Spillekom et al., 2014), for a recent review on the
potential of NCs please see Bach et al. (2022).

The limitation of NCs being maintained only in 3D
culture models can be addressed by the seeding of cells di-
rectly into a biomaterial scaffold, facilitating cell growth
and/or favourable differentiation, to provide mechanical
support and aid the delivery of the cells into the disc (Per-
oglio et al., 2012; Thorpe et al., 2016). A proposed bio-

material that enables liquid injection followed by in situ
gelation, with additional attributes of biocompatibility, me-
chanical stability, compliance with regulatory pathway ap-
provals and facile translation from research to future medi-
cal application, would be an ideal candidate for a therapeu-
tic treatment.

Hydrogel-based biomaterial carriers that have previ-
ously been developed for NP regeneration, were investi-
gated in this study to support NCs. The first biomaterial
selected was a polyethylene glycol-crosslinked serum al-
bumin/hyaluronan hydrogel, referred to as Albugel, which
has been previously shown to support the survival of
disc cells and disc healing and has been shown safe to
use in human clinical trials regarding cartilage therapy in
knee joints (Benz et al., 2010, 2012; Niemeyer et al.,
2022). The second selected biomaterial was a synthetic
Laponite® crosslinked poly N-isopropylacrylamide-co-N,
N-dimethylacrylamide (NPgel) biomaterial (Boyes et al.,
2021) which has been previously reported to induce human
bone marrow progenitor cell differentiation into an NP-like
phenotypewithmatrix deposition that mimics the native NP
tissue (Thorpe et al., 2016; Thorpe et al., 2017; Vickers et
al., 2019), and can restore degenerate discs in a goat or-
gan culture model (Snuggs et al., 2023). The importance
of cells to retain their NP phenotype will facilitate the re-
generative potential of the cells, such as NP cell production
of extracellular matrix. This hydrogel system has also un-
dergone in vivo safety studies in rats, where it was demon-
strated to not show any adverse events within a subcuta-
neous implantation model (Thorpe et al., 2018). The third
and final biomaterial was selected to investigate whether the
inclusion of the native extracellular matrix from the NC-
rich NP tissue improved phenotypic maintenance. Noto-
chordal cell matrix (NCM)-based materials have been pre-
viously shown to promote anabolism within NP cells and
degenerated IVD tissue (De Vries et al., 2019; Schmitz et
al., 2022). Thus, here the hypothesis that the supplemen-
tation of the synthetic NPgel with the NCM would pro-
vide additional cues to the NCs supporting their phenotype
(Bach et al., 2018; Bai et al., 2017; Cornejo et al., 2015;
Vickers et al., 2019), specifically a decellularised NCM
(dNCM) was utilised creating a bioactive functional bio-
material (NPgel/dNCM).

Altogether, this study investigated the use of porcine
NCs (pNCs) in combination with three potential injectable
biomaterials: Albugel, NPgel and NPgel/dNCM that were
intentionally representative of either synthetic (NPgel),
semi-synthetic (NPgel/dNCM) or primarily based on natu-
ral components (Albugel), as a first translation step of NC-
based therapeutic strategies.

Materials and Methods
Experimental Design

To ensure biomaterials to be tested further with cell
studies could withstand the shear stresses within the native
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disc, initial preliminary rheological characterisation was
performed, biomaterials which failed to withstand these
forces would be excluded from further study. Optimisa-
tion experiments were then performed by seeding pNCs
into a readily available biomaterial, which has been exten-
sively characterised (NPgel) (Boyes et al., 2021; Thorpe
et al., 2016; Thorpe et al., 2017; Vickers et al., 2019).
These initial optimisation studies were used to determine
optimal seeding density, and viability. Thereafter, pNCs
were harvested from three independent biological porcine
donors, the discs from each donor were pooled together
prior to seeding into three different injectable biomateri-
als in at least duplicate per donor, total replicates: Al-
bugel (n = 8), NPgel (n = 8) and NPgel/dNCM (n = 6),
with all output measures performed on every sample. Cell-
biomaterial constructs were cultured for 4 weeks in IVD
conditions in relation to physioxia and low glucose condi-
tions. Following culture viability was assessed using Cal-
cein/Hoechst staining. Morphology and porous structure of
the gel networks were investigated using scanning electron
microscopy (SEM) and histology. Finally, phenotype and
matrix production was assessed using immunohistochem-
istry and histological staining.

NPgel Preparation

Laponite® crosslinked pNIPAM-co-DMAc (NPgel)
biomaterial was prepared as previously described (Thorpe
et al., 2016). In short, a 10 mL exfoliated sus-
pension of 0.11 g Laponite® clay nanoparticles (25-
30 nm diameter, < 1 nm thickness) (BYK Additives
Ltd, Widnes, UK) in 18 mΩ deionized H2O was pre-
pared. To the 10 mL exfoliated Laponite® clay suspen-
sion, 0.87 g N-isopropylacrylamide 99 % (NIPAM) (KJ
Chemicals, Tokyo, Japan), 0.13 g N-dimethylacrylamide
(DMAc) (274135; Sigma, Dorset, UK), and 0.01 g 2-
20-azobisisobutyronitrile (AIBN) (441090; Sigma, Dorset,
UK) were added, mixed well, and filtered through a 5 to 8
µm pore filter paper. Polymerization was performed at 80
°C overnight. NPgel suspension was cooled to ~38-39 °C
prior to cell incorporation.

NPgel with dNCM Preparation

Decellularized NCM powder (dNCM) was prepared
as previously described (Schmitz et al., 2022). Briefly,
NC-rich NP tissue was harvested from 12-week-old
porcine donors and processed by firstly freeze drying in a
lyophilizer (Labconco, Kansas City, MO, USA) overnight
at – 80 °C, then for > 7 hours at ≤ – 50 °C. The sam-
ple was then decellularized using a 200 U/mL benzonase
(E1014; Merck KGaA, Darmstadt, Germany) in 50 mM
Tris-HCl buffer (93313; Sigma, Zwijndrecht, The Nether-
lands), pH 7.5, 2.5 mM MgCl2 (M8266; Sigma, Zwijn-
drecht, The Netherlands) at 0.01 mL buffer/mg dry weight
tissue for 48 hours at 37 °C on a roller at 2 rpm; followed
by pulverization to obtain a powder that can be kept a – 80

°C. The dNCM was then sterilized using UV light and 0.5
% w/v was stirred to be dispersed within NPgel just prior to
cell seeding, a single batch of dNCM was utilised for these
studies.

