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1  |  INTRODUC TION

Type 2 diabetes mellitus (T2DM), a prevalent metabolic disease, has 

become the seventh leading cause of death worldwide with the ex-

ponential rise of obesity (Glovaci et al., 2019; Guariguata et al., 2014; 

Nanda et al., 2022). In the last 30 years, the morbidity and mortality 
of T2DM have doubled (Nanda et al., 2022), with the expected num-

ber of people with diabetes to reach 592 million by 2035, along-

side increased key risk factors such as excess weight and obesity 

(Ghanbari- Gohari et al., 2022; Guariguata et al., 2014). Additionally, 

adding to the burden of diabetes are its complications, such as car-

diovascular, diabetic renal disease, retinopathy, neuropathy, as well 

as cognitive impairment or dementia (Cole & Florez, 2020; Harris 

et al., 2020). Importantly among these, T2DM induces cognitive 

impairment and dementia, affecting memory, executive function, 

further increasing the financial cost of care, and worsening patient 

outcomes, leading to poor quality of life, and even greater mortality 

(Cole & Florez, 2020; Zheng et al., 2018; Zilliox et al., 2016). T2DM 
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Abstract
The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have 

grown exponentially over the last 30 years. Together with its associated complica-

tions, the mortality rates have increased. One important complication in those living 

with T2DM is the acceleration of age- related cognitive decline. T2DM- induced cog-

nitive impairment seriously affects memory, executive function, and quality of life. 

However, there is a lack of effective treatment for both diabetes and cognitive de-

cline. Thus, finding novel treatments which are cheap, effective in both diabetes and 

cognitive impairment, are easily accessible, are needed to reduce impact on patients 

with diabetes and health- care systems. Carnosine, a histidine containing dipeptide, 

plays a protective role in cognitive diseases due to its antioxidant, anti- inflammation, 

and anti- glycation properties, all of which may slow the development of neurode-

generative diseases and ischemic injury. Furthermore, carnosine is also involved in 

regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective 

role of carnosine and its mechanisms in T2DM- induced cognitive impairment, which 

may provide a theoretical basis and evidence base to evaluate whether carnosine has 

therapeutic effects in alleviating cognitive dysfunction in T2DM patients.
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is strongly associated with risk of dementia, and deficits in attention, 

processing and motor speed, executive function, and verbal memory 

(Zilliox et al., 2016). Diabetes is one of 12 key modifiable risk factors 

that have been identified to contribute to dementia and their treat-

ment could prevent or delay the onset of up to 40% of dementias 

(Livingston et al., 2020). Therefore, effective control of T2DM has 

the potential to have a huge impact on dementia.

While the pathological mechanisms underpinning this are in-

completely understood, T2DM causes a range of physiological 

changes which influence the central nervous system (CNS). T2DM 

causes significant microvascular and macrovascular complications, 

including neuropathy and cerebrovascular disease (Cade, 2008). 

Macrovascular disease can lead to stroke and microvascular disease- 

induced ischemia and functional hyperemia, leading to cognitive im-

pairment and dementia (Cade, 2008). Importantly, it is not T2DM 

alone, but rather metabolic, morphological, and functional changes 

induced by hyperglycemia and insulin resistance which cause cogni-

tive impairment and dementia (Arnold et al., 2018; Barber et al., 2021; 

Jayaraman & Pike, 2014; Tan et al., 2021). In fact, T2DM- induced 

insulin resistance, systemic inflammation, neuroinflammation, oxi-

dative stress, and advanced glycation end product (AGE) accumula-

tion, are the main pathogenic factors thought to result in cognitive 

decline (Verdile et al., 2015; Zilliox et al., 2016). Insulin resistance is 

thought to contribute to the progression of dementia through differ-

ent mechanisms, including promotion of disease- specific pathologi-

cal lesions, such as medial temporal lobe atrophy, increased neuronal 

vulnerability, and neurodegeneration, with subsequent develop-

ment of amyloid β (Aβ) plaques, tau phosphorylation, neurofibrillary 

lesions, and α- synuclein lesions (Mullins et al., 2017). Aβ reduces the 

influence of insulin on mitochondrial function in the synaptic termi-

nal, diminishing the energy reserves for synaptic plasticity, learning, 

and memory (Heras- Sandoval et al., 2012). Additionally, insulin re-

sistance results in a series of immune responses that exacerbate the 

inflammatory state (Mullins et al., 2017). In T2DM, fatty acids enter 

the CNS and activate the immune system through the toll- like recep-

tor 4 (TLR4) protein, causing astrocytes to secrete pro- inflammatory 

cytokines (Obadia et al., 2022). Additionally, AGEs interact with 

their receptors (RAGEs) and generate reactive oxygen species 

(ROS), causing increased oxidative stress and accumulation of free 

radicals (Y. Li et al., 2018). Free radicals damage DNA, proteins, and 

lipids, leading to advancing brain tissue damage (Y. Li et al., 2018). 

Therefore, insulin resistance, oxidative stress, neuroinflammation, 

and AGE accumulation are considered as important contributors to 

T2DM- induced cognitive impairment (Table 1).

