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In this paper we consider (upward skip-free) discrete-time and discrete-space Markov5

additive chains (MACs) and develop the theory for the so-called W̃ and Z̃ scale ma-6

trices. which are shown to play a vital role in the determination of a number of exit7

problems and related fluctuation identities. The theory developed in this fully discrete8

setup follows similar lines of reasoning as the analogous theory for Markov additive9

processes in continuous-time and is exploited to obtain the probabilistic construction10

of the scale matrices, identify the form of the generating function and produce a simple11

recursion relation for W̃, as well as its connection with the so-called occupation mass12

formula. In addition to the standard one and two-sided exit problems (upwards and13

downwards), we also derive distributional characteristics for a number of quantities14
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1 Introduction18

Exit problems for stochastic processes is a classic topic in applied probability and has19

received a great deal of attention within the literature. In the continuous setting (time and20

space), exit problems for so-called upward skip-free processes, known in the literature as21

‘spectrally negative Lévy processes’, have been extensively considered in [5] (Chapter VII),22

[18] (Chapter 8) and references therein, by means of fluctuation theory where semi-explicit23

expressions are derived in terms of the so-called ‘scale functions’. On the other hand, in the24

fully discrete setting exit problems for general discrete-time random walks are excellently25

treated in [10] and [13], among others, by means of probabilistic arguments and include,26

as particular cases, the corresponding upward skip-free random walks. That is, a random27

walk for which downward jumps are unrestricted but upward jumps are constrained to a28

magnitude of at most one, emulating the upward ‘drift’ in continuous-time. More recently,29

[3] implement the ideas underlying the exit problems for continuous spectrally negative30

Lévy processes for their discrete random walk counterparts and derive exit problems and31

other fluctuation identities in terms of analogous ‘discrete scale functions’.32

A natural generalisation of the above processes are the broad family of Markov Addi-33

tive Processes (MAPs), which incorporate an externally influencing Markov environment,34

providing greater flexibility to the characteristics of the underlying process in terms of its35

claim frequency and severity distributions, see [1] (Chapter XI). Within this generalised36

framework, the existence of multidimensional scale functions, known as ‘scale matrices’,37

was first discussed in [19] and were used to derive fluctuation identities and first passage38

results for continuous-time MAPs. [15] extended the initial findings of [19] by providing39

the probabilistic construction of the scale matrices, identifying their transforms and con-40

sidering an extensive study of exit problems including one-sided and two-sided exits, as41

well as exits for reflected processes via implementation of the occupation density formula.42

Further studies on MAPs and their exit/passage times can be found in [8], [4], [9], among43

others. More recently, [17], derive and compare results for continuous-time MAPs with44

lattice (discrete-space) and non-lattice support. It is worth noting here that the authors45

in this work do discuss some of the corresponding results for the fully-discrete (time and46

space) MAP model considered in this paper, however, only a limited number of results are47

stated and a variety of important steps and proofs were omitted.48

This paper bridges the gap between the aforementioned works and provides a theoretical49

framework for fully discrete, upward skip-free MAPs, in terms of ‘discrete scale matrices’,50

spelling out the differences in results, methodologies and necessary adjustments for deriving51

fluctuation identities between discrete and continuous MAPs. In particular, we derive52

results for the first passage theory, including one and two-sided exit problems as well as53

the under(over)-shoots upon exit via the associated ‘reflected’ process. The motivation for54

deriving such a framework comes from the discrete set up having known advantages over55

the continuous-time models. For example, it is known that the Wiener-Hopf factorisation56

can be replaced by a simple Laurent series (see [3]). Moreover, due to the equivalence57
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between a discrete MAP and a Markov-modulated random walk, this paper provides a58

more flexible random walk model and enriches the numerous applications of random walk59

theory across a variety of disciplines.60

The paper is organised as follows: In Section 2 we define the MAP in discrete time61

and space and derive the so-called occupation mass matrix formula, from which we obtain62

some useful identities to be used in the following sections. In Section 3, we introduce some63

fundamental matrices associated to the discrete MAP, identify the first of two discrete scale64

matrices and derive matrix expressions for the one and two-sided upward exit problem. In65

Section 4, we derive results for the corresponding one and two-sided reflected processes,66

including the over-shoot and under-shoot upon exit which are then used in Section 5 to67

derive expressions for the one and two-sided downward exit problems of the original (non-68

reflected) discrete MAP.69

2 Preliminaries70

A fully discrete (time and space) MAP, which we will call a Markov Additive Chain (MAC),71

is defined as a bivariate discrete-time Markov chain (X, J) = {(Xn, Jn)}n⩾0, on the product72

space Z × E, where Xn ∈ Z describes the level of the underlying process, whilst Jn ∈73

E = {1, 2, . . . , N} describes the phase of some external Markov chain (which affects the74

dynamics of Xn) having transition probability matrix P, such that for i, j ∈ E, (P)ij =75

P (J1 = j|J0 = i). It is assumed throughout this work, that the Markov chain {Jn}n⩾076

is ergodic such that its stationary distribution π
⊤ = (π1, . . . , πN ) exists and is unique.77

The defining property of the MAC is the conditional independence and stationarity of78

law governing Xn, given Jn. That is, given that {JT = i} for some fixed T ∈ N, the79

Markov chain {(XT+n −XT , JT+n)} is independent of FT (the natural filtration to which80

the bivariate process (X, J) is adapted) and {(XT+n − XT , JT+n)}
d
= {(Xn − X0, Jn)},81

given {J0 = i} for any phase state i ∈ E. This is known as the Markov additive property,82

a consequence of which is that the level process {Xn}n⩾0 is translation invariant on the83

lattice.84

Intuitively, the MAC is simply a Markov-modulated random walk where {Xn}n⩾085

evolves according to the random walk Xn = Y1 + Y2 + · · · + Yn, where {Yk}k⩾1 is a86

sequence of conditionally i.i.d. random variables with common, conditional distribution87

q̃ij(y) = P(Y1 = y|J1 = j, J0 = i), and thus, probability mass matrix Q̃(y), with i,j-th88

element
(
Q̃(y)

)
ij

= q̃ij(y). As such, and due to the invariance property, the transition89

probability matrix of (X, J) has a block-like structure with blocks Ãm which represent the90

(one-step) transition matrix for an increase of m levels in {Xn}n⩾0 whilst capturing the91

phase transitions of {Jn}n⩾0, such that92

Ãm = Q̃(m) ◦P, (2.1)93

where ◦ denotes entry-wise products (Hadamard multiplication). In the remainder of this94
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paper, we assume that X = {Xn}n≥0 may only increase by at most one level per unit time95

whilst experiencing downward jumps of arbitrary size. That is, for all i, j ∈ E, we have96

q̃ij(m) = P(Y1 = m|J1 = j, J0 = i) ⩾ 0 for m ⩽ 1 and q̃ij(m) = 0 otherwise, which leads97

to Q̃(m) = 0 and thus Ãm = 0 for m = 2, 3, . . . .. In this sense, we say that X possesses98

an ‘upward skip-free’ property, an advantage of which is that the value of X is known99

at stopping time corresponding to ‘upward’ crossing/hitting of a given level (see below).100

This corresponds to the discrete analogue of a ‘spectrally negative’ MAP in the continuous101

setting, which have important applications to workload and surplus processes in queuing102

and risk theory, respectively (see [1] and [2] for more details).103

2.1 MAC Matrix Generator104

It has already been noted that the dynamics of the level process (X) within the MAC105

depends on the phase transitions of the external Markov chain (J). As such, the majority106

of quantities and results presented in this paper depend on the initial and final states107

of {Jn}n⩾0 and thus, are given in matrix form. With this in mind, let us define the108

expectation matrix operator Ex(· ; Jn) which denotes an N ×N matrix with i, j-th element109

(Ex (· ; Jn))ij = E
(
· 1(Jn=j)|X0 = x, J0 = i

)
, where 1(·) represents the indicator function,110

and corresponding probability matrix Px(· , Jn) with elements (Px(· , Jn))ij = P(· , Jn =111

j|X0 = x, J0 = i). Moreover, we denote E (· ; Jn) ≡ E0 (· ; Jn), having associated probability112

measure P (· , Jn) ≡ P0 (· , Jn) and thus, we can define the probability generating matrix113