Albugel Preparation
Albugel (an albumin/hyaluronan hydrogel) was pre-

pared by firstly creating hyaluronic acid (HA) solution;
HA solution was constructed with 35 % v/v Ostenil Plus®
(TRB Chemedica, Newcastle-under-Lyme, UK) and alpha
MinimumEssentialMedium (α-MEM, 12571063; Gibco™
Life Technologies, Paisley, UK) base media. This was
then combined with 11 % v/v chemically modified hu-
man serum albumin (maleimido-human serum albumin;
MA-HSA; TETEC, Germany), 18 % v/v cell suspension.
Using a dual syringe with a mixing head, the HA, MA-
HSA and cell mixture was combined with the crosslinker
α,ω-bisthio-polyethylene glycol (BT-PEG; Laysan Bio Inc.
Arab, AL, USA) at 1:5 ratio.

Rheological Characterisation
The rheological behaviour of the biomaterials at dif-

ferent degrees of deformation was characterised using an
Anton Paar 301 rheometer (Anton Paar, Graz, Austria)
in parallel plates configuration. Circular samples were
prepared using bespoke Polytetrafluoroethylene (PTFE)
moulds (20 mm in diameter, 2 mm in height) and immersed
in low glucose Dulbecco’s modified eagles media (DMEM,
10567014; Gibco™ Life Technologies, Paisley, UK), with
pyruvate pH adjusted to 6.8 to mimic the degenerate disc
environment for up to 24 hours at 37 °C. To prevent sample
slippage during measurement, sandpaper was attached to
the measuring plates. A constant load of 1 Nwas applied on
the sample throughout the measurement to maintain good
contact between the sample and the top plate. Amplitude
sweep measurements were conducted on the hydrogel sam-
ples between 0.1-50 % strain at 1 Hz frequency after 2 and
24 hours of immersion in media. A minimum of three repli-
cates were conducted for each sample and the average mod-
uli values are reported here. For samples that suffered from
shrinkage, the resultant moduli values were corrected by the
factor ( d

dsample
)
4 where d is the diameter of the upper plate

and dsample is the diameter of the measuring sample (Bron
et al., 2009).

Notochordal Cell Extraction
pNCwere obtained from lumbar IVDs harvested from

young pigs (< 15 weeks old) (Medical Meat supplier,
Rochdale, UK and Marr Grange Butchers, Doncaster, UK).
Following the protocol from Williams et al. (2023), the
spines were dissected, and the NP harvested under sterile
conditions, the NP tissue from the same porcine donor were
pooled and digested following a sequential treatment in 7
U/mL pronase (PRON-RO; Sigma, Dorset, UK) in α-MEM
modified with ribonucleosides, deoxyribonucleosides, phe-
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nol red, L-glutamine (12571063; Gibco™ Life Technolo-
gies, Paisley, UK) with 1 % v/v Penicillin-Streptomycin
(P/S, 15140122; Gibco™ Life Technologies, Paisley, UK)
for 30 minutes at 37 °C. Followed by a 16 hour digestion
in 125 U/mL collagenase type II (17101015; Gibco™ Life
Technologies, Paisley, UK) in α-MEM at 37 °C. The clus-
ters of pNC were captured in a 40 µm cell strainer and fur-
ther cultured as described below.

Incorporation of Notochordal Cells into Biomaterials and
Culture

pNC clusters were counted post harvesting using a
NucleoCounter® NC-200™ (Chemometec, Allerod, Den-
mark), as previously described in Williams et al. (2023).
For seeding, harvested pNC were centrifuged at 300 g for
5 minutes, the supernatant was removed, and the NC pellet
was resuspended inαMEM (12571063; Gibco™Life Tech-
nologies, Paisley, UK) containing P/S 50 U/mL (15140122;
Gibco™ Life Technologies, Paisley, UK), prior to adding
the biomaterials to the Eppendorf. Cell density optimisa-
tion studies investigated 1 × 106, 4 × 106, 1 × 107 and 2
× 107 cells/mL within NPgel for 2 weeks in culture. From
which a final cell density of 4 × 106 cells/mL of pNC was
selected for further studies and seeding into the three in-
jectable biomaterials: Albugel, NPgel and NPgel/dNCM.
In addition, parallel acellular biomaterial controls were es-
tablished. Each 300 µL pNC and biomaterial constructs
were extruded through a 27 gauge needle to mimic injec-
tion into the disc into 48 well culture plate, left to gel at
37 °C for 5 minutes. Five hundred microliters of complete
NC culture media was then added to the well: α-MEM
(12571063; Gibco™ Life Technologies, Paisley, UK) con-
taining P/S 50 U/mL (15140122; Gibco™ Life Technolo-
gies, Paisley, UK), amphotericin B 2.5 µg/mL (A2942;
Sigma, Dorset, UK), L-ascorbic acid 25 µg/mL (A4403;
Sigma, Dorset, UK), 1 % Insulin-transferrin-Selenium v/v
(ITS-X, 51500056; Gibco™ Life Technologies, Paisley,
UK), 1 % L-glutamine v/v (25030081; Gibco™ Life Tech-
nologies, Paisley, UK), L-proline 40 µg/mL (A10199-22;
Gibco™ Life Technologies, Paisley, UK) and Albumax
1.25 mg/mL (11021037; Gibco™ Life Technologies, Pais-
ley, UK) (Basatvat et al., 2023), leaving the outer wells of
the plate void of constructs, but hydrated with phosphate
buffered saline (PBS, 10010023; Gibco™ Life Technolo-
gies, Paisley, UK). Triplicate biological repeats of cellular
and acellular controls were cultured for up to 4 weeks in a
physiological disc environment of 5 % v/v O2, with5 % v/v
CO2 at 37 °C using a hypoxia glove box (Coy Laboratory
Products, Grass Lake, MI, USA). Complete media was re-
placed in the hypoxia glove box three times per week during
the culture period.

To assess initial cell viability, constructs were stained
with 10 µM Calcein-AM (C1430; Invitrogen™, Carls-
bad, CA, USA) and Hoechst 33342 (H3570; Invitrogen™,
Carlsbad, CA, USA). Constructs following culture were

firstly washed in PBS, next, cells were stained with 10 µM
of Calcein-AM for 30 minutes at 37 °C, washed three times
with PBS, followed by 5 pg/mL of Hoechst for 15 min-
utes at 37 °C. After staining culture media was re-added,
and a small piece of the construct was taken and con-
strained between a microscope slide and coverslip and vi-
sualised on an Olympus BX60 microscope (Olympus Life
Science, Southend-on-Sea, UK) using 494 nm filter (flu-
orescein isothiocyanate (FITC)) and 361 nm filter (4,6-
diamidino-2-phenylindole (DAPI)) for visualising Calcein-
AM and Hoechst stains, respectively. After the culturing
for up to 3 weeks constructs were harvested for assessment
of cell morphology, matrix deposition and analysis of cel-
lular phenotypic markers, along with acellular controls.