Currently, there are no established clinical treatments specifi-

cally targeted at cognitive impairment induced by T2DM, but some 

interventions show promise in alleviating cognitive impairment in 

these patients. These include exercise, intensive glycemic control, 

and dietary or nutritional interventions. Therapeutic exercise may 

attenuate mild cognitive impairment (MCI), with a beneficial ef-

fect on the cognitive health of T2DM patients and improving brain 

structure and function (Callisaya & Nosaka, 2017). However, a study 

found that a 24- month moderate- intensity exercise program had 

no beneficial effect on cognitive function, largely due to the chal-

lenge of sustaining moderate- intensity exercise among older adults 

(Sink et al., 2015). Intensive glycemic control is the mainstay of 

Pathologic changes Mechanisms

Microvascular complications Impaired blood flow leading to ischemia and functional 

hyperemia, resulting in cognitive impairment and dementia

Macrovascular complications Increased risk of stroke and further cognitive decline

Hyperglycemia and insulin 

resistance

Promotion of disease- specific pathologic lesions, such as 

medial temporal lobe atrophy, neuronal vulnerability, and 

neurodegeneration

Systemic and 

neuroinflammation

Activation of immune responses including astrocytes, through 

TLR4 activation, leading to pro- inflammatory cytokine 

secretion in the brain to cause cognitive impairment

Oxidative stress Accumulation of free radicals, causing DNA, protein, and lipid 

damage

AGEs AGEs interact with their receptors, generating ROS, and 

leading to oxidative stress and brain tissue damage

Aβ plaques Insulin resistance reduces the impact of insulin on 

mitochondrial function, contributing to the accumulation 

of Aβ plaques and impaired synaptic plasticity

Tau phosphorylation Insulin resistance is associated with tau protein 

hyperphosphorylation, leading to the formation of 

neurofibrillary tangles and neuronal dysfunction

Brain tissue damage Insulin resistance and related processes contribute to 

neuronal damage and loss, a significant factor in dementia 

development

Abbreviations: Aβ, amyloid β; AGEs, advanced glycation end- products; TLR4, toll- like receptor 4; 

ROS, reactive oxygen species.

TA B L E  1  Potential diabetic pathologic 
changes promote dementia.
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management and prevention of all diabetic complications, aiming to 

maintain glycated hemoglobin (HbA1c) at 6.5%–7.0% (48–53 mmol/
mol) or below (Rodriguez- Gutierrez et al., 2019). While effective 

glycemic control has been shown to reduce the rate of brain atro-

phy, it does not improve cognitive function (Launer et al., 2011). 

Nutritional interventions, such as the ketogenic diet and vitamin 

D3 supplementation, have shown promise in protecting neurons 

and preventing cognitive impairment in T2DM (Bai et al., 2023; Tan 

et al., 2021). However, these interventions have limitations, includ-

ing adherence difficulties and unclear mechanisms of action. More 

recently, intranasal insulin therapy has been applied to patients with 

type 1 diabetes mellitus (T1DM) and Alzheimer's disease (AD), which 

may possibly facilitate a reduction in tau phosphorylation and am-

yloid plaque density that could attenuate cognitive decline (Rdzak 

& Abdelghany, 2014). However, its efficacy in modulating the level 

of glucose was limited, proposed to be due to insulin being unable 

to effectively enter the cerebral circulation, rendering it ineffective 

(Gancheva et al., 2015). Modulating the effect that diabetes has on 

cognitive performance may need a multidomain approach in which 

factors such as blood pressure and weight management are also tar-

geted as this type of intervention has been shown to have the great-

est effect in elderly populations (Ngandu et al., 2015). Thus, finding 

novel treatments, which are cheap, effective, and widely available 

are required to help reduce the impacts on patients with T2DM and 

healthcare systems more broadly.

Carnosine, a naturally occurring dipeptide, is composed of β- 

alanine and l- histidine, with biological functions including anti-

oxidant activity, anti- inflammation, anti- glycation, antitumor, and 

antiaging effects (Boldyrev et al., 2013). Carnosine is abundant in 

skeletal and cardiac muscle as well as brain tissue, where it is syn-

thesized by hydrolysis of endogenous carnosine synthase (CARNS1) 

(Boldyrev et al., 2013). The two precursors of carnosine, β- alanine 

and l- histidine are easily transported across the blood–brain barrier 

through amino acid transporters, allowing for carnosine synthesis 

in the brain (Hawkins et al., 2006). While carnosine can also cross 

the blood–brain barrier, most of it is synthesized locally in the brain 

(Jin et al., 2005). Previous work has shown that after administration, 

carnosine reaches peak concentration in the brain after 6 h, with a 
different pharmacokinetic curve compared to the blood, suggesting 

that cerebral carnosine is mainly resynthesized in glial cells (Guliaeva 

et al., 1989). Glial cells, especially oligodendrocytes, are the primary 

site of carnosine synthesis in the brain, while neurons and astro-

cytes are the primary users of carnosine (Berezhnoy et al., 2019). To 

achieve neuroprotective effects, high concentrations of carnosine 

must be maintained in brain tissue (Lopachev et al., 2022). This can 

be accomplished by enhancing the efficiency of glial cells to produce 

endogenous carnosine and facilitate its transportation into neurons, 

or through exogenous supplementation of carnosine to increase its 

concentration within neurons (Lopachev et al., 2022). Carnosine 

has been shown to have a beneficial effect on cognitive impairment 

by suppressing neuronal cell death and inflammatory responses in 

cognition- related diseases including stroke, AD, and vascular de-

mentia (Artioli et al., 2019). Due to its effect on glucose metabolism, 

carnosine is also involved in the regulation of blood glucose and in-

sulin resistance in patients with diabetes (Houjeghani et al., 2018). 