(p.g.m.) of the process {Xn}n⩾0 with initial level X0 = 0, for at least |z| ⩽ 1 and z ̸= 0, by114

E
(
z−Xn ; Jn

)
, which satisfies115

E
(
z−Xn ; Jn

)
=
(
F̃(z)

)n
, F̃(z) := E

(
z−X1 ; J1

)
=

∞∑

m=−1

zmÃ−m, (2.2)116

and for z = 1, we have F̃(1) = P =
∑∞

m=−1 Ã−m.117

Remark 1. Note that since the matrices Ã−m are probability transition matrices, such that118

Ã−m ⩾ 0 (non-negative), it follows that for z > 0, the matrix F̃(z) is also non-negative.119

Hence, by the Perron-Frobenius theorem, F̃(z) has a (simple) eigenvalue, denoted κ(z),120

which is greater than or equal in absolute value than all other eigenvalues with correspond-121

ing left and right (column) eigenvectors, denoted v⃗(z) and h⃗(z), respectively, such that122

v⃗(z)⊤F̃(z) = κ(z)v⃗(z)⊤ and F̃(z)h⃗(z) = κ(z)h⃗(z). Moreover, since F̃(1) = P is a stochas-123

tic matrix, using standard facts from matrix analysis (see [7]) we have κ(1) = 1 and it124

can be shown that κ′(1) determines the asymptotic drift of the level process {Xn}n⩾0 (see125

Section 1.3 in [22] and [11]), given by126

lim
n→∞

Xn

n
= −κ′(1) = −π

⊤

∞∑

m=−1

m Ã−me.127

128
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Within the theory of continuous-time Lévy processes, it is often desirable to analyse the129

process prior to some independent exponential ‘killing time’ as this can emulate the role of130

Laplace transforms or generating functions within the calculations (see [18]). For a MAP,131

this exponential killing time can alternatively be incorporated via an enlargement to the132

state space of the Markov chain with the addition of an ‘absorbing’ (killing) state and133

analysing the process prior to absorption (see [15] for details).134

In a similar way, let us enlarge the state space E to E ∪ {†}, where † denotes an135

absorbing state, often called the cemetery state, and we set X = ∂ whenever J = †.136

Moreover, let us assume that the (one-step) ‘absorption’ probability is the same from all137

states and denoted by 1− v = P (J1 = †|J0 = i), for all i ∈ E, such that the corresponding138

‘non-absorption’ probability (survival) is given by v ∈ (0, 1]. Now, due to the addition of139

this cemetery state, it is clear that the probability transition matrix for transitions between140

the ‘transient’ (when v < 1) states of E is dependent on v. Let us define this by P(v) ≡ vP,141

where P denotes the stochastic probability transition matrix defined in Section 2, in the142

absence of an absorbing state or ‘killing’ (v = 1). Hence, it follows that P(v)⃗e = vPe⃗ = ve⃗143

and thus, for v < 1, P(v) is sub-stochastic and its Perron-Frobenius eigenvalue is less than144

1 (see [7]). Finally, it follows that the absorption or ‘killing’ time of the Markov chain,145

denoted gv = inf{n > 0 : Jn = †}, is geometrically distributed with parameter v ∈ (0, 1]146

and we have147

E
(
z−Xn ;n < gv, Jn

)
= vnF̃(z)n =

(
vF̃(z)

)n
=
(
F̃v(z)

)n
(2.3)148

where F̃v(z) := E
(
z−X1 ; 1 < gv, J1

)
= vF̃(z) with F̃(z) denoting the matrix generator of149

the MAC in the absence of killing, as defined as in Eq. (2.2). The connection between150

the killed process and transforms/generating functions of the non-killed process is evident151

when we note that Eq. (2.3) is equivalent to E
(
vnz−Xn ; Jn

)
for a ‘non-killed’ MAC. Further152

advantages of working with the killed process are discussed in more details in later sections.153

Throughout the remainder of this paper, we generally suppress the explicit notation that154

absorption has not yet occurred but point out that it is assumed implicitly. As such, the155

results derived in the following are, in fact, much more general than they appear, with only156

a handful of these generalisations being stated explicitly.157

2.2 Occupation Times158

It is well known that occupation times and their densities play an important role within159

the theory of Lévy processes and their fluctuations. In a continuous environment, the160

definition of the occupation density/time of a process at a given level has to be treated161

with some care and detail (see [5], [15]) however, in the fully discrete model considered in162

this paper, the mathematical definition is intuitive.163

Let us define by L̃(x, j, n), the occupation mass denoting the number of periods the164
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process {(Xn, Jn)}n≥0 is in state (x, j) ∈ Z×E, up to and including time n ⩾ 0, such that165

L̃(x, j, n) =

n∑

k=0

1(Xk=x,Jk=j). (2.4)166

Then, for some measurable non-negative function f , we have the so-called discrete occupa-167

tion mass formula168

n∑

k=0

f (Xk) 1(Jk=j) =
∑

x∈Z

f (x) L̃ (x, j, n) . (2.5)169

170

From the above definition, it is clear that L̃(x, j, n) is a non-decreasing (monotone) process171

in n ⩾ 0, which is adapted to the natural filtration Fn. Therefore, if we further define172

the N -dimensional square occupation mass matrix, denoted L̃(x, n), with i, j-th element173

given by
(
L̃(x, n)

)
ij

= E
(
L̃
(
x, j, n

)∣∣J0 = i
)
. Then, by application of the strong Markov174

property, analogously to Proposition 8 in [15], we have the following proposition.175

Proposition 1. Let176

τx = inf{n ⩾ 0 : Xn = x},

denote the first ‘hitting’ time of the level x ∈ Z. Then, for the occupation mass matrix177

L̃(x, n), it follows that178

L̃(x,∞) = P (τx <∞, Jτx) L̃, (2.6)179

where (P (τx <∞, Jτx))ij = P (τx <∞, Jτx = j|J0 = i) and L̃ := L̃(0,∞) is the occupation180

mass matrix at the level 0 over an infinite-time horizon, which has strictly positive entries.181

Remark 2. Let us point out some of the advantages of working with the killed process at182

this point:183

(i) If we include the implicit killing in the calculations explicitly, then for v ∈ (0, 1], the184

probability P (τx <∞, Jτx) becomes185

P
(
τx < gv, Jτx

)
=

∞∑

n=0

P(τx = n, n < gv, Jn) =

∞∑

n=0

vnP(τx = n, Jn) = E
(
vτx ; Jτx

)
,186

187

where in the second equality we have used the fact that P(v) = vP. That is, the188

probability matrix P(τ < ∞, Jτx) becomes the generator matrix E(vτx ; Jτx), if one189

imposes ‘killing’ explicitly. As mentioned above, throughout this work we will keep190

killing implicit as it greatly simplifies the presentation but highlight that the above191

idea holds for all results.192
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(ii) Similarly, by superimposing killing in Proposition 1, we have that193

L̃v(x,∞) = E
(
vτx ; Jτx

)
L̃v,194

with L̃v := L̃v(0,∞), such that the i, j-th element of L̃v(x, n) is given by
(
L̃v(x, n)

)
ij
=195

E
(
L̃v(x, j, n)

∣∣J0 = i
)
, where L̃v(x, j, n) =

∑n
k=0 1(Xk=x,Jk=j,k<gv). Note that since P196

is sub-stochastic, then {Xk = x} implies that {k < gv} and thus L̃v(x, j, n) coincides197

with L̃(x, j, n).198

The main reason for introducing the theory of occupation times and their associated mass199

matrices, is due to their relationship with the one step p.g.m., namely F̃(z). This connection200

is highlighted in the following auxiliary theorem which provides the foundations for many201

of the results in the following sections.202

Theorem 1. For all z ∈ (0, 1] such that I− F̃(z) is non-singular, it follows that203

∑

x∈Z

z−x
P (τx <∞, Jτx) L̃ =

(
I− F̃(z)

)−1
, (2.7)204

where τx is the first hitting time of the level x ∈ Z.205

Proof. First note by the occupation mass formula, that for any j ∈ E, we have206

n∑

k=0

z−Xk1(Jk=j) =
∑

x∈Z

z−xL̃(x, j, n).207

Taking expectations in the above equation and considering the limit as n→ ∞, yields208

lim
n→∞

n∑

k=0

E
(
z−Xk1(Jk=j)

∣∣J0 = i
)
= lim

n→∞

∑

x∈Z

z−x
E
(
L̃(x, j, n)

