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Abstract

In this study, we investigate the abundant soliton solutions for the time-fractional stochastic Gray-Scot (TFSGS) model 
analytically. The Gray-Scot model is considered under the influence of M-truncated derivative and multiplicative time 
noise. This is a reaction–diffusion chemical concentration model that explains the irreversible chemical reaction process.  
The M-truncated derivative is applied for the fractional version while Brownian motion is taken in the sense of time 
noise. The novel mathematical technique is used to obtain the abundant families of soliton solutions. These solutions 
are explored in the form of shock, complicated solitary-shock, shock-singular, and periodic-singular types of single and 
combination wave structures. During the derivation, the rational solutions also appear. Moreover, we use MATHEMATICA 
11.1 tools to plot our solutions and exhibit several three-dimensional, two-dimensional, and their corresponding contour 
graphs to show the fractional derivative and Brownian motion impact on the soliton solutions of the TFSGS model. We 
show that the TFDGS model solutions are stabilized at around zero by the multiplicative Brownian motion. These wave 
solutions represent the chemical concentrations of the reactants.

Article Highlights

• The TFDGS model is considered to find the exact solitsary wave solutions under the random environment.
• The new MEDA method is used to obtain the different form of solutions.
• The different graphical behaviour are drawn to show the effects of noise and fractional derivatives.

Keywords Soliton solutions · M-truncated derivative · Stochastic Gray-Scot (TFSGS) model · New MEDA technique

 * Nauman Ahmed, nauman.ahmd01@gmail.com;  * Ali Akgül, aliakgul00727@gmail.com;  * Murad Khan Hassani, mhassani@
gu.edu.af; Muhammad Zafarullah Baber, 70127235@student.uol.edu.pk; Muhammad Waqas Yasin, waqasy286@gmail.com; Syed Mansoor 
Ali, Symali@ksu.edu.sa; Mubasher Ali, mubasherali4@gmail.com | 1Department of Mathematics and Statistics, The University of Lahore, 
Lahore, Pakistan. 2Department of Mathematics, University of Narowal, Narowal, Pakistan. 3Department of Physics and Astronomy, College 
of Science, King Saud University, P.O. BOX 2455, 11451 Riyadh, Saudi Arabia. 4Department of Computer Science and Mathematics, 
Lebanese American University, Beirut, Lebanon. 5Mathematics Research Center, Department of Mathematics, Near East University, 
Near East Boulevard, PC: 99138 Nicosia/Mersin 10, Turkey. 6Department of Electronic and Electrical Engineering, University of Sheffield, 
Sheffield, South Yorkshire, England. 7Department of Mathematics, Art and Science Faculty, Siirt University, 56100 Siirt, Turkey. 8Department 
of Mathematics, Ghazni University, Ghazni, Afghanistan.



Vol:.(1234567890)

Case Study Discover Applied Sciences           (2024) 6:119  | https://doi.org/10.1007/s42452-024-05759-8

1 Introduction

The complex characteristics of dynamical systems are modeled with the help of nonlinear differential equations. The 
nonlinear evolution equation problems ascend in innumerable fields of the real world such as biology, engineering, 
medicine, chemistry, physics, astrophysics, electromagnetism, mechanics, kinematics, geo-chemistry, bioengineering, 
rheology, etc. [1]. In non-linear science, the main challenge is to gain the analytical and exact solution of the system 
of equations that represents the dynamical system [2, 3]. The theory of derivatives and integrals of non-integers 
made tremendous progress in the study of nonlinear dynamics because it can describe physical phenomena in a 
more generalized way. In the last three decades, the exact and solitary wave solutions of nonlinear fractional partial 
differential equations (NFPDEs) have attained a prominent role due to their importance in explaining the physical 
system [4–6]. Scientists have used various analytical techniques to gain the solutions of NFPDEs and these types of 
solutions help the community to understand the physical behavior of each model and are used for the betterment 
of human life [7].

Reaction–diffusion systems have been increasingly important in recent years in a variety of chemistry and bio-
chemistry domains, including the glycolysis model [8], the lattice Boltzmann model [9], the Brusselator model [10], 
the Lengyel-Epstein model [11], the Schnakenberg model [12], and others. The Gray-Scott model is a widely used 
and effective chemical reaction model that explains the irreversible chemical reaction process [13, 14]. In the 1980s, 
P. Grey and S. K. Scott of the University of Leeds proposed the Gray-Scott model [15]. The way it works is described as

where U , V  are represents the reactants while Q is the product of the reaction, u , v are represents the chemical concen-
trations of the reactants U , V  respectively. Also, the k

1
 and k

2
 are the positive constants that represent the reaction rates. 

Numerous patterns, including self-replicating patterns, the annular pattern emerging from circular spots, self-replicating 
spots, stationary spots, growing stripes, labyrinthine patterns, spatial–temporal chaos, stripe filaments, travel spots, and 
many more, have been thoroughly studied in relation to the Gray-Scott model. The dimensionless Gray-Scott [15] model 
is given below:

where �
1
 and �

2
 are the diffusion constants, A and B are the reaction rate and feed rate for the system (2–3) respectively. 