Scanning Electron Microscopy

Triplicate samples were removed from culture and
flash frozen with liquid N2and stored at – 80 °C. The sam-
ples were freeze dried overnight using a freeze dryer (FD-
1A-50; Boyikang, Beijing, China) at – 50 °C under vac-
uum. The samples were then fractured to expose the inte-
rior surface morphology, attached onto an aluminium stub,
and then using a Quorum Technology 150 Q TES system
(Quorum Technology, East Sussex, UK) (FEI NOVA, Ore-
gon, USA). Secondary electron images were obtained using
accelerating voltage 5 kV at various magnifications ranging
from 600× to 6,000×.

Histological Analysis

NC phenotype and matrix deposition was investigated
in acellular controls and cellular constructs following 2
and 4 weeks in culture. Triplicate samples per biomate-
rial were removed from culture and fixed in 10 % w/v
neutral buffered formalin for 20 minutes and processed to
wax using the TP1020 tissue processor (Leica Microsys-
tems, Newcastle, UK). Following fixing and embedding,
all samples were sectioned at 6 µm and mounted to X-
tra® adhesive positively charged slides (Leica Microsys-
tems, Newcastle, UK). Sections were dewaxed in Sub X
(Leica Microsystems, Newcastle, UK) three times for 7
minutes and rehydrated in industrial methylated spirit (IMS;
Fisher, Loughborough, UK; 10552904) for three times for
7 minutes and hydrated in running tap water for 5 min-
utes prior to histological staining. Sections were assessed
using histological stains. Haematoxylin & Eosin (H&E):
Mayer’s Haematoxylin (MHS32; Sigma, Dorset, UK) for 1
minute, before being ‘blued’ in running water for 5 min-
utes and immersed in Eosin (3801601; Leica Microsys-
tems, Newcastle, UK) for a further 1 minute; Alcian Blue
(pH 2.5, 38016SS3; (Leica Microsystems, Newcastle, UK)
for 30 minutes;) followed by counter stain of Nuclear fast
red (38016SS3; Leica Microsystems, Newcastle, UK) for
10 minutes; Masson’s Trichrome (RRSK20; Atom Scien-
tific, Manchester UK): according to the manufacturer’s in-
structions; Safranin O/Fast green: sections are stained with
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Weigert’s Haematoxylin for 5 minutes, followed by 0.4 %
v/v aqueous Fast green (F7252; Sigma, Dorset, UK) for 4
minutes, rinsed with 1 % v/v acetic acid (695092; Sigma,
Dorset, UK) and counter stained with 0.125 %w/v Safranin
O (S2255; Sigma, Dorset, UK). After specific histologi-
cal staining, sections were dehydrated three times for 10-
minute washes in IMS, cleared in Sub-X (3803670E; Leica
Microsystemcs, Newcastle, UK) three times for 10-minute
and mounted in Pertex (3808707E; Leica Microsystems,
Newcastle, UK). All slides were examined with an Olym-
pus BX51 microscope and images captured by digital cam-
era and Capture Pro OEM v8.0 software (Media Cybernet-
ics, UK). Histological sections were analysed, and repre-
sentative images captured to document their histological ap-
pearance and cellular staining patterns.

Immunohistochemistry and Immunofluorescence Analysis

Immunohistochemistry (IHC) and immunofluores-
cence were also performed on porcine disc samples and
pNCs cultured in biomaterials. Specific antibodies were
used to target antigens in relation to NP matrix, NC and
NP phenotype (Table 1). Samples embedded in paraffin
wax were dewaxed in Sub X for three times for 7 min-
utes and rehydrated in IMS for three times for 7 minutes.
For IHC, as previously reported (Binch et al., 2020), en-
dogenous peroxidase activity was blocked for 30 minutes
using IMS containing 3 % w/w H2O2 (8.22287; Sigma,
Dorset, UK) and 5 drops of 37 % hydrochloric acid. Fol-
lowed by three times for 5 minutes washes in tris-buffered
saline (TBS; 20mM tris (10528830; Fisher, Loughborough,
UK), 150 mM sodium chloride (10092740; Fisher, Lough-
borough, UK), pH 7.5). Sections were subjected to antigen
retrieval methods as detailed in Table 1. For heat antigen re-
trieval, sections were immersed in pre-heated (60 °C) anti-
gen retrieval buffer (0.05 M tris, pH 9.5) and irradiated for
5 minutes at 40 % power in a microwave oven (Sanyo 800
Watt) and then again for 5 minutes at 20 % power. Sec-
tions were left to stand at room temperature for 15 minutes.
For enzyme antigen retrieval, sections were placed in a pre-
heated (37 °C) TBS buffer with 0.01%w/vα-chymotrypsin
(C4129; Sigma, Dorset, UK) in 0.1 % w/v CaCl2 for 30
minutes at 37 °C; or no retrieval was required. Sections
were washed in TBS and blocked for 2 hours with normal
serum from which the animal in which the secondary anti-
body was raised in; 5 % v/v bovine serum albumin (BSA,
A7030; Sigma, Dorset, UK) w/v in 75 % TBS and 25 %
normal serum v/v (Table 1). Primary antibody was applied
overnight at 4 °C according to Table 1 alongside equivalent
concentration IgG controls. On the second day, the sec-
tions were washed in TBS followed by appropriate biotiny-
lated secondary antibody for 30 minutes. Sections were
subject to avidin-biotin-complex (ABC) elite reagent for
30 minutes (PK-7100; Vector Laboratories, Newark, CA,
USA), 3,3-diaminobenzidine tetrahydrochloride (DAB) so-
lution (D5637; Sigma, Dorset, UK) for 20 minutes and

washed in running tap water for 5 minutes prior to coun-
terstaining with Mayer’s Haematoxylin for 1 minute and
blued in running tap water for 5 minutes. Sections were
dehydrated in IMS three times for 10 minutes, cleared in
Sub-X three times for 10 minutes, and mounted in Pertex.