However, the effects of carnosine on T2DM- induced cognitive im-

pairment and related mechanisms are not fully understood.

This article aims to review the role of carnosine in T2DM- induced 

cognitive impairment, and its potential mechanisms, including anti-

oxidant activity, anti- inflammatory effects, anti- glycation, and regu-

lating insulin resistance in central nervous system (CNS).

2  |  WHAT IS C ARNOSINE?

Carnosine was first discovered in the early 1900s by Gulewitsch 

and Amiradzbi in Russia (Gulewitch & Amiradzibi, 1900). Carnosine 

is composed of β- alanine and l- histidine, detected in skeletal and 

cardiac muscle as well as brain tissue (Hipkiss, 2009). Carnosine is 

one of a number of histidine containing dipeptides (HCDs) which 

share some physiological characteristics, including anserine, ophi-

dine (balenine), homocarnosine, and acetyl- carnosine, which are 

detected in different tissues of mammals including the olfactory 

bulb, skeletal muscle, the choroid plexus, cerebral cortex, kidneys, 

the spleen, cerebrospinal fluid, and plasma (Boldyrev et al., 2013). 

Carnosine is particularly abundant in human skeletal muscle, cardiac 

muscle, kidneys, and the brain to maintain healthy bodily function 

(Artioli et al., 2019; Wu et al., 2013). The prevalence of HCDs within 

distinct tissues underscores their essential roles and specialized 

functions, which protect myocardial function, enhance cognition, 

prevent chronic diseases, and collectively overall bodily well- being 

(Boldyrev et al., 2013).

2.1  |  Chemical and biochemical 
properties of carnosine

2.1.1  |  Antioxidant activity

The antioxidant effect of carnosine is well- known and has been dem-

onstrated across many chronic diseases (Ahshin- Majd et al., 2016; 

Alsheblak et al., 2016; Deng et al., 2018). Carnosine imparts its anti-

oxidant effect by both directly scavenging free radical and oxidizing 

species, as well as indirectly activating the endogenous antioxidant 

system via the nuclear factor- erythroid factor 2- related factor 2 

(Nrf2) pathway. The imidazole ring of carnosine is responsible for its 

direct ROS scavenger—playing a protective effect against hypochlo-

rous acid—one of the most important biological ROS (Boldyrev 

et al., 2013). When carnosine reacts with hypochlorous acid, the 

imidazole ring transfers to imidazole chloramines, thereby reduc-

ing oxidative damage (Pattison & Davies, 2006). Additionally, under 

H2O2 exposure, carnosine is oxidized to 2- oxo- carnosine by its imi-

dazole ring in SH- SY5Y human neuroblastoma cells while express-

ing CARNS1 (Ihara et al., 2019). Moreover, 2- oxo- carnosine displays 

stronger antioxidant properties than the corresponding carnosine 

and glutathione (GSH, an endogenous antioxidant) (Ihara et al., 2019; 
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Kasamatsu et al., 2021). The removal of 2- oxo- carnosine from car-

nosine standards resulted in a significant reduction in antioxidant 

capacity, which suggests that 2- oxo- carnosine is a major driver of 

the antioxidant activity of carnosine (Figure 1) (Ihara et al., 2019; 

Kasamatsu et al., 2021).

Not only does carnosine possess direct antioxidant ability, it also 

indirectly counteracts oxidative damage via the Nrf2 signaling path-

way. Following activation, Nrf2 translocates to the nucleus, binding 

DNA, and triggers antioxidant responses by facilitating various gene 

products (Li & Kong, 2009). Thus, Nrf2 is considered to be the major 

transcription factor involved in the induction of antioxidant genes 

(Li & Kong, 2009; Xiong et al., 2021). Carnosine potentiates the an-

tioxidant capacity of intestinal stem cells by mediating Kelch- like 

ECH- associated protein 1 (Keap1)/Nrf2 signaling, which promotes 

the intestinal epithelial regeneration response to deoxynivalenol in-

sult (Zhou et al., 2021). In the CNS, carnosine restores the decline of 

nuclear Nrf2 expression, by ameliorating the increase of malondial-

dehyde (a marker of lipid peroxidation) and promotes the decrease of 

GSH and superoxide dismutase (SOD) by Nrf2/Heme oxygenase- 1 

(HO- 1) cascade to promote the antioxidant response, which atten-

uates cognitive impairment in T1DM rats (Ahshin- Majd et al., 2016; 

Alsheblak et al., 2016). Carnosine also mediates the HO- 1/HSP 72 

(inducible from HSP 70) signaling pathway to alleviate the neuro-

nal damage induced by oxidative stress in animal models of aging 

(Davinelli et al., 2013). Meanwhile, ROS production is reduced by 

the suppression of phosphoinositide- 3 kinase (PI3K)/protein kinase 

B (Akt) pathways activating Nrf2 in mouse podocyte cells following 

hyperglycemic injury, indicating that carnosine might activate the 

Nrf2 pathway by modulating insulin signaling pathways to induce a 

stimulated antioxidant response (Figure 1) (Zhao et al., 2019).