∣∣J0 = i
)
,209

from which, since z−x is non-negative for z > 0, we can apply the monotone convergence210

theorem to obtain211

∞∑

k=0

E
(
z−Xk1(Jk=j)

∣∣J0 = i
)
=
∑

x∈Z

z−x
E
(
L̃(x, j,∞)

∣∣J0 = i
)
.212

Equivalently, in matrix form the above expression can be written as213

∞∑

k=0

F̃(z)k =
∑

x∈Z

z−xL̃(x,∞) =
∑

x∈Z

z−x
P (τx <∞, Jτx) L̃ (2.8)214

215

where the last equality comes from the result of Proposition 1. Finally, we note that the216

geometric series on the l.h.s. converges to (I − F̃(z))−1 as long as κ(z) < 1 and the result217

follows using analytic continuation to extend the domain of convergence to all z ∈ (0, 1]218

such that (I− F̃(z))−1 exists.219
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Remark 3. Note that the result of Theorem 1 holds in the presence of killing (v < 1), since220

P(v) is sub-stochastic and thus κv(1) < 1, where κv(z) is the Perron-Frobenius eigenvalue221

of F̃v(z). Hence, by continuity of κv(z), there exists a small interval around z = 1 for222

which κv(z) < 1. In addition, L̃ must have finite entries as under killing the Markov chain223

is transient and the expected number of visits to any state is finite.224

3 Upward Exit Problems225

In this section we discuss and derive results on exit problems for upward skip-free MACs226

above and below a fixed level or strip. In the first instance, we will utilise the upward227

skip-free property of the level process, {Xn}n⩾0, to determine expressions for upward exit228

times (one and two-sided), then extend the theory to consider downward exit problems.229

These expressions are given in terms of so-called fundamental and scale matrices associated230

to the MAC, where the existence of the latter were first discussed in [19] and extend the231

notion of scale functions associated to Lévy processes (see [18] and [3] for more details).232

All the results given in this section are stated from an initial level X0 = 0 which, due233

to the invariance property, can be generalised to an arbitrary level, say x0 ∈ Z, via an234

appropriate shift.235

Let us denote by τ±x , the first time the level process {Xn}n⩾0 up(down)-crosses the236

level x ∈ Z, such that237

τ+x = inf{n ⩾ 0 : Xn ⩾ x} and τ−x = inf{n ⩾ 0 : Xn ⩽ x}. (3.1)238

We note that in a ‘spectrally negative’ MAC with upward drift of one per unit time, for239

x ⩾ X0 the random stopping times τ+x (crossing time) and τx (hitting time) coincide.240

Moreover, we have that X
τ+x

= Xτx = x.241

3.1 One-Sided Exit Upward242

The key observation for the first passage upwards, is that the stationary and independent243

increments as well as the skip-free property provide an embedded Markov structure. To244

see this, recall that X
τ+1

= Xτ1 = 1, which together with the strong Markov and Markov245

additive properties, imply that the process {Jτn}n⩾0 is a (time-homogeneous) discrete-246

time Markov chain, given X0 = 0, with some probability transition matrix G̃, such that247

for a ≥ 0,248

P (τa <∞, Jτa) = G̃a, G̃ = P (τ1 <∞, Jτ1) , (3.2)249

with i, j-th element given by (G̃)ij = P (τ1 <∞, Jτ1 = j | J0 = i) for i, j ∈ E.250

Remark 4. In the case of no killing, i.e., v = 1 and κ′(1) ⩽ 0 (non-negative drift), the251

matrix G̃ is a stochastic matrix and sub-stochastic otherwise.252
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The transition probability matrix G̃ is widely known as the fundamental matrix of the253

MAC and contains the probabilistic characteristics to determine upward passage times254

and the corresponding phase state at passage. That is, determining the matrix G̃ provides255

the probability of hitting any upper level a ⩾ 0 and the phase of {Jn}n⩾0 at this hitting256

time.257

The matrix G̃ has a long history in the theory of structured stochastic matrices (see258

for e.g., Lemma 4.2 in [7])and can be computed by conditioning on the first time period,259

i.e.,260

G̃ = P (τ1 <∞, Jτ1) =
∞∑

m=−1

Ã−mG̃m+1 =
( ∞∑

m=−1

Ã−mG̃m
)
G̃.261

262

Multiplying on the right by G̃−1, assuming it exists (see Remark 7), and using the definition263

of F̃(z) given in Eq. (2.2), it follows that the fundamental matrix, G̃, is the right solution264

of F̃(·) = I, which is a well known equation established in [21] and further studied in [7],265

[22], [11] and [12], among others.266

Remark 5. Let us discuss a few important observations about the fundamental matrix G̃267

and its significance within applied probability:268

(i) For the continuous-time (scalar) spectrally negative Lévy process, the fundamental269

matrix G̃, corresponds to the of inverse Laplace exponent at zero, namely Φ(0), i.e.,270

the solution to ψ(β) = 0, where ψ(β) denotes the Laplace exponent of the Lévy process271

(see [18]).272

(ii) It follows by definition that E
(
G̃−Xn ; Jn

)
is a martingale. In fact, it is clear that in273

the matrix setting, there exists another solution (left solution) to F̃(·) = I, say R̃,274

which would also result in the martingale E
(
R̃−Xn ; Jn

)
. It turns out that the matrix275

R̃ is actually the counterpart of G̃ for the ‘time-reversed MAC’ and is considered276

another fundamental matrix. The time-reversed MAP and the corresponding matrix277

R̃ are considered in [16] for the continuous-time (lattice) case and we direct the reader278

to this paper for more details.279

(iii) Superimposing killing in the above produces the transform of the first passage time,280

namely E (vτa ; Jτa), such that281

E
(
vτa ; Jτa

)
= G̃a

v, G̃v = E
(
vτ1 ; Jτ1

)
, (3.3)282

and G̃v is the right solution of F̃(·) = v−1I.283

(iv) As discussed in [16], the right solutions of the above equations cannot be determined284

analytically except in some special cases. However, there exists a number of numer-285

ical algorithms which can be employed, e.g., the iterative algorithm [21], logarithmic286
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reduction [20] and the cyclic reduction [6], to name a few. For further details on287

the variety of algorithms available for solving such equations, see [7] and references288

therein.289

3.2 Two-Sided Exit Upward - {τ+a < τ
−
−b}290

Within the literature of spectrally negative Lévy processes and their fully discrete counter-291

parts [3], the common approach to solving two-sided exit problems relies on the introduction292

of a family of functions, W q and Zq, known as the q-scale functions (see [18] for details).293

The extension of these auxiliary, one dimensional scale functions to the multidimensional294

MAP setting was first proposed in [19], where the existence of the corresponding ‘scale295

matrices’ was shown and were further investigated in [15] who derived their probabilistic296

interpretation within the continuous setting.297

For v ∈ (0, 1], the discrete W̃v scale matrix is defined as the mapping W̃v : N → R
N×N ,298

with W̃v(0) = 0 (the matrix of zeros), such that299

W̃v(n) =
[
G̃−n

v − E
(
vτ−n ; Jτ

−n

)]
L̃v, (3.4)300

where we write W̃1(n) =: W̃(n) for the 1-scale matrix. The definition of the scale matrix301

above is only unique up to a multiplicative constant and the presence of the infinite-time302

occupation matrix, L̃v, is somewhat arbitrary here but is included in order to obtain the303

most concise form for the p.g.m. of W̃v(·), which is derived in Theorem 2 (see also [15]).304

In the two-sided exit problem, we are interested in the time of exiting a (fixed) ‘strip’,305

[−b, a], consisting of an upper and lower level denoted by a and −b, respectively, such that306

a > 0 > −b. More formally, we are interested in the events {τ+a < τ−
−b } and {τ+a > τ−

−b },307

which correspond to the upward and downward exits from the strip [−b, a], respectively.308

In this section, we are concerned with the former (upward exit). The the latter (downward309

exit) will be discussed in a later section as its derivation depends on alternative methods.310

Let us denote by ρ(·), the spectral radius of a matrix. That is, if Λ(A) denotes the311

spectrum of a matrix A, then ρ (A) = max{|λi| : λi ∈ Λ(A)}.312

3.2.1 Two-sided exit theory for non-singular Ã1313

Theorem 2. Assume that Ã1 is non-singular. Then, there exists a matrix W̃ : N → R
N×N