An extension of ordinary partial differential equations (PDEs) to account for randomness or stochasticity is known as a 
stochastic partial differential equation (SPDE). Systems affected by random processes are described by SPDEs in physics, 
engineering, economics, and biology, among other domains. The Itô calculus, a stochastic process extension of calculus, 
is a popular method for describing SPDEs [16–18]. On the other hand, a particular mathematical model that depicts the 
kinetics of chemical reactions and diffusion in a two-dimensional spatial domain is the Gray-Scott model. This deter-
ministic model was created to investigate how patterns emerge in reaction–diffusion systems. I believe that when you 
speak to a “stochastic Gray-Scott model," you are referring to a version of the model that adds stochastic influences. One 
way to achieve this is by adding noise or randomness to the Gray-Scott model’s parameters. Molecular fluctuations and 
external environmental noise are two examples of the many elements that can cause stochasticity in chemical reactions 
and diffusion. The behavior of such systems under unknown conditions can be understood using stochastic simulations 
of the Gray-Scott model. The 1-D coupled Gray-Scott model under the influence of the multiplicative time noise as given 
below [19, 20]:

where �
1
 , and �

2
 are the Borel functions, stand for the noise strengths. B(t) is the standard Brownian motions, while Ḃ(t) 

is the white noise time series. The state variables are independent of the state of the Brownian motion.

(1)

{

U + 2V → 3V , rate = k1uv
2,

V → Q, rate = k2v,

(2)u
t
= �1uxx − uv

2 + A(1 − u),

(3)v
t
= �2vxx + uv

2 − (A + B)v,

(4)ut = 𝛼1uxx − uv
2 + A(1 − u) + 𝜈1uredḂ(t),

(5)vt = 𝛼2vxx + uv
2 − (A + B)v + 𝜈2vredḂ(t),
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In an effort to find both approximate and accurate solutions, many researchers have been working on SPDEs 
recently. Iqbal et al., [21] conducted a numerical investigation into the nonlinear stochastic Newell-Whitehead-
Segel equation. Meanwhile, Yasin et al. focused on the stochastic Fitzhugh-Nagumo model [22] and the stochastic 
predator–prey model [23]. The reliable numerical analysis was developed by Raza et al. for the stochastic gonorrhea 
epidemic model [24]. The soliton solutions for the stochastic Konno-Oono system were constructed by Shaikh et al. 
[25]. Mohammed et al. worked on the stochastic Ginzburg–Landau equation [26] the (2 + 1)-dimensional stochastic 
chiral nonlinear Schrödinger equation [27] the stochastic exact solutions of the Nizhnik-Novikov-Veselov system [28], 
the stochastic Burgers’ equation [29], and so on.

The authors considered the stochastic Potential-Yu-Toda-Sasa-Fakuyama for the analytical study. They used differ-
ent techniques to gain a variety of solutions [30]. Hamza et al. considered the fractional stochastic shallow water wave 
equation. They used He’s semi-inverse method and modified extended tanh-function method to gain the rational 
and trigonometric solutions [31]. Mohammed et al. analyzed the stochastic Korteweg-De Vries equations and gained 
various families of solutions [32]. The authors worked on the solution of coupled Fokas system [33]. Rehman et al. 
used the Sardar-subequation method on the strain wave equation to gain the families of solutions [34]. Awan et al. 
scrutinized the chiral nonlinear Schrödinger’s equation with techniques namely: the functional variable method 
and first integral method and gained solitons. [35]. The authors used the generalized Kudryashov method for the 
resonant nonlinear Schrödinger equation. They obtained the bright, dark, kink, and singular soliton solutions [36]. 
The authors worked for the analytical study of physical systems [37–39].

On the other hand, a novel differentiation operator has emerged that combines the ideas of fractal derivative and 
fractional differentiation. As a result, numerous mathematicians proposed various types of fractional derivatives. The 
ones put out by Marchaud, Riesz, Caputo, Hadamard, Kober, Erdelyi, He’s fractional derivative, Atana-Baleanu’s derivative, 
Grunwald–Letnikov, and Riemann–Liouville are the most well-known. The majority of fractional derivative forms do not 
adhere to standard derivative formulas such as the product, quotient, or chain rules. The M-truncated derivative (MTD), 
a novel derivative created by Sousa et al. [40, 41], is a logical progression of the classical derivative. So, using the MTD 
we convert the system (6–7) into the fractional version as;

where � is the fractional operation which lies between [0,1]. Obtaining the analytical stochastic solutions of the SFS 
(1) is the aim of this investigation. The stochastic solutions of SFS (1) in the form of rational, elliptic, hyperbolic, and 
trigonometric functions are obtained by means of a modified mapping approach. Since nonlinear pulse propagation 
in mono-mode optical fibers is explained by the Fokas system, the derived solutions can be utilized to analyze a wide 
range of important physical processes. To help with the interpretation of the multiplicative noise effects, the dynamic 
performances of the different found solutions are represented using both 2D and 3D curves.