Dimethylmethylene Blue Assay

Media samples were collected during every me-
dia change during the culture of the pNC in biomate-
rial constructs and stored at – 80 °C. Dimethylmethy-
lene blue (DMMB) reagent was generated with 1,9-
dimethylmethylene blue (341088; Sigma, Dorset, UK),
formic acid (F0507; Sigma, Dorset, UK), and sodium for-
mate (247596; Sigma, Dorset, UK), adjusted to pH 6.8 and
diluted so that the optical density (OD) measured between
0.38 and 0.41 with a blank sample. Once ready to perform a
DMMB assay, media was thawed at room temperature, 50
µL of construct sample was added to 96 well plate (167425;
Thermofisher, Waltham, MA, USA) followed by 20 µL of
guanidinium chloride solution (2.16 M Guanidium Chlo-
ride (1.0422; Sigma, Dorset, UK) diluted in papain buffer
(0.1 M sodium acetate (76728; Sigma, Dorset, UK), 0.01
M L-cysteine hydrochloride (C1276; Sigma, Dorset, UK),
0.05 M disodium EDTA (E5134; Sigma, Dorset, UK), 0.2
M NaCl (S9888; Sigma, Dorset, UK)) adjusted to pH 6.0),
adjusted to pH 6.8, followed by 200 µL of DMMB reagent.
The plate was set to orbital shake for 5 seconds followed
by a 3 minutes rest before being read at 520 nm absorption
using a CLARIOstar®Microplate Reader (BMG Labtech,
Aylesbury, UK).

Statistical Analysis

Statistics were performed in GraphPad prism v8.4.1
(GraphPad Software, Inc., San Diego, CA, USA). The nor-
mality of the data was assessed using the Shapiro-Wilk
test. The cell distribution when seeded within the biomate-
rials was not normally distributed, therefore analysed with a
Kruskal-Wallis test followed by the Dunn’s multiple com-
parisons test for reviewing statistical differences between
the biomaterial groups (pNC&Albugel vs pNC&NPgel vs
pNC & NPgel/dNCM). When analysing the percentage of
pNC positive for a phenotype marker, a Kruskal-Wallis test
was performed, followed by Dunn’s post hoc test to com-
pare each group (pNC & Albugel vs pNC & NPgel vs pNC
& NPgel/dNCM). For the statistical analysis of GAG pro-
duction data was normally distributed therefore a one-way
ANOVA was performed, followed by the recommended
Tukey’s multiple comparisons test to compare each acellu-
lar biomaterials (Albugel vs NPgel vs NPgel/dNCM) and
the equivalent cellular construct (Albugel vs pNC & Al-
bugel; NPgel vs pNC & NPgel; NPgel/dNCM vs pNC &
NPgel/dNCM). Statistical significance was accepted at p≤
0.05.
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Table 1. Immunohistochemical procedures utilised for phenotypic characterisation of porcine notochordal cells.
Primary Antibody Target Clonality Optimal

dilution
Antigen
retrieval

Technique Secondary Antibody Optimal
dilution

Aggrecan (Abcam,
ab3778)

NP matrix Mouse monoclonal 1:100 Heat IHC Rabbit Anti-Mouse
(Abcam, ab6727)

1:500

Brachyury (Abcam,
ab20680)

NC/NP marker Rabbit polyclonal 1:100 None IHC Goat Anti-Rabbit
(Abcam, ab6720)

1:500

Collagen Type II
(Sigma, maB1330)

NP matrix Mouse monoclonal 1:200 Enzyme IHC Rabbit Anti-Mouse
(Abcam, ab6727)

1:500

KRT 8/18/19 (Abcam,
ab41825)

NC/NP marker Mouse monoclonal 1:400 Enzyme IHC Rabbit Anti-Mouse
(Abcam, ab6727)

1:500

Primary antibody target, clonality, dilutions optimised and antigen retrieval. Along with the Secondary antibodies and dilutions, that was used
alongside for immunohistochemical staining the staining methods.

Results
Rheological Properties

Storage moduli of the three biomaterials (post-
gelation) were monitored over a range of strain values (Fig.
1). During the strain sweep (or amplitude sweep) experi-
ment, all three hydrogels behaved like a viscoelastic solid
characterised by a higher storage modulus (G′) than loss
modulus (G′′). A gradual downturn of G′ can be seen
in every sample as the strain value was increased. How-
ever, the elastic portion of these materials prevailed the vis-
cous portion throughout the strain range tested here (no G′

and G′′ crossover). In both acellular NPgel and acellular
NPgel/dNCM systems, the storage moduli increased after
24 hours, reaching an average G′ of ~14 kPa and ~3 kPa
(at 1 Hz), respectively. These two hydrogel systems ex-
hibited modest shrinkage (up to 20 % by volume) after 24
hours of media immersion. The slight change in volume
was associated with the release of water as a result of inter-
action with the salts present in the media, creating a denser
scaffold with higher G′. Albugel did not display shrink-
age during the 24-hour period and maintained a G′ value
of ~0.8 kPa at both time points. The strain-independent re-
gion of an amplitude sweep, also known as the linear vis-
coelastic (LVE) region, describes the limits within which
a viscoelastic material can be deformed non-destructively.
Whilst all three biomaterials displayed linear viscoelastic
properties within physiological strain ranges and thus were
progressed for further cell testing, the LVE limit of Albugel
(up to 40 % strain) exceeded that of NPgel (7 % strain) and
NPgel/dNCM (10 % strain) (Fig. 1).

Optimising Cell Seeding Density within NPgel as an
Example Biomaterial

An initial optimisation experiment was conducted to
determine seeding density and to observe if different cell
densities influenced the morphology and survival of pNC in
vitro following 2 weeks culture within NPgel as the exam-
ple biomaterial. Cells were visible in the 1 × 106 cells/mL
constructs, but they were sparse, and presented as single
cells (Fig. 2). Cell clustering was observed in biomaterial

constructs seeded with 4× 106 cells/mL, 1× 107 cells/mL
and 2 × 107 cells/mL. There was no observable difference
between the 4 × 106 cells/mL and 1 × 107 cell/mL, and in
the constructs seeded at 2× 107 cells/mL displayed smaller
clusters with dispersed single cells (Fig. 2). As clusters
were first observed in 4× 106 cells/mL, further experimen-
tal set ups were performed with 4 × 106 cells/mL seeding
density in biomaterials.