314

with W̃(0) = 0, which is invertible and satisfies315

P
(
τ+a < τ−

−b , Jτ+a

)
= W̃(b)W̃(a+ b)−1, (3.5)316

where
(
P
(
τ+a < τ−

−b , Jτ+a

))
ij
= P

(
τ+a < τ−

−b , Jτ+a = j|J0 = i
)
and W̃(·) has representation317

W̃(n) =
(
G̃−n − P

(
τ−n <∞, Jτ

−n

))
L̃. (3.6)318
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Furthermore, it holds that319

∞∑

n=0

znW̃(n) =
(
F̃(z)− I

)−1
, (3.7)320

for z ∈ (0, 1] such that z /∈ Λ(G̃), and321

W̃(n) = G̃−nL̃+(n), (3.8)322

where L̃+(n) := E

[
L̃ (0, τn)

]
, denotes the expected number of times the process visits 0323

before hitting level n ∈ N
+.324

Proof. Following the same line of logic as in [15], we note that the events {τ+a < τ−
−b} and325

{τa < τ−b} are equivalent due to the upward skip-free property of {Xn}n⩾0. This follows326

from the fact that in order to drop below −b and then hit a, the process must visit −b327

on the way. Thus, conditioning on possible events and employing the Markov additive328

property, we obtain329

P
(
τa <∞, Jτa

)
= P

(
τa < τ−b, Jτa

)
+ P

(
τa > τ−b, Jτ

−b

)
P
(
τa+b <∞, Jτa+b

)
330

and331

P
(
τ−b <∞, Jτ

−b

)
= P

(
τa > τ−b, Jτ

−b

)
+ P

(
τa < τ−b, Jτa

)
P
(
τ−(a+b) <∞, Jτ

−(a+b)

)
.332

Now, by recalling that P
(
τa < ∞, Jτa

)
= G̃a, solving the second equation w.r.t.P

(
τa >333

τ−b, Jτ
−b

)
and substituting the resulting equation into the first, yields334

P
(
τa < τ−b, Jτa

)[
P

(
τ−(a+b) <∞, Jτ

−(a+b)

)
G̃a+b − I

]
= P

(
τ−b <∞, Jτ

−b

)
G̃a+b − G̃a.

(3.9)335

Finally, by multiplying through by −G̃−(a+b) on the right, we have336

P
(
τa < τ−b, Jτa

) [
G̃−(a+b) − P

(
τ−(a+b) <∞, Jτ

−(a+b)

)]
= G̃−b − P

(
τ−b <∞, Jτ

−b

)
,337

or equivalently338

P
(
τa < τ−b, Jτa

)
= W̃(b)W̃(a+ b)−1,339

given that W̃(·)−1 exists (see Remark 7). Note that the above result is derived in the340

absence of the occupation mass matrix, L̃, within the definition of W̃(n), reinforcing the341

point that the scale matrix is uniquely defined up to a (matrix) multiplicative constant.342

The choice for including L̃ in the definition of W̃(n), which is only well defined as long as343

L̃ has finite entries (see Remark 3 for conditions), will become apparent in the following.344
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To prove Eq. (3.7), let us take the transform of the scale matrix and recall the definition345

given in Eq. (3.6), to obtain346

∞∑

n=0

znW̃(n) =
∞∑

n=0

znG̃−nL̃−
∞∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃, (3.10)347

where the first term on the r.h.s. satisfies348

∞∑

n=0

znG̃−nL̃ =

∞∑

n=0

(
zG̃−1

)n
L̃ =

(
I− zG̃−1

)−1
L̃, (3.11)349

for all z ∈ (0, γ), where γ := min{|λi| : λi ∈ Λ(G̃)}.350

For the second term of Eq. (3.10), under the conditions of Theorem 1, we have351

(
I− F̃(z)

)−1
=

∞∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃+

∞∑

n=1

z−n
P
(
τn <∞, Jτn

)
L̃352

=

∞∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃+

∞∑

n=1

z−nG̃nL̃353

354

for all z ∈ (0, 1] such that
(
I − F̃(z)

)−1
exists. Moreover, for z ∈ (ρ(G̃), 1] (ρ(G̃) < 1 is355

true as long as G̃ is invertible and this follows from the assumption that the matrix Ã1356

is non-singular, see also Remark 7 ), the geometric series on the r.h.s. converges and the357

above equation can be re-written as358

(
I− F̃(z)

)−1
=

∞∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃+

((
I− z−1G̃

)−1
−I
)
L̃359

=
∞∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃−

(
I− zG̃−1

)−1
L̃, (3.12)360

once we prove a common domain of convergence, i.e.,
(
I − F̃(z)

)−1
exists for some z ∈361

(ρ(G̃), 1]. In fact, for ρ(G̃) < 1, see Lemma 4 in [8], it can be shown that the zeros of362

det[I− F̃(z)] coincide with the eigenvalues of G̃ for z ∈ (0, 1] and thus, the above holds.363

Now, note that if we multiply Eq. (3.12) from the left by I− zG̃−1 and from the right364

by I − F̃(z), then both sides of the resulting equation are analytic for z ∈ (0, 1]. Hence,365

since the matrices
(
I− zG̃−1

)
and

(
I− F̃(z)

)
are invertible as long as z /∈ Λ(G̃) and thus366

for z ∈ (0, γ), the aforementioned multiplication can be reversed and Eq. (3.12) holds for367

z ∈ (0, γ) by analytic continuation. The result follows by substituting the above equation,368

along with Eq. (3.11), into Eq. (3.10) and using analytic continuation to extend the domain369

from z ∈ (0, γ) to z ∈ (0, 1] such that z /∈ Λ(G̃).370
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To prove Eq. (3.8), we use similar arguments to those used for the result of Proposition371

1, to show that for n ⩾ 0372

L̃ = L̃+(n) + P (τn <∞, Jτn)P
(
τ−n <∞, Jτ

−n

)
L̃, (3.13)373

where L̃+(n) := E
(
L̃(0, τn)

)
, from which it follows that374

L̃+(n) =
[
I− P (τn <∞, Jτn)P

(
τ−n <∞, Jτ

−n

))]
L̃ =

[
I− G̃n

P
(
τ−n <∞, Jτ

−n

)]
L̃.375

Multiplying this expression through by G̃−n (on the left) and recalling the form of W̃(n)376

given in Eq. (3.6), the result follows immediately. So far we assume only that ρ(G̃) < 1,377

hence by Remark 4 that either v < 1 or that v = 1 and κ′(0) > 0. To handle the remaining378

(limiting) case of v = 1 and κ′(0) ≤ 0 we can follow the proof of Theorem 1 in [15].379

Namely we can use the representation (3.8) of the scale function, take v → 1 and observe380

that matrices G̃, L̃+(n) and F̃(z) properly converge.381

382

Remark 6. In [16] the authors derive an equivalent result to Theorem 2 for a continuous-383

time MAP in the lattice and non-lattice case. Although their study focuses purely on the384

continuous-time case, they do point out the connection for the discrete-time model (Remark385

6 in [16]) but do not provide any proof or further details.386

Remark 7 (Invertibility of L̃+(n), G̃ and W̃(n)). Throughout the proof of the previous387

theorem and results earlier in this paper, we required invertibility of the fundamental matrix388

G̃ and the scale matrix W̃(n). We will now look at under what conditions such invertibility389

holds:390

(i) Following similar arguments as in [16], since the level process starts at X0 = 0,391

the expected number of visits at 0 before the process reaches level n ⩾ 0, namely392

L̃+(n) = E
[
L̃(0, τn)

]
, satisfies393

L̃+(n) = I+Πn L̃
+(n),394

where Πn is a probability matrix with i, j-th element containing the probability of a395

second visit to level 0 before reaching level n and doing so in phase j, conditioned396

on the starting point (0, i). Note that Πn is clearly a sub-stochastic, non-negative397

matrix, which implies ρ
(
Πn

)
< 1 and thus I−Πn is invertible. Hence, L̃+(n) is also398

invertible, since from the above expression it follows that (I−Πn) L̃
+(n) = I.399

(ii) In order to show that G̃ is invertible, recall that400

G̃ =
∞∑

m=−1

Ã−mG̃m+1 = Ã1 +
∞∑

m=0

Ã−mG̃m+1,401
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from which it follows that402