This method offers a versatile method for obtaining exact solitary wave solutions. This approach is based on the 
concept of a auxiliary equation, which is a first-order nonlinear ordinary differential equation. Researchers can generate 
exact solutions by linking them to particular kinds of nonlinear equations and taking advantage of the intrinsic qualities 
of the auxiliary equation. A wide variety of nonlinear systems, including those defined by integrable, non-integrable, and 
partial differential equations, can be investigated thanks to the schemes unified structure. Studying soliton solutions 
with unique characteristics, such as combine solitons, dark solitons, bright solitons and exact solitary wave solutions, has 
shown this method to be especially helpful. With the use of this method, scientists can investigate and examine a broad 
variety of intricate nonlinear events in diverse physical systems. By using this method, researchers can get a wide range 
of Several soliton solutions displaying a range of behaviors, including dynamics of interactions, amplitude modulation, 
stability, and propagation properties. The analytical study of factional stochastic Gray-Scot model under the effect of time 
noise with the help of M-truncated derivative is under-consideration. As it is concentration model and it can be used to 
examine the concentration of different species. An efficient new MEDA technique is applied to gain abundant solutions 
such as shock, complicated solitary-shock, shock-singular, and periodic-singular types of single and combination wave 
structures. The rational solutions are also obtained. The effect of time noise and M-derivative is analyzed. 3D, 2D, and 
their corresponding contours are plotted for various values of the parameters.

(6)D
t
u = 𝛼1D

2𝜖

x
u − uv

2 + A(1 − u) + 𝜈1uḂ(t),

(7)D
t
v = 𝛼2D

2𝜖

x
v + uv

2 − (A + B)v + 𝜈2vḂ(t),
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2  Basic definitions

The MTD is consider as [40, 41]

Definition 1 For the unknown function � ∶ [0, inf ] → R for the order � ∈ (0, 1], the M-truncated is taken as.

where E
i,� is defined such as

The following properties for the MTD are as.

Theorem 1 If there are differentiable function � and � and the real constants are as s, t  and �, then the following properties 

are as follows [42]

• D
�,�

i,t
(r� + s�) = rD

�,�

i,t
(�) + sD

�,�

i,t
(�)red.

• D
�,�

i,t
(r� + s�)t� =

�

Γ(�+1)
t�−�.

• D
�,�

i,t
(��) = �D

�,�

i,t
(�) + �D

�,�

i,t
(�)red.

• D
�,�

i,t
(�)(t) =

t1−�

Γ(�+1)

d�

dt
.

• D
�,�

i,t
(�◦�)(t) = �

�

(�(t))D
�,�

i,t
(�(t)).

Suppose a non-differentiable Wiener process B(t) with the following properties [43]:

Definition 2 Stochastic process B(t)
t≤0

 is said a Brownian motion if the following conditions are satisfied [44];

• B(t) is continues function if t ≤ 0.
• B(0)=0.
• For 𝜏

1
< 𝜏

2
 , B(�

2
) − B(�

1
) is independent.

• B(�
2
) − B(�

1
) has a Gaussian distribution �(0, �2 − �1).

where Bt =
dB

dt
 is the time derivative of Wiener process B(t).

3  Stochastic Wave transformation

Here, in order to obtain the solitary wave solutions, we select the wave transformation [41–43].

(8)D
𝛼,𝛽

i,t
𝜙(t) = lim

d→0

𝜙
(

tEi,𝛽(dt
−𝛼)

)

− 𝜙(t)

d
, for t > 0,

Ei,𝛽(z) =

i
∑

j=0

z j

Γ(𝛽k + 1)
, for 𝛽 > 0, andz ∈ C .

(9)lim
Δt→0

ΔB(t) = 0;

(10)lim
Δt→0

(ΔB(t))
n

Δt
=

{

1, n = 2

0, n = 3, 4,⋯

(11)u(x, t) = U(�)e
�1B(t)−

1

2
�
2

1
t
, v(x, t) = V (�)e

�2B(t)−
1

2
�
2

2
t
,where � =

l

�
x
� + nt,
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where U(�) and V (�) are the deterministic function while l  and n are the speed and amplitude of waves. We take the 
derivatives of Eq. (11) and substituted in the Eqs. (6) & (7) and get

Now, we take expatiations on both sides, we get

B(t) is the time noise, then E(e(�B(t))) = e
1

2
�
2t and E(e2(�B(t))) = e�

2t . So, Eqs. (14) and (15) turns into

4  New MEDA technique

Now, we consider the solution of Eqs. (16) and (17) in the form of polynomial as follows [45–47],

where bi , ci(i = 0,1,2,3,…N) are the constant that can be found to be later, here �(�) satisfies the Eqs. (16) & (17) and given 
as,

Now, putting N = 1 in Eq. (18), then obtain the expression as,

A system of equations can be created by taking the derivatives of Eqs. (21) and (22), substituting in Eqs. (16) and (17), by 
the help of (20), and then gathering the term in the power of �(�) and putting all of the polynomials’ terms equal to zero. 
Solve this system of equations with the help of Mathematica and get the family of solutions as follows,