Isolated Notochordal Cell Morphology in NPgel as a
Model Biomaterial

Optimisation experiments were conducted to deter-
mine whether pNCs could be maintained within a biomate-
rial system. Phase contrast images demonstrated the pres-
ence of large cell clusters within NPgel, with predominant
vacuoles seen up to 2 weeks in culture, which are still vis-
ible at 3 weeks (Fig. 3; vacuoles indicated by black arrow-
heads).

Porcine Notochordal Cells in Albugel, NPgel and
NPgel/dNCM

Live-cell imaging with Calcein-AM and Hoechst
staining, demonstrated that pNCs remained present and vi-
able up to 2 weeks in all biomaterials. The maintenance of
NCmorphology and the retention of vacuole-like structures
(indicated with white arrows) were observed in the 1-week
NPgel and up to 2-week in the Albugel samples seeded with
pNCs, although quantification was not possible given the
clustered appearance of cells (Fig. 4). NPgel/dNCM with
pNC showed less notochordal-like morphological pheno-
type with no vacuoles present at any timepoints (Fig. 4).

Constructs were further cultured for an extended 4-
week culture. Scanning electron microscopy was utilised
to investigate morphology of acellular and cellular bioma-
terials. Furthermore, histological stains: H+E, Alcian Blue,
Masson’s Trichrome and Safranin O/ Fast green were used
to determine the morphology and matrix deposition by the
cells in the biomaterials.
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Fig. 1. Storage moduli of the three biomaterials (post-gelation). Amplitude sweeps of the NPgel, NPgel/dNCM and Albugel after 2-
and 24-hours immersion in culture media which mimics the degenerate conditions of the disc (OSM, pH, glucose). Experimental setup
is shown on the right-hand side.

Scanning Electron Microscopy Morphology

SEM analysis of acellular constructs demonstrated a
porous structure within all biomaterials. Albugel demon-
strated a dense structure with fibrous pores (Fig. 5A).
Whilst NPgel displayed a more honeycomb porous struc-
ture (Fig. 5C), which following inclusion of dNCM showed
the appearance of thinner strands (Fig. 5E). Whilst con-
structs containing pNCs demonstrated apparent cellular
structures within all gel systems (Fig. 5). Although con-
structs were heterogeneous, with some areas filled with
cellular structures, other areas were devoid of cells (Fig.
5B,D,E), suggesting an uneven distribution of pNCs within
the constructs. The majority of cells within all three bioma-
terials were seen in small clusters (Fig. 5B,D,E), although
some single/duplicate cells were observed in Albugel con-
structs (Fig. 5Biii). Within NPgel constructs some clusters
displayed a visible ‘membrane’ which appeared to wrap the
entire pNC cluster (Fig. 5D; white arrowheads).

Isolated Notochordal Cell Behaviour and Morphology in
Novel Biomaterials

H+E staining of pNC & NPgel and pNC &
NPgel/dNCM demonstrated the seeded cells remained
in cluster formation, whereas the pNCs in the Albugel
construct appeared more dispersed (Fig. 6). Alcian
Blue demonstrated GAG staining around the cell clusters
(stained blue) in pNC & NPgel constructs (Fig. 6). In
the NPgel and NPgel/dNCM constructs (Fig. 6) Mas-
son’s Trichrome blue staining surrounding the cells indi-
cates collagen expression in the surrounding material (Fig.
6). Collagen expression is also indicated in Safranin Or-
ange stain by pericellular green/turquoise staining (Fig.
6). Albugel constructs failed to demonstrate clear ma-
trix indication when stained with Alcian Blue or Masson’s
Trichrome, however Safranin Orange stain indicated slight
green/turquoise staining surrounding the pNC (Fig. 6).

The number of cells per cluster was determined fol-
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Fig. 2. Optimised seeding density of cells into biomaterials. Porcine notochordal cells seeded at different densities; 1× 106, 4× 106,
1 × 107, and 2 × 107 before culturing for up to 2 weeks in 5 % v/v oxygen and stained with alcian blue. Scale bar 20 µm.

Fig. 3. Brightfield live cell imaging of porcine notochordal cells cultured in NPgel, for up to 3 weeks in a hypoxia unit of 5 % v/v
oxygen at 37 °C. Scale bar 100 µm. Black arrowheads indicate vacuoles.

lowing 4 weeks in culture. The number of cells in clusters
were significantly different between each biomaterial, with
the number of pNCs in clusters when cultured in NPgel,
were significant greater when compared to NPgel/dNCM
(p ≤ 0.01) and significantly greater when compared to
Albugel (p ≤ 0.0001); NPgel/dNCM were significantly
greater when compared to Albugel (p ≤ 0.001; Fig. 7).
With the highest number of cells observed per cluster of 40
cells in NPgel, 26 in NPgel/dNCM and 14 cells in Albugel,
with the median number of cells observed per cluster was 5
in NPgel, 2 in NPgel/dNCM and 1 in Albugel (Fig. 7). Al-
together, this demonstrated that pNCs present themselves
in larger clusters in NPgel and NPgel/dNCM biomaterials,
whereas in Albugel they were mostly single cells.

Notochordal Cell Characterisation and Phenotypic
Analysis within Novel Biomaterials

Immunohistochemical staining was further used to
analyse and characterise the pNC that were cultured in the
biomaterials for 4 weeks (Fig. 8A). The pNCs seeded into
all three biomaterials showed nuclear and cytoplasmic posi-
tive staining for the NC/NP cell markers brachyury and cy-
tokeratin 8/18/19, which when quantified showed no sig-
nificant difference in expression between the biomaterials
(p > 0.05) (Fig. 8B). Extracellular immunohistochemical
staining for aggrecan was shown in the pNCs seeded into
Albugel, NPgel and NPgel/dNCM, with extracellular im-
munohistochemical staining for collagen type II only dis-
tinguishable in the pNC &NPgel constructs (Fig. 9). How-
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Fig. 4. Immunofluorescence staining of live cell imaging of porcine notochordal cells cultured inNPgel, NPgel/dNCMandAlbugel,
for up to 2 weeks in a hypoxia unit of 5% v/v oxygen. Images were captured using Calcein-AM and Hoechst 33342. White arrowheads
indicate vacuoles.

ever, staining was also observed in the acellular NPgel and
NPgel/dNCM construct, due to the nature of biomaterials
retaining DAB (Fig. 9).