Ã1 = G̃−
∞∑

m=0

Ã−mG̃m+1 =
(
I−

∞∑

m=0

Ã−mG̃m
)
G =

(
I−Π1

)
G403

404

Therefore, since I − Π1 is invertible, G̃ is invertible provided that Ã1 is invertible.405

Finally, since L̃+(n) is invertible and given G̃ is invertible, then by Eq. (3.8) it is406

clear that W̃(n) is also invertible.407

Although Theorem 2 provides a number of representations for W̃, in the discrete case the408

scale matrix also satisfies a recursive relation. The recursion below generalises the recursion409

for the scale function derived in [3] and has also been discussed in [16].410

Corollary 1. For b ⩾ 1, the scale matrix W̃(·), defined in Theorem 2, satisfies the follow-411

ing recursive equation412

W̃(b+ 1) = Ã−1
1

(
W̃(b)−

b−1∑

m=0

Ã−mW̃(b−m)
)
, (3.14)

with W̃(1) = Ã−1
1 .413

Proof. To prove the recursive relation, consider the two-sided hitting probability P
(
τ+a <

τ−
−b; Jτ+a

)
and condition on the first time step. Then, for a, b ⩾ 1, we have

P
(
τ+a < τ−

−b; Jτ+a

)
=

1∑

m=−(b−1)

ÃmPm

(
τ+a < τ−

−b; Jτ+a

)

=

1∑

m=−(b−1)

ÃmP
(
τ+a−m < τ−

−(b+m); Jτ+a−m

)
,

where the last equality follows from the Markov additive property. Further, using Theorem
2 and multiplying on the right by W̃(a+ b), the above expression can be re-written as

W̃(b) =
1∑

m=−(b−1)

ÃmW̃(b+m).

and the recursive expression given in Eq. (3.14) follows directly after some basic algebraic414

manipulations. For W̃(1), recall Remark 7 that L̃+(1) = (I−Π1)
−1 and also that Ã−1

1 =415

G̃−1(I−Π1)
−1 = G̃−1L̃+(1) = W̃(1), from Theorem 2.416
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Remark 8. Under the same line of logic as Remark 5, we recall that the above results417

are more general than explicitly stated. For example, by superimposing killing Eq. (3.5) is418

equivalent to419

E

(
vτ

+
a ; τ+a < τ−

−b, Jτ+a

)
= W̃v(b)W̃v(a+ b)−1, (3.15)420

for v ∈ (0, 1], where W̃v(·) is defined in Eq. (3.4) with the rest of the results amended421

accordingly.422

3.2.2 Two-sided exit theory for arbitrary Ã1423

In Theorem 2, we rely on the fact that Ã1 is non-singular, which in turn ensures G̃ is424

non-singular by Remark 7. However, it turns out that a similar result can also be derived425

for arbitrary Ã1 in terms of matrices closely related to the W̃ scale matrix.426

To see this, let us define L̃−(n) := E
(
L̃ (0, τ−n)

)
for n ⩾ 0, M̃(n) := E

(
L̃
(
−n, τ−(n+1)

))
427

and recall R̃ is related to the ‘time-reversed’ counterpart of G̃ (see Remark 5). Then, we428

have the following theorem.429

Theorem 3. Assume the matrix Ã1 is singular. Then, there exists a matrix Ṽ : N →430

R
N×N with Ṽ(0) = I, which is invertible and satisfies431

P
(
τ+a < τ−

−b, Jτ+a

)
= Ṽ(b)R̃aṼ(a+ b)−1, (3.16)432

where433

Ṽ(n) = L̃−(n) =
[
I− P

(
τ−n <∞, Jτ

−n

)
G̃n
]
L̃.434

Furthermore, it holds that435

L̃−(n) =
n−1∑

k=−1

M̃(k)R̃k (3.17)436

and for z ∈ (0, 1] such that z /∈ Λ(G̃), also437

∞∑

n=0

znM̃(n) =
(
I− F̃(z)

)−1 (
I− z−1R̃

)
. (3.18)438

Proof. Assume now that the matrix G̃ is singular (which, by Remark 7, is equivalent to439

the requirement that the matrix Ã1 is singular). Then, from equation (3.9) we can obtain440

an alternative representation for the two-sided exit probability of the form441

P
(
τ+a < τ−

−b, Jτ+a

)
= H̃(b)G̃aH̃(a+ b)−1,442

where443

H̃(n) = I− P

(
τ−−n <∞, J

τ−
−n

)
G̃n,444
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for n ⩾ 0, as long as this matrix is invertible (see below). Moreover, by similar arguments445

as in Eq. (3.13), it follows that446

L̃ = L̃−(n) + P
(
τ−n <∞, Jτ

−n

)
P (τn <∞, Jτn) L̃,447

or equivalently448

L̃−(n) =
[
I− P

(
τ−n <∞, Jτ

−n

)
G̃n
]
L̃.449

Now, although we do not discuss in much details here the definition and probabilistic450

interpretation of the matrix R̃, [16] explain that the matrix R̃n comprises of i, j-th elements451

representing the expected number of visits to level n ⩾ 0 in phase j before the first return452

to the level 0, given X0 = 0 and J0 = i. Hence, using this interpretation, we observe that453

G̃nL̃ = E

(
L̃(n,∞)

)
= L̃R̃n

454

and therefore, straightforward calculations show that Eq. (3.16) holds for Ṽ(n) = L̃−(n)455

as long as this matrix is invertible for all n ⩾ 0. Note that this can easily be verified by456

employing the same argument as in (i) of Remark 7 for n ⩽ 0 and considering Π−n instead457

of Πn.458

To prove Eq. (3.17), we use similar arguments as [16] and employ the Markov property459

to obtain460

L̃−(n+ 1) = L̃−(n) + M̃(n)R̃n,461

and, in particular, L̃−(1) = M̃(0), from which the result follows directly.462

Finally, to prove the transform in Eq. (3.18), we again follow the methodology of [16]463

and first note that by conditioning on the first time period, for n ⩾ 1, we have464

M̃(n) =

n∑

m=−1

Ã−mM̃(n−m), (3.19)465

whilst, for n = 0, it follows that466

M̃(0) = I+ Ã1M̃(1) + Ã0M̃(0). (3.20)467

Taking transforms on both sides of Eq. (3.19) and noting the above expression for M̃(0),468

after some algebraic manipulations (see Appendix), we obtain469

∞∑

n=0

znM̃(n) = I− z−1Ã1M̃(0) + F̃(z)
∞∑

k=0

zkM̃(k)470

= I− z−1R̃+ F̃(z)
∞∑

k=0

zkM̃(k), (3.21)471

472
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where in the last equality we have use the probabilistic interpretation of R̃ to note that473

R̃ = Ã1L̃
−(1) = Ã1M̃(0). The result follows directly by solving the above expression for474

the transform and holds as long as I− F̃(z) is invertible.475

Although the result of Theorem 3 is clearly more general than that of Theorem 2, as it476

does not require invertibility of Ã1, it deviates from the well known form and methodology477

of scale matrices (functions) seen throughout the literature. As such, since the purpose of478

this paper is to demonstrate and derive the fully discrete analogue of the well known ‘scale479

theory’ for MACs, we will assume the invertibility of Ã1 throughout the rest of this paper480

but point out that all the following results could also be generalised to the arbitrary case481

(see [16] for more details of such results in the continuous-time setting).482

At this point it is natural to consider the corresponding downward exit problems (one483

and two-sided). However, in order to do this we must first discuss some fluctuation problems484

for the associated ‘reflected’ MAC process which is discussed in the following section.485

4 Exit Problems For Reflected MACs486

In this section, we deviate from the basic MAC described above and consider the associated487

two-sided reflection of the process {Xn}n⩾0 with respect to a strip [−d, 0] with d > 0. The488

choice of strip is purely for notational convenience and can easily be converted to the489

general strip [−b, a] by shifting the process appropriately. The main result of this section490

is given in Theorem 4 which is interesting in its own right, but is also used to derive the491

aforementioned downward exit problems of the original (un-reflected) MAC.492

Following the same line of logic as in [15], let us define the reflected process by493

Hn = Xn +R−
n −R+

n ,494

where R−
n and R+

n are known as regulators for the reflected process at the barriers −d and495

0, respectively, which ensure that the process {Hn}n⩾0 remains within the strip [−d, 0] for496

all n ∈ N. Note that in continuous-time and space, the reflected process {Hn}n⩾0 corre-497

sponds to the solution of the so-called Skorohod problem (see [23]). By the construction of498