Type 1:  I f  𝛿1 − 4𝛿
o
𝛿
2
< 0 and �

2
≠ 0 then we obtained the trigonometric solutions as, where 

h =
4c2

1
�
2

0

A+c2
0

−
(A2+Ac2

0
+4�1c0c1�

2

0
l2 ln(C)2)

2

4�2
1
�
2

0
l4(A+c2

0
)
2
ln(C)4

 and g =

√

√

√

√

−

(−Ab21−b
2

1
B+8�2b

2

0
�
2

2
l2ln(C)2)

2

16�2

2
b2
0
b2
1
�
2

2
l4ln(C)4

−
Ab2

1
+b2

1
B+4�2b

2

0
�
2

2
l2ln(C)2

�2b
2

1
l2ln(C)2

�2

(12)−nU
�

+ �1l
2
U

�� − UV
2
e
2�2B(t)−�

2

2
t + A(1 − U) = 0,

(13)−nV
�

+ �
2
l
2
V

�� + UV
2
e
�1B(t)−

1

2
�
2

1
t
e
�2B(t)−

1

2
�
2

2
t
− (A + B)V = 0.

(14)−nU
�

+ �1l
2
U

�� − UV
2
E(e2�2B(t))e−�

2

2
t + A(1 − U) = 0,

(15)−nV
�

+ �
2
l
2
V

�� + UV
2
E(e�1B(t))e

−
1

2
�
2

1
t
E(e�2B(t))e

−
1

2
�
2

2
t
− (A + B)V = 0.

(16)−nU
�

+ �1l
2
U

�� − UV
2 + A(1 − U) = 0,

(17)−nV
�

+ �
2
l
2
V

�� + UV
2 − (A + B)V = 0.

(18)U(�) =

N
∑

i=0

bi�
N(�),

(19)V (�) =

N
∑

i=0

c
i
�
N(�).

(20)��(�) = ln(C)
(

�0 + �1�(�) + �2�(�)
2
)

,

(21)U(�) = b0 + b1�(�),

(22)V (�) = c
0
+ c

1
�(�).

u1(x, t) =

[

A2 + Ac2
0
+ 4�1c0c1�

2
0
l2ln(C)

2

(

A + c2
0

)2
+

(

2�1c
2
1
�
2
0
l2ln(C)

2
)

(

A + c2
0

)2

(

−
A2 + Ac2

0
+ 4�1c0c1�

2
0
l2ln(C)

2

4�1c
2
1
�
2
0
l2ln(C)

2
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(23)+

����h
�
A + c

2
0

�

2c2
1
�0

tan

��
h

2

�
t
�
A2 + Ac

2
0
− 4�1c0c1�

2
0
l2ln(C)

2
�

2�0

�
A + c2

0

�
ln(C)

+
l

�
x
�

��⎞
⎟⎟⎠

⎤
⎥⎥⎦
e

�
2
1

2
t+�1B(t),

v1(x, t) =

[

Ab2
1
+ b2

1
B − 4�2b

2
0
�
2
2
l2ln(C)

2

2b0b
2
1

−

(

2�2�
2
2
l2ln(C)

2
)

b1

(

−
−Ab2

1
− b2

1
B + 8�2b

2
0
�
2
2
l2ln(C)

2

8�2b0b1�
2
2
l2ln(C)

2

(24)−
g√
2

tan

⎛⎜⎜⎜⎝

g
�

b1(A+B)t

4b0�2 ln(C)
+

l

�
x�
�

√
2

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
e

�
2
2

2
t+�2B(t),

u2(x, t) =

[

A2 + Ac2
0
+ 4�1c0c1�

2
0
l2ln(C)

2

(

A + c2
0

)2
+

(

2�1c
2
1
�
2
0
l2ln(C)

2
)

(

A + c2
0

)2

(

−
A2 + Ac2

0
+ 4�1c0c1�

2
0
l2ln(C)

2

4�1c
2
1
�
2
0
l2ln(C)

2

(25)−

����h
�
A + c

2
0

�

2c2
1
�0

�
cot

��
h

2

�
t
�
A2 + Ac

2
0
− 4�1c0c1�

2
0
l2ln(C)

2
�

2�0

�
A + c2

0

�
ln(C)

+
l

�
x
�

���⎞
⎟⎟⎠

⎤
⎥⎥⎦
e

�
2
1

2
t+�1B(t),

v2(x, t) =

[

Ab2
1
+ b2

1
B − 4�2b

2
0
�
2
2
l2ln(C)

2

2b0b
2
1

−

(

2�2�
2
2
l2ln(C)

2
)

b1

(

−
−Ab2

1
− b2

1
B + 8�2b

2
0
�
2
2
l2ln(C)

2

8�2b0b1�
2
2
l2ln(C)

2

(26)−
g√
2

cot

⎛⎜⎜⎜⎝

g
�

b1(A+B)t

4b0�2ln(C)
+

l

�
x�
�

√
2

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
e

�
2
2

2
t+�2B(t),

u3(x, t) =

[

A2 + Ac2
0
+ 4�1c0c1�

2
0
l2ln(C)