2.1.2  |  Anti- inflammatory effects

In addition to its antioxidative effects, carnosine also has the capacity 

to directly modulate the immune system with anti- inflammatory ef-

fects. Carnosine demonstrates strong immunomodulatory regulation 

on macrophages (Caruso, Fresta, Fidilio, et al., 2019), with an in vitro 

study illustrating that pretreatment with carnosine can attenuate Akt 

phosphorylation, decrease tumor necrosis factor alpha (TNF- α) and 

interleukin (IL)- 6 mRNA levels, and increase IL- 4, IL- 10, and transform-

ing growth factor- β mRNA levels in phorbol 12- myristate 13- acetate 

(PMA)- induced RAW 264.7 cells. This suggests that carnosine might 

promote M1 to M2 macrophage transition, reducing pro- inflammatory 

cytokines and increasing production of anti- inflammatory cytokines 

(Figure 2) (Caruso, Fresta, Fidilio, et al., 2019). In addition to hypergly-

cemia, T2DM is characterized by chronic inflammation, which drives 

many of its associated complications, including cognitive impairment. 

Carnosine supplementation reduces the levels of pro- inflammatory 

cytokines in T2DM, with likely follow effects in the CNS (Yang 

et al., 2018). Carnosine also exhibits an anti- inflammatory effect in 

the context of diabetic complications reducing nuclear factor κB (NF- 

κB) signaling and levels of pro- inflammatory factors in T1DM- induced 

nephropathy and T2DM- induced osteoarthritis (Liu et al., 2020; Yang 

F I G U R E  1  The antioxidant activity of carnosine. CAT, catalase; GSH, glutathione; HO- 1, Heme oxygenase- 1; Keap1, Kelch- like ECH- 
associated protein 1; Nrf2, Nuclear factor- erythroid factor 2- related factor 2; SOD, superoxide dismutase.
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et al., 2018). Additionally, podocyte inflammation and pyroptosis are 

suppressed through caspase- 1 silencing following carnosine treatment 

in diabetic nephropathy (Zhu et al., 2021). This evidence suggests 

that carnosine acts as an anti- inflammatory agent in T2DM and its 

complications.

In the CNS, carnosine may also play an anti- inflammatory role, 

mitigating neuronal damage in cognitive disorders. For example, 

carnosine reduces levels of pro- inflammatory factors including IL- 6, 

TNF- α, cyclooxygenase 2, and TLR4 as well as neuronal cell death 

in hypothalamic neuronal cells, suggesting anti- inflammatory action 

(Kubota et al., 2020). The proposed mechanism underlying these re-

sults is that carnosine inhibits the activation of the stress- activated 

protein kinase/c- Jun- N- terminal kinase (JNK) signaling pathway 

which is associated with inflammatory response (Kubota et al., 2020). 

Carnosine also counteracts the release of pro- inflammatory cyto-

kines such as IL- 1β induced by Aβ oligomers in microglia and rescues 

anti- inflammatory cytokine IL- 10 levels to suppress neuroinflam-

mation and cognitive deficits (Caruso, Fresta, Musso, et al., 2019). 

Analogous results in animal studies show that activated microglia 

and astrocytes are inhibited by carnosine treatment in chronic cere-

bral hypoperfusion and subcortical ischemic vascular models of de-

mentia (Ma et al., 2012; Ma et al., 2018; Xie et al., 2017). Astrocyte 

reactivity plays a pivotal role in connecting Aβ with initial tau pathol-

ogy, with activated astrocytes make patients more susceptible to AD 

pathology (Bellaver et al., 2023). IL- 1β is an important activator of as-

trocytes, and the inhibitory action of carnosine on IL- 1β upregulation 

could potentially slow the progression of dementia and cognitive im-

pairment (Caruso, Fresta, Musso, et al., 2019; Ma et al., 2019; Sama 

et al., 2008). Based on this evidence, carnosine anti- inflammatory 

physiologies may improve peripheral chronic inflammation, reduce 

the release of pro- inflammatory factors, and rescue the levels of 

anti- inflammatory factors in the CNS, thereby ameliorating neuronal 

damage and cognitive impairment in T2DM (Figure 2).

In cardiovascular diseases (CVD), carnosine prevented early ath-

erosclerotic lesion formation in a high- fat diet with ApoE−/− mice, 

with the suggested mechanism being that carnosine suppresses 

oxidized low- density lipoprotein- induced macrophage apoptosis 

(Barski et al., 2013). Consistent with this, similar animal research 

shows that carnosine reduces lesion size and promotes plaque phe-

notype stability, accompanied by decrease of macrophages which 

facilitate plaque stability in early stage. This decline is correlated 

with the clearance of apoptotic cells, which efficiently reduces le-

sion cellularity and the production of pro- inflammatory factors 

(Menini et al., 2012). Previous systematic reviews have also shown 

that carnosine inhibits IL- 6 release from activated macrophages 

which decreases CVD risk and might be a potential therapeutic to 

prevent atherosclerotic plaque formation by its anti- inflammatory 

properties (Figure 2) (Caruso et al., 2020).