{Hn}n⩾0, it is clear that {R−
n }n⩾0 and {R+

n }n⩾0 are both non-decreasing processes, with499

R−
0 = R+

0 = 0, when X0 in [−d, 0], which only increase during periods when Hn = −d500

and Hn = 0, respectively. Moreover, since {Xn}n⩾0 is ‘spectrally negative’ the upward501

regulator {R+
n }n⩾0 increases by at most one per unit time.502

Now, let us denote by ρk, the right inverse of the regulator {R+
n }n⩾0, defined by503

ρk = inf{n ⩾ 0 : R+
n > k} = inf{n ⩾ 0 : R+

n = k + 1}, (4.1)504

such that R+
ρk

= k + 1. Then, since an increase in {R+
n }n⩾0 only occurs whilst Hn = 0, it505

follows that Hρk = 0 and thus, R−
ρk

= (k+1)−Xρk . Hence, by the strong Markov property506

of {Xn}n⩾0, we have that
{(
R−

ρk
, Jρk

)}
k⩾0

is itself a MAC with random initial position507
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(R−
ρ0
, Jρ0) when X0 ∈ [−d, 0] and non-negative jumps within the level process {R−

ρk
}k⩾0.508

Thus, in a similar way as for the original MAC (X, J), we can define its p.g.m. , given509

X0 = 0, by510

E
(
zR

−

ρk ; Jρk
)
=
(
F̃∗(z)

)k+1
, F̃∗(z) := E

(
zR

−

ρ0 ; Jρ0
)
. (4.2)511

Remark 9. In the continuous case, X0 = 0 is a regular point on (0,∞) and thus, it512

follows that ρ0 = 0 a.s. and thus E
(
zR

−

ρ0 ; Jρ0
)
= I (see [15] for details). However, in the513

fully discrete set-up, we have already mentioned that R−
ρ0

is random for X0 = 0 and is due514

to the possibility of the process experiencing a negative jump in the first time period such515

that ρ0 ̸= 0. Moreover, the process may drop below the lower level −d (resulting in a jump516

in {R−
n }n⩾0) before the stopping time ρ0, and justifies the choice of the p.g.m.E

(
zR

−

ρ0 ; Jρ0
)

517

above, compared to E
(
zR

−

ρ1 ; Jρ1
)
in the continuous case (see [15]). On the other hand, we518

note that if X0 = 1, then E1

(
zR

−

ρ0 ; Jρ0
)
= I, since R+

0 = 1, and thus ρ0 = 0. The latter519

observation will play a crucial role in analysing the distribution of (R−
ρ0
, Jρ0), which is given520

in the following theorem in terms of the second v-scale matrix, denoted Z̃v, and defined for521

z ∈ (0, 1] and v ∈ (0, 1], by522

Z̃v(z, n) = z−n
[
I+

n∑

k=0

zk W̃v(k)
(
I− vF̃(z)

)]
, (4.3)523

with Z̃v(z, 0) = I, for all z ∈ (0, 1] and v ∈ (0, 1] and Z̃1(z, n) =: Z̃(z, n).524

Theorem 4. For z ∈ (0, 1], such that z /∈ Λ(G̃), and x ∈ [−d, 1] it holds that Z̃(z, d + 1)525

is invertible and526

Ex

(
zR

−

ρ0 ; Jρ0
)
= Z̃(z, d+ x)Z̃(z, d+ 1)−1, (4.4)527

where Z̃(z, n) is defined by Eq. (4.3).528

Proof. The proof of this theorem actually follows a similar line of logic as the proof of529

Theorem 1 however, due to the nature of the reflected process, the calculations require530

greater attention.531

First note that since Hρk = 0 for each k ∈ N, we have Xρk = k + 1 − R−
ρk

and thus532

{(Xρk , Jρk)}k⩾0 is a MAC having unit (upward) drift and downward jumps described by533

{R−
ρk
}k⩾0 with random ‘initial’ position Xρ0 = 1− R−

ρ0
. Moreover, its occupation mass in534

the bivariate state (y, j) ∈ Z×E is defined by L̃∗(y, j,∞) =
∑∞

k=0 1(Xρk
=y,Jρk=j) and thus,535

from the occupation mass formula in Eq. (2.5), we have536

∞∑

k=0

z−Xρk1(Jρk=j) =
∑

m∈Z

z−mL̃∗(m, j,∞).537
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Taking expectations on both sides of this expression, conditioned on the initial state X0 =538

x ∈ [−d, 1], and writing in matrix form yields539

∞∑

k=0

Ex

(
z−Xρk ; Jρk

)
=
∑

m∈Z

z−mL̃∗
x(m,∞), (4.5)540

where L̃∗
x(m,∞) is the infinite-time occupation matrix with i, j-th element given by541 (

L̃∗
x(m,∞)

)
ij
= Ex

(
L̃∗(m, j,∞) | J0 = i

)
.542

Let us now treat the left-hand side and right-hand side of Eq. (4.5) separately. Firstly,543

using the fact that Xρk = k+1−R−
ρk
, along with the strong Markov and Markov additive544

properties of {R−
ρk
}k⩾0, the l.h.s. of Eq. (4.5) can be re-written in the form545

∞∑

k=0

Ex

(
z−Xρk ; Jρk

)
=

∞∑

k=0

z−(k+1)
Ex

(
zR

−

ρk ; Jρk
)

546

=
∞∑

k=0

z−(k+1)
Ex

(
zR

−

ρ0 ; Jρ0
)
E
(
zR

−

ρk−1 ; Jρk−1

)
547

= Ex

(
zR

−

ρ0 ; Jρ0
) ∞∑

k=0

z−(k+1)
(
F̃∗(z)

)k
548

= Ex

(
zR

−

ρ0 ; Jρ0
)
z−1
(
I− z−1F̃∗(z)

)−1
, (4.6)549

for all z ∈ (0, 1] such that z > (ρ(F̃∗(z)). We note that since {(Xρk , Jρk)}k⩾0 is a MAC, it550

holds that E(z−Xρk ; Jρk) =
(
E(z−Xρ0 ; Jρ0)

)k+1
. Now, let us define τ1 = inf{ρk ⩾ 0 : Xρk =551

1} and G to be the probability transition matrix such that P(τ1 < ∞, Jτ1) = G, which is552

sub-stochastic, (implying ρ(G) < 1) in the case of killing or no killing and negative drift.553

Then, based on similar arguments as those discussed in the proof of Theorem 2, since the554

eigenvalues of G coincide with the roots of I − E(z−Xρ0 ; Jρ0) = (I − z−1F̃∗(z)), then we555

conclude that I − z−1F̃∗(z) is invertible for z ∈ (ρ(G), 1]. In fact, since {Xn}n⩾0 is an556

upward skip-free process, it follows that τ1 = τ1 for X0 ∈ [−d, 1], which implies G = G̃,557

and thus I− z−1F̃∗(z) is invertible for z ∈ (ρ(G̃), 1]. Hence, by applying the same analytic558

continuation argument as in Theorem 2, the above expression holds for z ∈ (ρ(G̃), 1).559

Now, for the r.h.s. of Eq. (4.5), let us introduce the matrix quantity C̃−y whose individ-560

ual i, j-th elements denote the probability of the process {Xn}n⩾0 first hitting some level561

−y < 0 from initial states X0 = 0 and J0 = i, and then hitting the upper level (d+ 1)− y562

whilst Jn = j, such that563

C̃−y = P
(
τ−y <∞, Jτ

−y

)
P−y

(
τd+1−y <∞, Jτd+1−y

)
564

= P
(
τ−y <∞, Jτ

−y

)
P
(
τd+1 <∞, Jτd+1

)
= P

(
τ−y <∞, Jτ

−y

)
G̃d+1. (4.7)565

566
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Using this quantity, it is possible to show that for X0 = x ∈ [−d, 1]567

L̃∗
x(m,∞) =

[
1(m>0)Px

(
τm <∞, Jτm

)
+ 1(m⩽0)C̃m−(d+1)−x

] ∞∑

k=0

(
C̃−(d+1)

)k
.568

To see this, note that L̃∗(m, j,∞) corresponds to the (local) time points ρk (increases in569