2

(

A + c2
0

)2
+

(

2�1c
2
1
�
2
0
l2ln(C)

2
)

(

A + c2
0

)2

(

−
A2 + Ac2

0
+ 4�1c0c1�

2
0
l2ln(C)

2

4�1c
2
1
�
2
0
l2ln(C)

2

+

�

�

�

�

h
�

A + c
2

0

�

2c2
1
�0

�

tan

�

√

h

�

t
�

A2 + Ac
2

0
− 4�1c0c1�

2

0
l2ln(C)

2
�

2�0

�

A + c2
0

�

ln(C)
+

l

�
x
�

��

(27)±
√

pqsec

�

√

h

�

t
�

A2 + Ac2
0
− 4�1c0c1�

2
0
l2ln(C)2

�

2�0

�

A + c2
0

�

ln(C)
+

l

�
x�

�����

e
�
2
1

2
t+�1B(t),

v3(x, t) =

[

Ab2
1
+ b2

1
B − 4�2b

2
0
�
2
2
l2ln(C)

2

2b0b
2
1

−

(

2�2�
2
2
l2ln(C)

2
)

b1

(

−
−Ab2

1
− b2

1
B + 8�2b

2
0
�
2
2
l2ln(C)

2

8�2b0b1�
2
2
l2ln(C)

2

g√
2

⎛⎜⎜⎝
tan

⎛
⎜⎜⎝

����
4�2�o −

�
−Ab2

1
− b2

1
B + 8�2b

2

0
�
2

2
l2ln(C)2

�2
16�2

2
b2
0
b2
1
�
2

2
l4ln(C)4

�
b1(A + B)t

4b0�2ln(C)
+

l

�
x�
�⎞⎟⎟⎠



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:119  | https://doi.org/10.1007/s42452-024-05759-8 Case Study
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Type 2: If 𝛿1 − 4𝛿
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Type 3: If 𝛿
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> 0 and �
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= 0 , then we obtained the trigonometric solutions as,
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Type 6: If �
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= −�
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 and �
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= 0 , then we extracted the different hyperbolic solutions as,
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 , there is one solution is extracted as,
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Type 11: If �1 = � , �2 = r�(r ≠ 0)and�0 = 0 , then we extract the plane solution as,

5  Graphical behavior under the effect of noise and M‑truncated derivative

This section describes the graphical representations of the obtained results for the TFSGS model. These solutions are 
successfully gained by using the new MEDA method. The obtained results have randomness and fractional effects in the 
wave structures. It would be necessary to express the two chemical reactants, u , and v , in a physical description of the 
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Fig. 1  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion u1(x, t) under the noise 
effect using the different 
values of constants such as 
A = 0.2, ϵ = 0.7, α1 = 2, B = 1.9, 

c0 = 0.9, c1 = 1, δ0 = 0.5, h = 0.6, 

l = 2
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stochastic Gray-Scott model. These reactants might be conceptualized as many kinds of substances or particles found 
in an actual system. The two chemical reactants, u and v , would need to be represented physically in order to create a 
stochastic Gray-Scott model. Reactants are several kinds of substances or particles that are found in a real-world system. 
There is an additional component of unpredictability in the stochastic Gray-Scott model. The study of pattern genera-
tion and complex dynamics in reaction–diffusion systems is a common application of the stochastic Gray-Scott model 

Fig. 2  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion u6(x, t) under the noise 
effect using the different 
values of constants such as 
A = 2.2, ϵ = 0.8, α1 = 2.7, B = 1.99, 

c0 = 0.3, c1 = 1.9, δ0 = 0.5, 

h = 10.001, l = 1.2

Fig. 3  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion u16(x, t) under the noise 
effect using the different 
values of constants such as 
A = 1.2, ϵ = 0.9, α1 = 2.7, B = 1.3, 

c0 = 0.03, c1 = 0.5, δ0 = 0.3, 

h = 1.1, l = 1.2

Fig. 4  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion u17(x, t) under the noise 
effect using the different 
values of constants such as 
A = 1.2, ϵ = 0.5, α1 = 0.7, B = 1.3, 

c0 = 0.3, c1 = 0.9, δ0 = 0.5, 

h = 1.1, l = 0.2
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and its physical representation, which finds value in chemistry, biology, and materials science. This could be illustrated 
by displaying random noise or fluctuations in the system, possibly by varying the reaction or diffusion rates at various 
times. In the stochastic Gray-Scott model, constructing physical representations of solitary wave solutions is a challenging 
and computationally demanding operation. Proficiency in data visualization, numerical simulations, and mathematical 