GAGs released into the culture media from pNC
and biomaterial constructs was assessed throughout the 4-
week culture period and analysed using DMMB assay (Fig.
10). The acellular NPgel/dNCM constructs had a signif-
icantly higher GAG release into the culture media com-
pared to acellular NPgel and Albugel biomaterials at 1
week (NPgel/dNCM vs Albugel, p ≤ 0.001; NPgel/dNCM
vs NPgel, p ≤ 0.001), 2 week (NPgel/dNCM vs Albugel,
p ≤ 0.0001; NPgel/dNCM vs NPgel, p ≤ 0.01) and 3-
week (NPgel/dNCM vs Albugel, p ≤ 0.01; NPgel/dNCM
vs NPgel, p ≤ 0.01) culture time points but was reduced
following 4 weeks in culture (p > 0.05). This may sug-
gest release of the natural GAGs coming from the dNCM
within the biomaterial, with no further increase of GAG re-
lease intomedia within NPgel/dNCMmaterials seededwith
pNCs. No significant difference in GAG release was ob-
served between acellular controls and pNC-containing con-
structs at any time-point (Fig. 10).

Discussion
NCs have attracted considerable interest due to their

potential application for regeneration of the intervertebral

disc (Bach et al., 2022), but to date, to the authors knowl-
edge only one study investigated the potential of one bio-
material to support their viability and matrix production
with limited phenotypic investigations made, with studies
mainly investigating simple 3D culture systems to maintain
phenotype for in vitro applications.

This study investigated three potential biomaterials
which are all injectable and could provide potential me-
chanical support to the IVD whilst delivering the regener-
ative cell source. The selected biomaterials represented a
naturally inspired cross linked hydrogel (Albugel), a fully
synthetic hydrogel which gels based on entanglement of
polymer chains (NPgel) (Boyes et al., 2021), and the sup-
plementation of the synthetic hydrogel with naturally de-
rived dNCM (NPgel/dNCM) (Schmitz et al., 2022). All
three acellular biomaterials demonstrated viscoelastic sta-
bility within the physiological strain range observed for
IVDs. NPgel exhibited a higher gel strength (charac-
terised here by G′) compared to NPgel/dNCM and Albugel.
Furthermore, NPgel and to a lesser extent NPgel/dNCM
showed an increase in G′ following 24 hrs in culture media
which mimics the degenerate IVD. The G′ of NPgel follow-
ing 24 hrs in degenerate media reached ~14 KPa which is
similar to that of human NP tissue reported previously of 7-
21 kPa (Iatridis et al., 1997; Iatridis et al., 1996). We have
previously reported other rheological properties of NPgel
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Fig. 5. Scanning electron microscope images acellular biomaterials and those containing porcine notochordal cells (pNC), cul-
tured for 2 weeks in a hypoxia unit of 5 % oxygen at 37 °C. (A) Acellular Albugel; (B) pNC cultured in Albugel; (C) Acellular
NPgel; (D) pNCs cultured in NPgel; (E) Acellular NPgel/dNCM; (F) pNCs cultured in NPgel/dNCM. White arrow heads indicate where
a visible ‘membrane’ which appeared to wrap the entire pNC cluster was seen. Scale bars as indicated (20, 50 or 200 µm).
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Fig. 6. Porcine notochordal cell (pNC) morphology when cultured in Albugel (pNC & Albugel), NPgel (pNC & NPgel) and
NPgel/dNCM (pNC & NPgel/dNCM) with acellular controls (Albugel; NPgel; NPgel/dNCM), for up to 4 weeks in 5 % oxygen.
Haematoxylin and Eosin (H+E), Alcian Blue (Alcian B), Masson’s Trichrome (Masson T) and Safranin Orange (Safran O). Black arrows
highlight where cells are present. Images with black outline are high magnification regions of cellular constructs, white arrows indicate
extracellular matrix deposition. Porcine disc and cellular constructs are scale bar 50 µm, acellular constructs scale bar 100 µm.

including its gelation kinetics (Boyes et al., 2021). Initial
studies with pNCs utilised NPgel to determine the seeding
density for future studies. Porcine NCs were seeded at dif-
ferent cell densities ranging between 1 × 106 cells/mL to 2
× 107 cells/mL into NPgel, where pNCs presented mainly
in clusters and easier to identify within sectioned materials
at 4 × 106 cells/mL and 1 × 107 cells/mL. Whilst lower
densities of 1 × 106 cells/mL displayed mainly single cells
and the highest cell density of 2 × 107 cells/mL displayed
both clustered and single cells but showed no advantage
over lower seeding densities. The native cell density of the
NP has been reported to be 1.3 × 105 cells/cm3 in non-
chondrodystrophic dogs (Hunter et al., 2003), and 4 × 106
cells/cm3 in humans (Maroudas et al., 1975). The impor-
tance of preservation the pNC clusters phenotype was also
hypothesised to support NC survival and function (Aguiar
et al., 1999; Gantenbein et al., 2014; Humphreys et al.,
2018; Hunter et al., 2003; Spillekom et al., 2014). Addi-
tional, NCs are also reported to be highly metabolically ac-
tive and sensitive to nutrient deprivation (Guehring et al.,
2009; Spillekom et al., 2014), therefore the optimum cell
density was selected as 4 × 106 cells/mL, as cluster for-
mation was retained without excessive cell density which

could provide nutrient deprivation over long term culture
and is also in agreement with the cell density reported in
human NP (Maroudas et al., 1975; Roughley, 2004). Based
on brightfield images pNCs showed clear cluster and vac-
uole structures up to at least 2 weeks in culture, thus follow-
ing these successful initial results, the complete screening
experiment was performed, seeding pNC into three bioma-
terials that have shown potential for disc regeneration.

Retention of Notochordal Cell Cytomophology in
Biomaterials

From the histological images, it was promising to ob-
serve that pNCs survived for up to 4 weeks in all three
biomaterials, however the morphotypic pNC was not re-
tained in all biomaterials. In Albugel, Calcein-AM im-
ages, SEM and histology, showed a lack of large clusters,
with most cells observed in single cells. However, some
preservation of vacuole-like structures was observed after
2-weeks and key NC/NP markers were retained, including
brachyury and keratin 8/18/19. In native NP tissue, sin-
gle cells are usually smaller and resemble more the ma-
ture NP cells often seen in a more mature and degenerate
disc (Chen et al., 2006; Hunter et al., 2003), suggesting
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Fig. 7. Porcine notochordal cell (pNC) cluster size when seeded into biomaterials; NPgel, NPgel/dNCM and Albugel after 4 weeks
in culture at 5 % v/v oxygen. A single dot represents a cluster of pNCs. * p ≤ 0.05.