F I G U R E  2  The anti- inflammation of carnosine. IL- 6, interleukin- 6; IL- 1β, interleukin- 1β; M1, M1 macrophages; M2, M2 macrophages; 

TLR4, toll- like receptor 4; TNF- α, tumor necrosis factor alpha.
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2.1.3  |  Metal chelating activity

Carnosine chelates a number of metal cations (Cu2+, Zn2+, Ni2+, and 

Co2+) to form a coordination complex, which play essential roles 

in various biological activities and pharmacological applications 

(Baran, 2000). Metal cations are also critical for the stabilization and 

activation of the enzyme carnosinase, which combine with differ-

ent metal cations to play different biochemical roles (Babizhayev 

et al., 1994). Previous studies noted that carnosine binds to different 

metal cations in different ways, but among these, Cu2+- carnosine 

complex and Zn2+- carnosine complex have been the most well re-

searched (Baran, 2000).

The copper- carnosine complex

Copper is involved in the regulation of inhibitory synaptic trans-

mission, while carnosine binds to copper to reverse these effects 

(Trombley et al., 1998). The Cu2+- carnosine complex also has simi-

lar activity to SOD—preventing the production of superoxide in the 

brain under oxidative stress, suggested to be an efficient treatment 

for neurodegenerative diseases (Kohen et al., 1991).

The zinc- carnosine complex

Zinc has similar effects to copper in the CNS, inhibiting N- methyl- 

d- aspartate receptor and gamma- aminobutyric acid receptor- 

modulated behavior in the brain (Blakemore & Trombley, 2017). 

The zinc- chelating action of carnosine may prevent these declines, 

exerting a neuroprotective role in cognitive- related diseases (Kohen 

et al., 1991). A systematic review showed that zinc increases neuro-

toxicity in AD and vascular dementia. Carnosine reduced endoplas-

mic reticulum stress through antioxidant and anti- crosslink activities, 

as well as through zinc chelation (Kawahara et al., 2018). Meanwhile, 

the Zn2+- carnosine complex (also called the polaprezinc) has been 

shown to exert a multiple widespread functions including anti- ulcer, 

anti- Helicobacter pylori, healing promotion, anti- liver fibrosis, and can 

attenuate gastric mucosa injury, ulcerative colitis, taste disorders, and 

chronic obstructive pulmonary disease (Li et al., 2021). Additionally, 

polaprezinc has known anti- inflammatory and antioxidant activities 

in chronic inflammatory diseases. Pretreatment of cells with pol-

aprezinc promotes the dissociation of Nrf2 from Keap1 and subse-

quently activates the Nrf2 signaling pathway, leading to the induction 

of HO- 1 expression. This then inhibits the activation of the NF- κB 

signaling pathway induced by lipopolysaccharide, suppressing the 

production of pro- inflammatory mediators (Ooi et al., 2016, 2017).

2.1.4  |  Anti- glycation

Elevated concentrations of acetaldehyde, methylglyoxal, and 

3- deoxyglucose in the plasma are essential factors contributing to 

AGE accumulation (Almajwal et al., 2020; Nowotny et al., 2015). 

AGE accumulation alters protein function, resulting in mitochondrial 

dysregulation, enhancing ROS activation of RAGEs to induce down-

stream pathogenic cascades, which are positively associated with 

the development of cancer, neurodegenerative diseases, stroke, and 

diabetic complications (Monnier et al., 2005; Rabizadeh et al., 2023). 

Previous studies have shown that carnosine has anti- glycation 

properties, suppressing formation of AGEs (Faith Aydin et al., 2017; 

Pfister et al., 2011). In T2DM patients, carnosine supplementation 

reduces fasting glucose, serum triglycerides, and AGEs, but with 

no significant change in soluble RAGE (Houjeghani et al., 2018). In 

animal models of T2DM, carnosine treatment decreased the level 

of AGEs in the serum and kidneys, suggesting carnosine may pre-

vent the process of T2DM and diabetic nephropathy (Faith Aydin 

et al., 2017). However, other research shows that carnosine attenu-

ates retinal vascular damage without changing the production of 

ROS and AGEs as well as the levels of N(6)- carboxymethyllysine 

(a marker of AGEs) and methylglyoxal after oral supplementation 

with carnosine in rat models of diabetic retinopathy, suggesting 

other physiological effects beyond its antioxidative roles (Pfister 

et al., 2011). One possible explanation is that sustained severe hy-

perglycemia over a period of 3 months may result in a higher oxi-
dative burden, potentially exhausting the protective capacity of 

carnosine against oxidative stress and hyperglycemia- induced AGE 

accumulation (Riedl et al., 2011). In vitro, carnosine also inhibits AGE 

formation in renal cells and peritoneal mesothelial cells (Alhamdani 

et al., 2007; Weigand et al., 2018), with multiple mechanisms are 

thought to underpin this. Carnosine might imitate glyoxalase I ac-

tivity (methylglyoxal degrading enzyme) to diminish methylglyoxal 

levels due to its imidazole ring (Battah et al., 2002). Alternatively, 

during glycolysis, glucose is transformed into methylglyoxal, pro-

motes AGE formation, with carnosine reducing the rate of glycoly-

sis and hence suppressing AGE levels (Nelson & Cox, 2000). Finally, 

oxidative stress is also an important factor in promoting the pro-

duction of AGEs, making the antioxidant effect of carnosine a likely 

inhibitor of AGE formation (Figure 3) (Ghodsi & Kheirouri, 2018).