Fig. 5  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion v1(x, t) under the noise 
effect using the different 
values of constants such as 
A = 0.2, ϵ = 0.7, α1 = 1, α2 = 2, 

b1 = 0.9, b0 = 0.5, B = 1.9, 

δ2 = 0.6, l = 2

Fig. 6  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion v6(x, t) under the noise 
effect using the different 
values of constants such as 
A = 1.2, ϵ = 0.5, α1 = 1, α2 = 2, 

b1 = 1.4, b0 = 0.9, B = 1.4, 

δ2 = 0.2, l = 3.2

Fig. 7  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion v7(x, t) under the noise 
effect using the different 
values of constants such as 
A = 1.9, ϵ = 0.01, α1 = 1, α2 = 2.9, 

b1 = 0.9, b0 = 0.9, B = 3.9, 

δ2 = 0.9, l = 0.2
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modeling will be required. The different solutions are plotted in the 3-dimensional, 2-dimensional, and their correspond-
ing contour representations respectively. The Fig. 1 is plotted for the solution u1(x, t) while Fig. 2 for the solution u6(x, t) . 
Figures 3,4 are plotted for the solutions u16(x, t) and u17(x, t) respectively. Figures 5,6,7,8 are drawn for the solutions v1(x, t) , 
v6(x, t) , v7(x, t) and v19(x, t) respectively. Moreover, Fig. 9 shows the different behaviors of the noise which shows that if 
we increase the values of � the noise increases in the physical system. Figure 9a is drawn for the � = 0 which is a classi-
cal solution without randomness so the solution provides us the dark soliton solution. Further, we increase the value of 
� = 0.3 in Fig. 9b which disturbs the shape a little much and involves the randomness in the behavior. Figures 9c and 9d 
are drawn for the values � = 0.8 and � = 0.9 respectively. To, show the effects of fractional order we dispatched Fig. 10 
for the different values of � . Figures 10a,10b,10c,10d are drawn for the � = 0.1, 0.3, 0.7, 0.99 respectively.

Fig. 8  The 3-dimensional, 
2-dimensional, and contour 
representations for the solu-
tion v19(x, t) under the noise 
effect using the different 
values of constants such as 
A = 1.2, ϵ = 0.5, α1 = 1.7, B = 1.3, 

δ0 = 0.9, l = 0.2

(a) For ν = 0 (b) For ν = 0.3

(c) For ν = 0.8 (d) For ν = 0.9

Fig. 9  The subfigures (a–d) show the 3-dimensional behaviors under the different noise strengths
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6  Conclusions

In this research, we look into the abundant families of soliton solutions for the TFSGS model. The Gray-Scott model 
is analyzed under the M-truncated derivative and multiplicative time noise. This is a reaction–diffusion chemical 
concentration model that explains the irreversible chemical reaction process. The different abundant families of solu-
tions are obtained by using the newly modified extended direct algebraic method. These solutions are explored in 
the form of shock, complicated solitary-shock, shock-singular, and periodic-singular types of single and combination 
wave structures. These are the exact traveling wave solutions that carry the chemical concentrations for the reactants 
under the reaction and diffusion process. Additionally, we plot our solutions and display many two-dimensional, 
three-dimensional, and contour graphs using MATHEMATICA 11.1 that demonstrate the capabilities of the influence 
of Brownian motion and fractional derivative on the soliton solutions of the TFSGS model. We show that the TFDGS 
model solutions are stabilized at around zero by the multiplicative Brownian motion. These wave solutions represent 
the chemical concentrations of the reactants. Further, this study is very helpful for the researchers to analyze this 
model for the dynamical study. The obtained results are very useful for examining and verifying the analytical solu-
tions using numerical and experimental work in nonlinear dynamics. In future, such work can be applied to take deep 
insight of the stochastic fractional reaction–diffusion epidemic models, the stochastic fractional reaction–diffusion 
prey-predator models, stochastic fractional reaction diffusion nutrient algae models.

Author contributions All authors reviewed the manuscript.

Funding The authors would like to extend their sincere appreciation to the Researcher supporting program at King Saud University, Riyadh, 
for funding this work under project number (RSPD2024R699).

Data Availability No datasets were generated or analysed during the current study.

Declarations 

Competing interests The authors declare no competing interests.

Fig. 10  The subfigures (a–d) show the 3-dimensional behaviors under the different fractional effects



Vol.:(0123456789)

Discover Applied Sciences           (2024) 6:119  | https://doi.org/10.1007/s42452-024-05759-8 Case Study

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Li B, Chen Y. Nonlinear partial differential equations solved by projective Riccati equations Ansatz. Zeitschrift Für Naturforschung A. 
2003;58(9–10):511–9.

 2. Younis M, Seadawy AR, Sikandar I, Baber MZ, Ahmed N, Rizvi STR, Althobaiti S. Nonlinear dynamical study to time fractional Dullian-
Gottwald-Holm model of shallow water waves. Int J Mod Phys B. 2022;36(01):2250004.