{R+
n }n⩾0) such that Xρk = m and Jρk = j, or alternatively, time points k ⩾ 0 for which570

{R+
n }n⩾0 is increasing and Xk = m and Jk = j. Then, for m > 0, the first increase of571

L̃∗(m, j,∞) is at τm, otherwise, for m ⩽ 0, {Xn}n⩾0 has to first visit the state (level)572

m − (d + 1) to ensure that at the next time the process {Xn}n⩾0 visits the level m < 0,573

the ‘reflected process’ {Hn}n⩾0 was at its upper boundary in the previous time period574

(Hn−1 = 0), resulting in an increase of {R+
n }n⩾0. Every subsequent increase of L̃∗(m, j,∞)575

is obtained in a similar way. Thus, the above equation follows by application of the strong576

Markov and Markov additive properties.577

Taking transforms on both sides of the above equation, it yields578

∑

m∈Z

z−mL̃∗
x(m,∞) =

( ∞∑

m=1

z−m
Px

(
τm <∞, Jτm

)
+

0∑

m=−∞

z−mC̃m−(d+1)−x

) ∞∑

k=0

(
C̃−(d+1)

)k
579

=
( ∞∑

m=1

z−mG̃m−x +

0∑

m=−∞

z−m
P
(
τm−(d+1)−x <∞, Jτm−(d+1)−x

)
G̃d+1

)
580

×
(
I− C̃−(d+1)

)−1
, (4.8)581

582

where we have used the fact that
∑∞

k=0

(
C̃−(d+1)

)k
=
(
I − C̃−(d+1)

)−1
in the presence of583

killing, since C̃−(d+1) is a sub-stochastic matrix and thus, its Perron-Frobenius eigenvalue584

is less than 1. Now, the first term inside the brackets of the last expression is clearly585

equivalent to −
(
I − zG̃−1

)−1
G̃−x for all z ∈ (ρ(G̃), 1], whilst by the change of variable586

k = m− (d+ 1)− x, the second term within the brackets becomes HERE!!587

z−(d+1)−x

−(d+1+x)∑

k=−∞

z−k
P
(
τk <∞, Jτk

)
G̃d+1 = z−(d+1)−x

∞∑

m=d+1+x

zmP
(
τ−m <∞, Jτ

−m

)
G̃d+1,588

589

and thus, after some algebraic manipulations (see Appendix), Eq.(4.8) can be re-written590

as591 ∑

m∈Z

z−mL̃∗
x(m,∞) = z−1Z̃(z, d+ x)(I− F̃(z))−1W̃(d+ 1)−1, (4.9)592

where Z̃(z, n) is defined in Eq. (4.3). Finally, by combining Eqs. (4.6) and (4.9), we obtain593

for z ∈ (ρ(G̃), 1)594

Ex

(
zR

−

ρ0 ; Jρ0
)(
I− z−1F̃∗(z)

)−1
= Z̃(z, d+ x)(I− F̃(z))−1W̃(d+ 1)−1. (4.10)595
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To complete the proof, it remains to determine the form of the matrix F̃∗(z). To do this,596

let x = 1 into the above expression which, after using the fact that E1

(
zR

−

ρ0 ; Jρ0
)
= I since597

in this case ρ0 = 1 and taking inverses on both sides, gives598

I− z−1F̃∗(z) = W̃(d+ 1)(I− F̃(z))−1Z̃(z, d+ 1)−1.599

Note that this expression shows that Z̃(z, d+1) is an invertible matrix as long as W̃(d+1)600

is invertible and after solving w.r.t. F̃∗(z) also gives601

F̃∗(z) = z
[
I− W̃(d+ 1)(I− F̃(z))−1Z̃(z, d+ 1)−1

]
. (4.11)602

The result follows by substituting the above expression for F̃∗(z) back into Eq. (4.10),603

re-arranging and employing analytic continuation in a similar way as previous.604

605

Remark 10. We point out that setting X0 = x = 0 in the result of Theorem 4, gives an606

equivalent representation for F̃∗(z) in terms of the Z̃ scale matrix only, i.e.,607

F̃∗(z) = Z̃(z, d)Z̃(z, d+ 1)−1.608

Moreover, we note that based on its definition, it is also possible to use the recursive relation609

of W̃(·), given in Corollary 1, to obtain explicit values of Z̃(z, ·).610

Although the result of Theorem 4 is interesting in its own right, its main importance in611

this paper is as a stepping stone for proving a similar result for the associated one-sided612

reflected process (see Section 4.1 below) and consequently, the two-sided and one-sided (as613

a limiting case) downward exit problems for the original (non-reflected) MAC.614

4.1 One-Sided Reflection615

As discussed in the previous section, the downward exit problems can be solved using an616

auxiliary result for the one-sided (lower) reflected process. As such, let us define617

Yn = Xn +R−b
n ,618

where R−b
n = −b− (−b∧Xn) with Xn = infk⩽n{Xk}, denotes a lower reflecting barrier at619

the level −b ⩽ 0. Note that this is equivalent to shifting the two-sided reflected process620

of the previous section and letting the upper reflecting barrier tend to infinity. Then, by621

direct application of Theorem 4 we get the following corollary.622

Corollary 2. For X0 = 0, z ∈ (0, 1] such that z /∈ Λ(G̃), a > 0 and b ⩾ 0, it holds that623

E

(
zR

−b
τa ; Jτa

)
= Z̃(z, b)Z̃(z, a+ b)−1, (4.12)624

Proof. Note that if we set d = (a − 1) + b in Theorem 4, then {(Hn + (a − 1), R−
n )}n⩾0625

up to time ρ0 coincides with {(Yn, R
−b
n )}n⩾0 up to time τa, given that H0 + (a − 1) = Y0.626

Hence, the result follows directly from Theorem 4 with x = −(a− 1).627
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5 Downward Exit Problems628

For the one and two-sided downward exit problems, we are interested in the events {τ−
−b <629

∞} and {τ−
−b < τ+a }, respectively. Unlike the upward exit, due to the possibility of down-630

ward jumps in the MAC, the stopping time τ−
−b is not necessarily equivalent to the first631

hitting time of the level −b < 0, i.e., τ−
−b ̸= τ−b. It is for this reason that we cannot employ632

the Markov type structure seen for the upward exit identities and, instead, rely on the633

results of the reflected processes of the previous section.634

Although it would appear easier to derive in the first instance, it turns out that the635

one-sided downward exit problem can easily be obtained as a limiting case of the related636

two-sided case and as such, is considered in the following.637

5.1 Two-Sided Exit Downward - {τ−−b < τ
+
a }638

For the two-sided downward exit problem, we are interested in the time of exiting the fixed639

‘strip’, [−b, a], such that {τ−
−b < τ+a }. Using the result for the transform of the downward640

regulator for the one-sided reflected process, we obtain the following corollary.641

Corollary 3. For z ∈ [0, 1] such that z /∈ Λ(G̃), it holds that for any a, b > 0, we have642

E

(
z
−X

τ
−

−b ; τ−
−b < τ+a , Jτ−

−b

)
= zb−1

[
Z̃(z, b− 1)− W̃(b)W̃(a+ b)−1Z̃(z, a+ b− 1)

]
.643

Proof. Consider the one-sided reflected process of Section 4.1. Then, by the strong Markov644

and Markov additive properties, it follows that for b > 0, we have645

E

(
z
R

−(b−1)

τ
+
a ; J

τ+a

)
= P

(
τ+a < τ−

−b; Jτ+a

)
+E

(
z
−(b−1)−X

τ
−

−b ; τ−
−b < τ+a , Jτ−

−b

)
E

(
z
R0

τ
+
a+b−1 ; J

τ+
a+b−1

)
.646

Re-arranging this expression and using the identities of Theorem 2 and Corollary 2 the647

result follows immediately.648

5.2 One-Sided Exit Downward649

For the one-sided exit problem, we are now interested in the event that of down-crossing650

the level −b < 0, whilst the upward movement of the MAC is un-restricted, i.e., {τ−
−b <∞}651

which, as already mentioned, can be viewed as a limiting case of the corresponding two-652

sided problem as a → ∞. In fact, this is the argument used to obtain the following653

one-sided downward exit identity.654

Corollary 4. Assume we are not in the case of no-killing and zero drift, i.e., it is not true655

that both v = 1 and κ′(1) = 0. Then, L̃ is invertible and, for z ∈ (0, 1] such that z /∈ Λ(G̃)656

and b > 0, we have657

E

(
z
−X

τ
−

−b ; J
τ
−

−b

)
= zb−1

[
Z̃(z, b− 1)− zW̃(b)L̃−1

(
I− zG̃−1

)−1
L̃(F̃(z)− I)