The antiglycation properties of carnosine may also impart pro-

tective benefits in the brain, potentially preventing cognitive decline. 

In the brain, accumulation of AGEs results in microvascular dysfunc-

tion, leading to reduced cerebral blood flow and abnormal atrophy 

of the cortex (Rodriguez et al., 2009). Additionally, AGEs impair 

memory function by enhancing ROS production following ligation 

of RAGEs, reducing neuronal glucose consumption, and neuronal 

mitochondrial activity in diabetes (Jiang et al., 2022). Conversely, 

carnosine may alleviate cognitive impairment by reversing the up-

regulation of RAGEs caused by a high- fat diet in animal models of 

AD (Herculano et al., 2013). Thus, carnosine- mediated inhibition of 

AGEs and RAGEs is a potential target for alleviating or preventing 

diabetes- induced cognitive impairment (Figure 3), though mechanis-

tic studies are required to confirm this.

3  |  THE EFFEC T OF C ARNOSINE ON 
COGNITIVE-  REL ATED DISE A SES

Prior studies have shown that exogenous carnosine can pass the 

blood–brain barrier and activate glial cells to secrete neurotrophins 
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including brain- derived neurotrophic factor and nerve growth factor 

(Jin et al., 2005). In addition, several studies show that carnosine is an 

effective neuroprotector and improve cognitive function in cerebral 

damage including neurodegenerative diseases and ischemic injuries 

in human (Berezhnoy et al., 2019; Hata et al., 2019; Kim et al., 2021).

3.1  |  Effect of carnosine on AD

AD is the most common form of dementia worldwide with at 

least 50 million people affected globally (Guzman- Martinez 

et al., 2021). The disease is pathologically characterized by the 

deposition of amyloid and phosphorylated tau proteins through-

out the brain. It is thought that the pathology starts in the me-

dial temporal cortex and spreads throughout the rest of the brain 

(de Flores et al., 2022). Carnosine as a supplement or treatment 

protects against cognitive impairment in dementia and AD. In hu-

mans, the level of serum β- alanine (reflecting intakes of carnosine) 

is negatively associated with the risks of all- cause dementia and 

AD, suggesting that carnosine might prevent the development of 

dementia (Hata et al., 2019). Additionally, supplementing with an-

serine/carnosine was found to provide protective effects against 

cognitive decline in 54 individuals with MCI, particularly in those 

who are APOE4 positive (a key genetic predictor of dementia) 

(Masuoka et al., 2019). After 13 weeks of carnosine supplement, 
auditory long- term memory, abstract thinking, and constructional 

praxis are improved in the older adults in comparison to a placebo 

group (Szczesniak et al., 2014). A similar study shows that carno-

sine enhances verbal memory and inhibits the decrease of brain 

blood flow and is correlated with suppression of the inflammatory 

chemokine CCL24 in older people without dementia (Katakura 

et al., 2017). In animal studies, treatment with carnosine decreases 

the AGEs level and oxidative stress in brain of d- galactose- induced 

aging changes in rats (Aydin et al., 2018). Carnosine supplementa-

tion increases the steady- state levels in the brain, improves den-

dritic spine density and cognitive impairment induced by aging, 

indicating that supplementation restores the antioxidative activity 

of endogenous carnosine and reduces neurodegeneration in rats 

(Banerjee et al., 2021). Carnosine also reduces the intraneuronal 

accumulation of Aβ and improves mitochondrial dysfunctions in 

AD mice (Corona et al., 2011). The mitochondrial cascade hy-

pothesis proposes that mitochondrial function influences the ex-

pression, processing, and accumulation of Aβ (Swerdlow, 2023). 

Therefore, carnosine emerges as a promising avenue for address-

ing AD and associated cognitive impairments, exhibiting potential 

in both human and animal studies.

F I G U R E  3  The anti- glycation of carnosine. AGEs, advanced glycation end products; RAGE, receptor of advanced glycation end product; 
ROS, generate reactive oxygen species.
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3.2  |  Effect of carnosine in cerebral ischemic 
injury- induced cognitive impairment

Carnosine has been shown to be an effective neuroprotector in 

cerebral ischemic injury (Kim et al., 2021; Pekcetin et al., 2009). 

Tight junction (TJ) protein is a major component of the blood–brain 

barrier and plays an important role in maintaining its overall in-

tegrity. Following administration of carnosine, ischemia- mediated 

degradation of TJ protein is hindered, the activity of matrix met-

alloproteinases are reduced, and infarcted volume and edema are 

diminished in animal models of ischemic stroke (Kim et al., 2021). 

Carnosine also plays a protective role in the postischemic period. 

Treatment with carnosine provides marked protection against neu-

rologic symptoms, and mortality is decreased through attenuation 

of oxidative stress after the ischemic episode (Dobrota et al., 2005). 

Pretreatment with carnosine also has a significant protective effect 

on hypoxia- ischemia- induced cognitive deficits, reducing infarct vol-

ume, and promoting spatial learning and memory through inhibition 

of apoptosis and enhanced antioxidation in rats (Zhang et al., 2011). 