that the pNC in Albugel were differentiating into these ma-
ture NP cells. Within the literature their remains some de-
bate to whether the population of smaller mature NP cells
are derived from the juvenile NCs or replaced from alter-
native progenitor cells (Kim et al., 2009), whereas these
results support the perspective that NCs have the capabil-
ity to differentiate into mature NP cells, which can retain
their expression of brachyury and cytokeratin (Minogue et
al., 2010; Risbud et al., 2010). In NPgel, the pNCs pre-
dominately presented in clusters and contained vacuolated
structures evident in Calcein-AM stained live-cell images,
within this biomaterial clusters containing up to 40 cells
per cluster were maintained. However, following long term
culture of 4-weeks the vacuole-like phenotype was lost de-
spite the pNC remaining in clusters. Similar findings were
also observed during a longer-term culture of NCs in algi-
nate beads, despite the maintenance of phenotypic mark-
ers, the morphology of the cells changed from large NC
clusters to NCs with smaller vacuoles and mature NP cells
(Arkesteijn et al., 2015). The loss of vacuole morphology

along with loss of phenotypic markers was also noted when
NC were cultured in monolayer (Arkesteijn et al., 2015)
and when injected directly into NP tissue (Arkesteijn et al.,
2017). In NPgel/dNCM, histological images, SEM and cell
cluster size analysis demonstrated the presence of clusters
and vacuole like structures were observed, although this
was not visualised within live-cell imaging. A study by Ma
et al. (2013) utilised rabbit NCs seeded in a link-N self-
assembling peptide scaffold, demonstrating that rabbit NCs
viability was maintained and could deposit aggrecan and
type II collagen after 14 days of 3D culture and reported
the presence of phenotypic vacuoles at 7 days of 3D cul-
ture but did not study further their phenotype using other
phenotypic markers.

Retention of Notochordal Cell Phenotype in Biomaterials

The histological and IHC images demonstrated the
indication of pericellular matrix deposition containing ag-
grecan staining observed in the pNC & Albugel, pNC &
NPgel and pNC&NPgel/dNCMconstructs, which also cor-
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Fig. 8. Porcine notochordal cell phenotype when cultured in three biomaterials. (A) Immunohistochemistry staining of porcine noto-
chordal cells (pNC) seeded in biomaterials Albugel (pNC & Albugel), NPgel (pNC & NPgel) and NPgel/dNCM (pNC & NPgel/dNCM)
and cultured for up to 4 weeks in 5 % v/v oxygen at 37 °C, including acellular controls (Albugel; NPgel; NPgel/dNCM) and porcine disc.
Stained with Brachyury, Cytokeratin 8/18/19 (pan Cytokeratin). Black boxed images represent zoomed in images of pNC in biomaterials
and porcine disc. Black arrows highlight pNC. White arrows highlight residual cellular staining from dNCM. Scale bar 100 µm. (B)
Quantitative analysis of the percentage of Brachyury and cytokeratin 8/18/19 immunopositive cells in pNC & Albugel (Albugel), pNC
& NPgel (NPgel) and pNC & NPgel/dNCM (NPgel/dNCM). Each shape represents a different biological repeat.

responded to the turquoise GAG stain within Alcian Blue
(Leung et al., 2009). Interestingly, collagen type II staining
was only strongly observed in pNC cultured within NPgel.
IHC demonstrated the retention of brachyury and cytok-
eratin NC/NP phenotypic markers. Studies using NCs in
alginate beads have also shown cell survival during cul-
ture, which corresponded with brachyury and cytokeratin
expression and an increase in GAG detection (Aguiar et al.,
1999; Arkesteijn et al., 2017; Gantenbein-Ritter & Chan,
2012). Within the current study there was limited GAG re-
lease evidenced from pNCs cultured within the biomateri-
als, with only Albugel demonstrating a difference between
acellular and cellular constructs. Potentially suggesting the
hyaluronic acid within the Albugel increases GAG produc-
tion. Alternatively, the lack of GAG release into the media
in NPgel constructs could indicate greater GAG retention
in the NPgel constructs containing pNCs, as histological
staining did display cellular GAG staining using both Al-
cian Blue and Safranin O. Whilst NPgel supplemented with
dNCM demonstrated high secretion of GAGs into the me-
dia even in acellular controls over the first 3 weeks, this

decreased after 4 weeks in culture. Suggesting loss of the
dNCM (which is GAG rich) into the media over the initial
time course. The decreased GAG content in the media after
4 weeks may indicate exhaustion of the GAG content from
the dNCM or potentially the formation of a more complex
matrix network leading to the trapping of the GAGs at later
time course. However, given the low collagen staining ob-
served with Masson’s Trichrome staining and immunohis-
tochemical staining for collagen type II it is more likely the
dNCM had leached out over the first 3 weeks. The incor-
poration of dNCM into NPgel is based on a physical en-
tanglement rather than any physical cross linkages and thus
it may be necessary to develop biomaterials which enable
chemical cross linking of NCM into the materials to ensure
longer term retention. Additionally, in Ma et al. (2013)
a Link-N self-assembled scaffold biomaterial promoted the
accumulation of aggrecan and collagen type II when seeded
with rabbit NCs (Ma et al., 2013). Furthermore, when such
a system is injected into the NP tissue space in a whole
IVD the GAG release would likely be retained in the disc
and thus this leaching out may not be a detriment follow-



www.ecmjournal.org 43

European Cells and Materials Vol.47 2024 (pages 30–50) DOI: 10.22203/eCM.v047a03

Fig. 9. Porcine notochordal cell (pNC) extracellular matrix expression when seeded in biomaterials. Immunohistochemistry stain-
ing of pNCs seeded in biomaterials Albugel (pNC & Albugel), NPgel (pNC & NPgel) and NPgel/dNCM (pNC & NPgel/dNCM) and
cultured for up to 4 weeks in 5 % v/v oxygen at 37 °C, including acellular controls (Albugel; NPgel; NPgel/dNCM) and porcine disc.
Stained with Aggrecan and Collagen type II (Collagen T II). Black boxed images represent zoomed in images of pNC in biomaterials
and porcine disc. Black arrows highlight pNC. White arrows highlight residual cellular staining from dNCM. Scale bar 100 µm.
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Fig. 10. Porcine notochordal cell glycosaminoglycan (GAG) release during culture in biomaterials. GAG release was measured
using 1,9-Dimethylene blue (DMMB) assay in media collected over 4 weeks of acellular biomaterials (Albugel, NPgel and NPgel/dNCM)
and porcine notochordal cells (pNC) seeded in Albugel, NPgel and NPgel/dNCM biomaterials at 4 × 106 cells/mL and cultured at 5 %
v/v oxygen at 37 °C for up to 4 weeks. *p ≤ 0.05.

ing IVD injection. Alternative methods of assessing extra-
cellular matrix production by the seeded cells, such as the
use of tagging cellular GAG production as used by Baskin
et al. (2007) would enable a better understanding whether
the observed matrix staining was produced from the pNCs
themselves rather than a remnant from the biomaterial.