]
. (5.1)658
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Proof. Firstly, the invertibility of L̃ follows from Remark 3, for which it cannot hold that659

both v = 1 and κ′(1) = 0. On the other hand, Eq. (5.2) follows from taking the limit of660

the two-sided case (see Corollary 3) as the upper barrier tends to infinity, i.e., a→ ∞. In661

order to evaluate the value of the limit of W̃(b)W̃(a+ b)−1Z̃(z, a+ b− 1) as a→ ∞, note662

that by the definition of the scale matrix Z̃(z, n), and using Eq. (3.7), it follows that663

Z̃(z, a+ b− 1) = z−(a+b−1)
(
I+

a+b−1∑

k=0

zkW̃(k)
(
I− F̃(z)

))
664

= z−(a+b−1)
∞∑

k=a+b

zkW̃(k)
(
F̃(z)− I

)
665

=
∞∑

n=1

znW̃(n+ a+ b− 1)
(
F̃(z)− I

)
.666

Moreover, by using the fact that W̃(n) = G̃−nL̃(n) (see Theorem 2), multiplication of the667

above expression by W̃(a+ b)−1 on the left yields668

W̃(a+ b)−1Z̃(z, a+ b− 1) = L̃−1(a+ b)
∞∑

n=1

znG̃−(n−1)L̃(n+ a+ b− 1)
(
F̃(z)− I

)
,669

which, after taking a→ ∞ and using dominated convergence theorem, gives670

lim
a→∞

W̃(a+ b)−1Z̃(z, a+ b− 1) = L̃−1z

∞∑

n=0

(
zG̃−1

)n
L̃
(
F̃(z)− I

)
671

= L̃−1z
(
I− zG̃−1

)−1
L̃
(
F̃(z)− I

)
,672

for z ∈ (0, γ), where L̃ is the infinite time occupation mass matrix defined in Proposition673

1. Finally, by analytic continuation, it can be shown that the above holds for all z ∈ (0, 1]674

such that z /∈ Λ(G̃) and thus, by taking the limit as a→ ∞ in Corollary 3, using the above675

expressions and re-arranging, we obtain the result.676

Remark 11. We point out once again that by explicitly imposing killing, Corollary 3 and677

consequently Corollary 4 equivalently yield the following joint transforms for v ∈ (0, 1]678

E

(
vτ

−

−bz
−X

τ
−

−b ; τ−
−b < τ+a , Jτ−

−b

)
= zb−1

[
Z̃v(z, b− 1)− W̃v(b)W̃v(a+ b)−1Z̃v(z, a+ b− 1)

]
,679

and680

E

(
vτ

−

−bz
−X

τ
−

−b ; J
τ
−

−b

)
= zb−1

[
Z̃v(z, b−1)− zW̃v(b)L̃

−1
v

(
I− zG̃−1

v

)−1
L̃v(F̃v(z)− I)

]
. (5.2)681

where W̃v(·) and Z̃v(z, ·) are defined as in Eqs. (3.4) and (4.3), respectively.682
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Appendix741

Proof of Eq. (3.21). It follows from the results of Eq. (3.19) and (3.20), that742

∞∑

n=0

znM̃(n) = M̃(0) +

∞∑

n=1

zn
n∑

m=−1

Ã−mM̃(n−m)743

= I+

∞∑

n=0

zn
n∑

m=−1

Ã−mM̃(n−m)744

= I+
∞∑

n=0

zn
n+1∑

k=0

Ã−(n−k)M̃(k)745

= I+

∞∑

n=0

znÃ−nM̃(0) +

∞∑

n=0

zn
n+1∑

k=1

Ã−(n−k)M̃(k)746

= I+

∞∑

n=0

znÃ−nM̃(0) +

∞∑

k=1

zk
∞∑

n=k−1

zn−kÃ−(n−k)M̃(k)747

= I+

∞∑

n=0

znÃ−nM̃(0) +

∞∑

i=−1

ziÃ−i

∞∑

k=1

zkM̃(k)748

= I− z−1Ã1M̃(0) + F̃(z)
∞∑

k=0

zkM̃(k),749

750

where, in the last equality, we have used the series definition of F̃(z) given in Eq. (2.2).751

Proof of Eq. (4.9). To prove Eq. (4.9), first note that752

k∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃ =

[
∞∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
−

∞∑

n=k+1

znP
(
τ−n <∞, Jτ

−n

)
]
L̃.753

Then, solving Eq. (3.12) w.r.t.
∑∞

n=0 z
n
P
(
τ−n <∞, Jτ

−n

)
L̃ and substituting into the above754

equation, we have755

k∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃ =

(
I−F̃(z)

)−1
+
(
I−z−1G̃−1

)−1
L̃−

∞∑

n=k+1

znP
(
τ−n <∞, Jτ

−n

)
L̃.

(A.2)756

Now, at this point, consider the definition of the scale matrix, W̃(n), given in Eq. (3.6).757

Multiplying this expression through by zn and summing from 0 to k on both sides, gives758

k∑

n=0

znP
(
τ−n <∞, Jτ

−n

)
L̃ =

k∑

n=0

znG̃−nL̃−

k∑

n=0

znW̃(n), (A.3)759
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and thus by equating the r.h.s. of Eqs. (A.2) and (A.3) and re-arranging, we obtain760

∞∑

n=k+1

znP
(
τ−n <∞, Jτ

−n

)
=

k∑

n=0

znW̃(n)L̃−1 +
(
I− F̃(z)

)−1
L̃−1 −

k∑

n=0

znG̃−n
761

+
(
I− zG̃−1

)−1
762

=

k∑

n=0

znW̃(n)L̃−1 +
(
I− F̃(z)

)−1
L̃−1

763

−
(
I− zG̃−1

)−1(
I− (zG̃−1)k+1

)
+
(
I− zG̃−1

)−1
764

=

k∑

n=0

znW̃(n)L̃−1 +
(
I− F̃(z)

)−1
L̃−1

765

+
(
I− zG̃−1

)−1
(zG̃−1)k+1, (A.4)766

767

which provides an expression for the second term of Eq. (4.8). Thus, letting k = d + x in768

the above expression and substituting into Eq. (4.8), we have that769

∑

m∈Z

z−mL̃∗
x(m,∞) =

[
−
(
I− zG̃−1

)−1
G̃−x + z−(d+1)−x

(
d+x∑

n=0

znW̃(n)L̃−1 +
(
I− F̃(z)

)−1
L̃−1

770

+
(
I− zG̃−1

)−1
(zG̃−1)d+x+1

)
G̃d+1

] (
I− C̃−(d+1)

)−1
771

= z−(d+1)−x

[
d+x∑

n=0

znW̃(n) +
(
I− F̃(z)

)−1

]
L̃−1G̃d+1

(
I− C̃−(d+1)

)−1

(A.5)

772

773

Now, setting n = d+ 1 in Eq. (3.6) and multiplying from the right by L̃−1G̃d+1, yields774

W̃(d+ 1)L̃−1G̃d+1 = I− P
(
Jτ

−(d+1)

)
G̃d+1

775

= I− C̃−(d+1),776
777

by the definition of C̃−y given in Eq. (4.7) and thus, it follows that778

(
I− C̃−(d+1)

)−1
= G̃−(d+1)L̃W̃(d+ 1)−1.779
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Finally, substituting the above equation into Eq. (A.5), we get that780

∑

m∈Z

z−mL̃∗
x(m,∞) = z−(d+1)−x

[
d+x∑

n=0

znW̃(n) +
(
I− F̃(z)

)−1

]
W̃(d+ 1)−1

781

= z−1z−(d+x)

[
d+x∑

n=0

znW̃(n)
(
I− F̃(z)

)
+ I

]
(
I− F̃(z)

)−1
W̃(d+ 1)−1

782

= z−1Z̃(z, d+ x)(I− F̃(z))−1W̃(d+ 1)−1,783
784

where the last equation follows from the definition of the Z̃ scale matrix given in Eq. (4.3).785

786
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