 3. Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett. 1971;27(18):1192.
 4. Shahzad T, Ahmad MO, Baber MZ, Ahmed N, Ali SM, Akgül A, Shar MA, Eldin SM. Extraction of soliton for the confirmable time-fractional 

nonlinear Sobolev-type equations in semiconductor by phi6-modal expansion method. Results Phys. 2023;46: 106299.
 5. Zayed EME, Gepreel KA. The (G’/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in 

mathematical physics. J Math Phys. 2009;50(1): 013502.
 6. Younis M, Seadawy AR, Baber MZ, Yasin MW, Rizvi ST, Iqbal MS. Abundant solitary wave structures of the higher dimensional Sakovich 

dynamical model. Math Methods Appl Sci. 2021. https:// doi. org/ 10. 1002/ mma. 7919.
 7. Younis M, Seadawy AR, Baber MZ, Husain S, Iqbal MS, Rizvi STR, Baleanu D. Analytical optical soliton solutions of the Schrödinger -Poisson 

dynamical system. Results Phys. 2021;27: 104369.
 8. Iqbal MS, Baber MZ, Inc M, Younis M, Ahmed N, Qasim M. On multiple solitons of glycolysis reaction-diffusion system for the chemical 

concentration. Int J Modern Phys B. 2023;38:2450055.
 9. Chen L, Kang Q, Mu Y, He YL, Tao WQ. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applica-

tions. Int J Heat Mass Transf. 2014;76:210–36.
 10. Yasin MW, Ahmed N, Iqbal MS, Rafiq M, Raza A, Akgül A. Reliable numerical analysis for stochastic reaction-diffusion system. Phys Scr. 

2022;98(1): 015209.
 11. Jensen O, Pannbacker VO, Mosekilde E, Dewel G, Borckmans P. Localized structures and front propagation in the Lengyel-Epstein model. 

Phys Rev E. 1994;50(2):736.
 12. Zhao YH, Iqbal MS, Baber MZ, Inc M, Ahmed MO, Khurshid H. On traveling wave solutions of an autocatalytic reaction-diffusion Selkov-

Schnakenberg system. Results Phys. 2023;44: 106129.
 13. Wang X, Yasin MW, Ahmed N, Rafiq M, Abbas M. Numerical approximations of stochastic Gray-Scott model with two novel schemes. Aims 

Math. 2023;8:5124–47.
 14. Nishiura Y, Ueyama D. Spatio-temporal chaos for the Gray-Scott model. Physica D. 2001;150(3–4):137–62.
 15. Gray P, Scott SK. Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system A+ 

2B 3B. B C Chem Eng Sci. 1984;39(6):1087–97.
 16. Baber MZ, Seadway AR, Iqbal MS, Ahmed N, Yasin MW, Ahmed MO. Comparative analysis of numerical and newly constructed soliton 

solutions of stochastic Fisher-type equations in a sufficiently long habitat. Int J Mod Phys B. 2023;37(16):2350155.
 17. Baber MZ, Ahmed N, Yasin MW, Iqbal MS, Akgül A, Riaz MB, Rafiq M, Raza A. Comparative analysis of numerical with optical soliton solu-

tions of stochastic Gross-Pitaevskii equation in dispersive media. Results Phys. 2023;44: 106175.
 18. Shaikh TS, Baber MZ, Ahmed N, Iqbal MS, Akgül A, El Din SM. Investigation of solitary wave structures for the stochastic Nizhnik-Novikov-

Veselov (SNNV) system. Results in Physics. 2023;48: 106389.
 19. Doelman A, Kaper TJ, Zegeling PA. Pattern formation in the 1-D Gray-Scott model. 1996
 20. Hausenblas E, Randrianasolo TA, Thalhammer M. Theoretical study and numerical simulation of pattern formation in the deterministic 

and stochastic Gray-Scott equations. J Comput Appl Math. 2020;364: 112335.
 21. Iqbal MS, Yasin MW, Ahmed N, Akgül A, Rafiq M, Raza A. Numerical simulations of nonlinear stochastic Newell-Whitehead-Segel equation 

and its measurable properties. J Comput Appl Math. 2023;418: 114618.
 22. Yasin MW, Iqbal MS, Ahmed N, Akgül A, Raza A, Rafiq M, Riaz MB. Numerical scheme and stability analysis of stochastic Fitzhugh-Nagumo 

model. Results Phys. 2022;32: 105023.
 23. Yasin MW, Ahmed N, Iqbal MS, Raza A, Rafiq M, Eldin EMT, Khan I. Spatio-temporal numerical modeling of stochastic predator-prey model. 

Sci Rep. 2023;13(1):1990.
 24. Raza A, Arif MS, Rafiq M. A reliable numerical analysis for stochastic gonorrhea epidemic model with treatment effect. Int J Biomath. 

2019;12(06):1950072.
 25. Shaikh TS, Baber MZ, Ahmed N, Shahid N, Akgül A, De la Sen M. On the soliton solutions for the stochastic Konno-Oono system in magnetic 

field with the presence of noise. Mathematics. 2023;11(6):1472.
 26. Mohammed WW, Ahmad H, Hamza AE, Aly ES, El-Morshedy M, Elabbasy EM. The exact solutions of the stochastic Ginzburg-Landau equa-

tion. Results Phys. 2021;23: 103988.
 27. Albosaily S, Mohammed WW, Aiyashi MA, Abdelrahman MA. Exact solutions of the (2+ 1)-dimensional stochastic chiral nonlinear 

Schrödinger equation. Symmetry. 2020;12(11):1874.
 28. Mohammed WW, El-Morshedy M. The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov 

system. Math Comput Simul. 2021;190:192–202.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mma.7919


Vol:.(1234567890)

Case Study Discover Applied Sciences           (2024) 6:119  | https://doi.org/10.1007/s42452-024-05759-8

 29. Al-Askar FM, Mohammed WW, El-Morshedy M. The analytical solutions for stochastic fractional-space Burgers equation. J Math. 
2022;2022:1–8.