Vacuoles within Cultured Notochordal Cells

The seeding of pNC in the three biomaterials resulted
in the presentation ofmorphologically different cells, which
was characterised by the gradual loss of vacuoles, but a re-
tention of NC cell marker expression. The purpose of NC
vacuolation in embryonic development of the spine is fo-
cused on retaining hypertonic tension (Hunter et al., 2007).
Taking NCs into an in vitro setting does have the limi-
tation of altering the cells environment; in this study the
constructs were maintained in physiologically relevant hy-
poxic conditions of 5% oxygen (Chen et al., 2014; Soukane
et al., 2005), and using media recommended for IVD 3D
culture (Basatvat et al., 2023). Nevertheless, with the
isolation of cells, there is a change of environment such

as the loss of mechanical stress and extracellular matrix
which otherwise would have promoted water retention, al-
though by maintaining cell clusters the pericellular matrix
should be retained (Oegema, 1993; Urban et al., 1978). All
three biomaterial systems investigated here are hydrogel-
based biomaterials, which have high water-soluble poly-
meric materials. In the biomaterial that contains NC ma-
trix, (NPgel/dNCM), there was some evidence of the reten-
tion of vacuole-like structures. In previous studies where
alteredmedia osmolarity has been tested, from standard 300
to 500mOsm/L this resulted in a sustained canineNPC pop-
ulation with improved phenotype, irrespective of oxygen
conditions (Laagland et al., 2022; Spillekom et al., 2014),
suggesting that there could be many factors that can affect
the NC phenotype. It may be that the lack of external me-
chanical and hydrostatic tension caused the difference in
NC morphology, as vacuoles function to withstand com-
pression forces (Bagwell et al., 2020; Ellis et al., 2013;
Hong et al., 2018; Wang et al., 2017). Although compres-
sion loading has also been shown to be detrimental to NC
health (Guehring et al., 2010; Hong et al., 2018; Spillekom
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et al., 2014; Yurube et al., 2014), whilst other studies have
shown no effect on NC viability and phenotype (Saggese
et al., 2020). Thus, it would be important to investigate if
these pNC seeded biomaterial constructs subjected to phys-
iological compression and loading, would affect morpho-
logical NC and their phenotype.

Future Directions

This study was conducted within an in vitro setting, to
test the potential of biomaterials to retain NC phenotype, as
potential delivery systems for regenerative strategies. Such
systems will need to be further tested within conditions
which mimic more closely the degenerative environment of
the disc, such as presence of catabolic cytokines especially
IL-1β (Phillips et al., 2015). Furthermore, other features of
the degenerate IVD include low glucose which was mim-
icked in these studies, however low glucose is also accom-
panied by low pH, the effects of which remain to be deter-
mined. If these cell-seeded biomaterials were to become
clinically translated as an injectable treatment for disc re-
generation, the next phase of testing would be to determine
whether the cells could be maintained within a degenera-
tive disc micro-environment. Such a study would need to
investigate the complex mico-environment, beyond simply
investigating physioxia and low glucose, as investigated in
this study. Future testing should also involve analysing me-
chanical properties of the whole cell-biomaterial construct
ex vivo, through applying a physiological loading regime
(e.g., simulated daily loading). An example of this type of
regime would be described as dynamic loading in a human
physiological range of between 0.2-1 Mpa disc pressure at
1 Hz (Korecki et al., 2008; Korecki et al., 2010; Chan et
al., 2011; Wilke et al., 1999) and may involve a complex
loading regime similar to that reported in Le Maitre et al.
(2009), such studies will provide a more through under-
standing of the mechanical stability of the materials in com-
bination with cells within a physiologically relevant envi-
ronment.

Translational Potential

We report here excellent cytocompatibility of the bio-
materials screened and provide an insight on how the bio-
materials will perform with NCs. If the cell-seeded bio-
material is to be used in a clinical setting as a novel in-
jectable therapy for disc regeneration, it would be regu-
lated as an advanced medicinal product (ATMP). The up-
scaling of a product to clinic involves attaining predictable
robustness, batch-to-batch variability, safety profiling, re-
producibility, and proficiency. Up-scaling the NC-based
therapy co-delivered with the seeded biomaterial would in-
volve generating a working cell bank and the involvement
of allogeneic cells not only being a far better ‘off-the-shelf’
business model but a necessity since the human species lose
their phenotypic NCs in childhood. As such the options
for NC sources include fetal/baby human NCs which comes

with significant ethical challenges and are limited in supply.
Alternatively, the used of primary xenographic cells from
pigs is a possibility, such an approach is growing in clinic
applications, as safety is improving with the use of cross-
species cells (Sachs, 1994). Based on the successful use
of porcine islets cells transplantation in a primate diabetes
model in clinical trials, which is accomplished by knocking
down the gene for alpha-1,3-galactosyltransferase lacking
alpha 1,3-gal sugars on the porcine cell surfaces, that reacts
to the innate immune system (Lai & Prather, 2002; Kuwaki
et al., 2005; Thompson et al., 2011; Shin et al., 2015).

Conclusions
Three biomaterials, Albugel, NPgel andNPgel/dNCM

representing differing classes of natural (Albugel), syn-
thetic (NPgel), and semi-synthetic (NPgel/dNCM) bioma-
terials were investigated, to determine if they would main-
tain pNCs phenotype as a first stage to develop a bioma-
terial delivery system for the IVD. The results determined
that pNC can retain viability and maintain NC cell markers
in biomaterials, Albugel, NPgel and NPgel/dNCM for up to
4 weeks in physiological 5 % v/v oxygen, however loss of
clustering was observed within Albugel and loss of the mor-
photypic vacuolated NC phenotype was lost or decreased in
all three biomaterials. Therefore, the biomaterials selected
have the potential to harness NC regenerative properties,
however future work is needed to determine whether reten-
tion of the morphotypic phenotype is required to provide
regenerative properties and mechanical testing of biomate-
rials following cell cultures is required to understand the
true biomechanical stability following application.
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