Conversely, other research shows that carnosine does not improve 

spatial learning, but alleviates oxidative stress and inhibits neuronal 

apoptosis in ischemic rats (Pekcetin et al., 2009). In vascular demen-

tia caused by chronic hypoperfusion, carnosine attenuates white 

matter lesions and cognitive deficits through a reduced activation of 

microglia and astrocytes decreasing reactive ROS and inflammatory 

mediator production (Ma et al., 2015). Carnosine also exerts a neu-

roprotective role by modulating histaminergic, improving antioxida-

tion, inflammatory response, and anti- acetylcholinesterase (AChE) 

actions in rats with bilateral common carotid artery occlusion- 

induced vascular dementia to improve memory (Tiwari et al., 2018). 

Therefore, carnosine may has a positive impact on the cognitive im-

pairment caused by cerebral ischemic injury, again associated with 

its antioxidant, anti- inflammation, and antiapoptotic properties.

4  |  THE EFFEC T OF C ARNOSINE ON 
DIABETES

4.1  |  Effect of carnosine on blood glucose

Carnosine supplementation has been shown to reduce the risk of 

T2DM and to lower blood glucose in patients with T2DM by in-

creasing concentrations of glucagon- like peptide- 1 and activity of 

anti- dipeptidyl peptidase- 4 activity which promote insulin secre-

tion (Vahdatpour et al., 2019). Meanwhile, carnosine supplementa-

tion in overweight and obese individuals reduces serum adipokine 

concentrations involved in glucose metabolism, suggesting potential 

benefits in preventing T2DM (Baye et al., 2018). Chronic hypergly-

cemia is the key factor in the development of T2DM, and leads to 

generation of hydrogen peroxide and ketoaldehydes in the presence 

of transition metals, accelerating the production of AGEs (Vargas- 

Sanchez et al., 2019). AGEs induce cell damage due to increased 

oxidative stress and activate pro- inflammatory signaling pathways, 

such as NF- κB (Li et al., 2018). Carnosine has been shown to sup-

press hyperglycemia in patients with diabetes and in animal models 

of diabetes (Aydin et al., 2017; de Courten et al., 2016; Houjeghani 

et al., 2018; Matthews et al., 2021; Nagai et al., 2003). For example, 

in humans, carnosine reduced glucose levels after an oral glucose 

tolerance test compared to placebo (de Courten et al., 2016), and 

it improved fasting glucose, HbA1c, and AGEs in T2DM patients 

(Houjeghani et al., 2018). In mouse models, as in humans, carnos-

ine reduced the accumulation of serum AGEs in high- fat and low- 

dose streptozotocin (STZ)- induced diabetic rats (Aydin et al., 2017). 

Additionally, dietary carnosine inhibits the level of blood glucose by 

the modulation of autonomic nerves in hyperglycemic rats (Nagai 

et al., 2003). A recent meta- analysis found that carnosine supple-

mentation decreases fasting glucose and HbA1c in humans and 

rodents (Matthews et al., 2021). In vitro, carnosine is an effective 

scavenger of reactive oxygen and nitrogen species in pancreatic β- 

cells and promotes insulin secretion and glucose uptake in skeletal 

muscle cells (Cripps et al., 2017).

4.2  |  Effect of carnosine on insulin

Insulin resistance underpins many metabolic disorders includ-

ing diabetes, making the improvement of insulin sensitivity a key 

therapeutic priority (Shazmeen et al., 2021; Yaribeygi et al., 2019). 

Prior studies have shown that carnosine attenuates blood glucose 

by increasing C- peptide and insulin secretion from pancreatic β- 

cells (Albrecht et al., 2017). Consistent with these findings, carno-

sine promotes insulin secretion in β- cells and primary islets, as well 

as reversing the damaging suppression of insulin secretion caused 

by long- term exposure to high levels of glucose in vitro (Cripps 

et al., 2017). Carnosine also increases both insulin- related mRNA 

and protein levels in pancreatic tissue of T1DM mice, suggest-

ing that carnosine can protect the insulin- producing β cells (Barca 

et al., 2018; Vahdatpour et al., 2019).

In addition, insulin plays a critical role in neuronal func-

tion through the PI3K/Akt and Ras/mitogen- activated kinase 

(MAPK) signaling pathways (Ko et al., 2023; Sedzikowska & 

Szablewski, 2021). Through the insulin receptor substrate (IRS)/

Akt signaling pathways, insulin increases neurite outgrowth, reg-

ulates synaptic plasticity (long- term potentiation and long- term 

depression), facilitates dendritic spine formation and promotes 

development of excitatory synapses, and suppresses neuron 

apoptosis (Arnold et al., 2018; Kim & Han, 2005; Ozcaliskan Ilkay 

et al., 2023). The MAPK signaling pathways include extracellular 

signal- regulated kinases 1 and 2 (ERK1/2), p38, and JNKs, which 

are involved in cell growth, survival, and gene expression to pro-

mote memory formation (Arnold et al., 2018). Chronic hypergly-

cemia negatively influences brain function, leading to reduced 

cognitive function and impaired mood, correlating to insulin re-

sistance in neurons (Maciejczyk et al., 2019). Previous research 

demonstrates that carnosine reduces the level of Akt in glioblas-

toma cells (Oppermann et al., 2019), and relieves PMA- induced Akt 
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phosphorylation in macrophages, providing evidence for a mecha-

nism of activity in the brain (Caruso, Fresta, Fidilio, et al., 2019). In 

addition, carnosine decreases the extent of nervous system injury 

by reducing the transformation time profile of ERK1/2 activation, 

preventing JNK activity, and mediating the MAPK signaling path-

way, which effectively improves the survival of neurons (Cheng 

et al., 2011; Kulebyakin et al., 2012). Taken together, the research 

suggests that carnosine is involved in mediating PI3K/Akt and 

MAPK signaling pathways in neuronal cells.