 30. Albosaily S, Elsayed EM, Albalwi MD, Alesemi M, Mohammed WW. The analytical stochastic solutions for the stochastic potential 
Yu-Toda-Sasa-Fukuyama equation with conformable derivative using different methods. Fractal Fractional. 2023;7(11):787.

 31. Hamza AE, Alshammari M, Atta D, Mohammed WW. Fractional-stochastic shallow water equations and its analytical solutions. Results 
Phys. 2023;53: 106953.

 32. Mohammed WW, Al-Askar FM, Cesarano C. On the dynamical behavior of solitary waves for coupled stochastic Korteweg-De Vries equa-
tions. Mathematics. 2023;11(16):3506.

 33. Mohammed WW, Cesarano C, Elsayed EM, Al-Askar FM. The analytical fractional solutions for coupled Fokas system in fiber optics using 
different Methods. Fractal Fractional. 2023;7(7):556.

 34. Ur Rehman H, Awan AU, Habib A, Gamaoun F, El Din EMT, Galal AM. Solitary wave solutions for a strain wave equation in a microstructured 
solid. Results Phys. 2022;39: 105755.

 35. Awan AU, Tahir M, Abro KA. Multiple soliton solutions with chiral nonlinear Schrödinger s equation in (2+ 1)-dimensions. Eur J Mech B/
Fluids. 2021;85:68–75.

 36. Awan AU, Rehman HU, Tahir M, Ramzan M. Optical soliton solutions for resonant Schrödinger equation with anti-cubic nonlinearity. Optik. 
2021;227: 165496.

 37. Shahzad MU, Rehman HU, Awan AU, Zafar Z, Hassan AM, Iqbal I. Analysis of the exact solutions of nonlinear coupled Drinfeld-Sokolov-
Wilson equation through φ6-model expansion method. Results Phys. 2023;52: 106771.

 38. Rehman HU, Awan AU, Hassan AM, Razzaq S. Analytical soliton solutions and wave profiles of the (3+ 1)-dimensional modified Korteweg-
de Vries-Zakharov-Kuznetsov equation. Results Phys. 2023;52: 106769.

 39. Rehman HU, Awan AU, Tag-ElDin EM, Alhazmi SE, Yassen MF, Haider R. Extended hyperbolic function method for the (2+ 1)-dimensional 
nonlinear soliton equation. Results Phys. 2022;40: 105802.

 40. Al-Askar FM, Cesarano C, Mohammed WW. Abundant solitary wave solutions for the Boiti-Leon-Manna-Pempinelli equation with M-trun-
cated derivative. Axioms. 2023;12(5):466.

 41. Akram G, Sadaf M, Zainab I. Observations of fractional effects of ÃŸ-derivative and M-truncated derivative for space time fractional Phi-4 
equation via two analytical techniques. Chaos, Solitons Fractals. 2022;154: 111645.

 42. Mohammed WW, Cesarano C, Al-Askar FM. Solutions to the (4+ 1)-dimensional time-fractional Fokas Equation with M-truncated deriva-
tive. Mathematics. 2022;11(1):194.

 43. Mohammed WW, Al-Askar FM, Cesarano C, Botmart T, El-Morshedy M. Wiener process effects on the solutions of the fractional (2+ 
1)-dimensional Heisenberg ferromagnetic spin chain equation. Mathematics. 2022;10(12):2043.

 44. Al-Askar FM, Mohammed WW, Alshammari M, El-Morshedy M. Effects of the Wiener process on the solutions of the stochastic fractional 
Zakharov system. Mathematics. 2022;10(7):1194.

 45. Soliman AA. The modified extended direct algebraic method for solving nonlinear partial differential equations. Int J Nonlinear Sci. 
2008;6(2):136–44.

 46. Younis M, Iftikhar M. Computational examples of a class of fractional order nonlinear evolution equations using modified extended direct 
algebraic method. J Comput Methods Sci Eng. 2015;15(3):359–65.

 47. Shahzad T, Baber MZ, Ahmad MO, Ahmed N, Akgül A, Ali SM, Ali M, El Din SM. On the analytical study of predator-prey model with Holling-II 
by using the new modified extended direct algebraic technique and its stability analysis. Results Phys. 2023;51: 106677.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abundant soliton solution for the time-fractional stochastic Gray-Scot model under the influence of noise and M-truncated derivative
	Abstract
	Article Highlights
	1 Introduction
	2 Basic definitions
	3 Stochastic Wave transformation
	4 New MEDA technique
	5 Graphical behavior under the effect of noise and M-truncated derivative
	6 Conclusions
	References