4.3  |  Effect of carnosine in diabetes- induced 
cognitive impairment

Recent data shows a close association between T2DM and dementia 

(Rad et al., 2018; Tumminia et al., 2018). T2DM enhances the risk of 

AD through acceleration of Aβ accumulation, and reduction in its 

clearance, due to insulin resistance (Rad et al., 2018). Meanwhile, 

T2DM and AD share critical characteristics of CNS change, including 

brain insulin resistance, Aβ accumulation, tau hyperphosphorylation, 

cerebral microvascular dysfunction, neuroinflammation, and oxida-

tive stress (Huang et al., 2020; Lu et al., 2021; Tumminia et al., 2018). 

Aβ accumulation and hyperphosphorylated tau protein also imply 

the accumulation of extracellular neuritic plaques and fibrils and in-

tracellular neurofibrillary tangles which are the main contributors to 

dementia in AD (de Flores et al., 2022).

Carnosine may play a protective role in the cognitive deficit 

induced by diabetes. In rat neuronal cultures, carnosine demon-

strates neuroprotective effects against Aβ1–42- induced toxicity 

(Distefano et al., 2022). This protective mechanism is attributed 

to the enhancement of insulin- degrading enzyme activity by car-

nosine, leading to increased degradation of long substrates such 

as insulin and Aβ peptides (Distefano et al., 2022). Notably, the 

insulin- degrading enzyme involves in reduction of Aβ accumula-

tion in AD and diabetic cognitive impairment (Tian et al., 2023). 

Consequently, the neuroprotective effects of carnosine may hold 

therapeutic implications for improving cognitive outcomes in pa-

tients with diabetes.

In vivo study, carnosine is reduced in the brain of animals with 

STZ- induced diabetes, with an associated decrease in CARNS1 and 

key transport gene (Slc15a2/Pept2) mRNA as well as an upregulation 

of intracellular carnosine dipeptidase (Cndp2) (Barca et al., 2018). 

Interestingly, treatment with exogenous carnosine in diabetic mice 

partially ameliorates these changes, suggesting that it can partially 

inhibit the STZ- induced effects (Barca et al., 2018). Functionally, 

carnosine treatment attenuates learning and memory dysfunction 

in T1DM rats, with potential mechanisms including reduction in 

oxidative stress and neuroinflammation by Nrf2/HO- 1 and NF- kB 

signaling pathways, reducing astrogliosis, and AChE activity (Ahshin- 

Majd et al., 2016). In a T2DM mice model, carnosine also relieves 

cognitive impairment and oxidative stress damage by improving the 

expression of sirtuin 6 and suppressing endoplasmic reticulum stress 

(Peng et al., 2022). In rat models of T2DM, carnosine may relieve 

mild cognitive deficits by mediating oxidative stress, regulating Akt/

mTOR signaling pathway, and mitigating autophagy in the hippocam-

pus (Ndolo et al., 2023).

5  |  CONCLUSION

Cognitive impairment represents an important cause of a reduction 

in quality of life and an enhanced economic burden among diabetic 

patients and their caregivers. The presented human and animal 

evidence proposed that alternation in neuronal damage resulting 

in the abnormal insulin signaling pathway, oxidative stress, neuro-

inflammation, and AGEs accumulation act as leading factors in the 

development and progression of cognitive impairment induced by 

T2DM. The mechanisms of neuronal injury converge upon the main 

four factors, and this appears as a therapeutic target in interven-

tion. Carnosine is a substance naturally produced by the body and 

is detected in the muscle and brain of humans. Also, the content of 

carnosine could be exogenously supplied from natural diets such as 

beef and fish with nontoxic and no side effects (Aliani et al., 2013). 

While consuming enough beef and fish to achieve the desired carno-

sine intake might not be feasible, making carnosine supplementation 

is a more viable option. Additionally, carnosine is produced natu-

rally in the body, carnosinase activity has been shown to increase 

with age, leading to a reduced concentration of available carnosine 

within the CNS (Bellia et al., 2009). This means that carnosine has 

potential as a promising oral formulation of multi- protective therapy 

for the prevention or treatment of diabetes and neurodegenerative 

diseases. Specifically, through its antioxidant, anti- inflammatory, 

and anti- glycation properties, carnosine alleviated cognitive dys-

function, mediated insulin resistance, delayed oxidative damage, 

downregulated inflammatory cytokines, and inhibited the formation 

of AGEs. Meanwhile, the neuroprotective role of carnosine has been 

demonstrated in T1DM- induced cognitive impairment by regulating 

oxidative stress and neuroinflammation (Ahshin- Majd et al., 2016). 

The accumulative evidence supports the multiple roles of carnosine 

as the efficient protective agent for delaying the onset and progres-

sion of T2DM and treating T2DM- induced complications. Therefore, 

we suggest that carnosine may affect cognitive function positively in 

T2DM when it is prescribed as a dietary supplement.
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