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ABSTRACT

In its quest for approaches to taming uncertainty in self-adaptive
systems (SAS), the research community has largely focused on so-
lutions that adapt the SAS architecture or behaviour in response to
uncertainty. By comparison, solutions that reduce the uncertainty
affecting SAS (other than through the blanket monitoring of their
components and environment) remain underexplored. Our paper
proposes a more nuanced, adaptive approach to SAS uncertainty
reduction. To that end, we introduce a SAS architecture comprising
an uncertainty reduction controller that drives the adaptive acqui-
sition of new information within the SAS adaptation loop, and
a tool-supported method that uses probabilistic model checking
to synthesise such controllers. The controllers generated by our
method deliver optimal trade-offs between SAS uncertainty reduc-
tion benefits and new information acquisition costs. We illustrate
the use and evaluate the effectiveness of our approach for mobile
robot navigation and server infrastructure management SAS.

CCS CONCEPTS

• Computer systems organization → Reliability; Robotic au-
tonomy; • Software and its engineering→ Layered systems;
Model-driven software engineering; Formal methods.
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1 INTRODUCTION

Essential services from all sectors of the economy and society rely
on the effective operation of complex software-intensive systems.
These systems range from sophisticated road traffic management
software and public clouds running business-critical applications to
cyber-physical systems from manufacturing. More often than not,
they are used in real-world applications characterised by high lev-
els of uncertainty related, for instance, to environmental changes,
component failures, measuring inaccuracies, and user actions. To
deliver their required functionality in such circumstances, software-
intensive systems need to “tame” this uncertainty through self-
adaptation [8, 21]. Self-adaptation is a process that involves the use
of closed-control loops to monitor the system and its environment
for relevant changes, to analyse the impact of these changes, to
plan system adaptations that accommodate the changes, and to ex-
ecute (i.e., to implement) these adaptations. Software-intensive sys-
tems that employ such monitor-analyse-plan-execute (or ‘MAPE’,
cf. [14]) control loops are termed self-adaptive systems (SAS).

The growing demand for SAS in many application domains [32,
33] has led to the development of numerous self-adaptation solu-
tions over the past two decades. Nevertheless, the vast majority of
these solutions focus on determining and performing SAS adapta-
tion tactics that take uncertainty into account. The complementary
approach of reducing epistemic uncertainty (i.e., the uncertainty due
to insufficient knowledge)—other than through a blanket monitor-
ing of the system and its environment in the first step of the MAPE
loop—is largely unexplored by existing SAS solutions.

In this paper, we argue that SAS can achieve better tradeoffs
between adaptation outcomes and costs by combining established
uncertainty-aware adaptation solutions with an adaptive approach
to epistemic uncertainty reduction. To motivate the need for our hy-
brid self-adaptation paradigm, we refer to SAS exemplars proposed
by the SEAMS research community [7].

As a first example, consider the UNDERSEA exemplar from [9].
This is an underwater robot tasked with measuring the oceanic
salinity or temperature with a given accuracy and under energy use
constraints, which requires the robot to adaptively switch on/off
its sensors and to vary its speed depending on environmental con-
ditions. Assuming that the mission needs to be performed within a
designated perimeter which contains obstacles such as underwater
rocks, the MAPE loop controlling the robot needs to consider the
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robot’s position in its decision-making. However, because of vari-
able underwater currents that are difficult to model, this position
is affected by epistemic uncertainty whose resolution requires the
robot to navigate to the sea surface for GPS access. This uncertainty-
reduction operation consumes significant time and energy. As such,
it should ideally be performed adaptively (based on need), by con-
sidering factors such as the estimated distance between the robot
and the nearest obstacle/perimeter boundary, robot speed, and esti-
mated underwater current direction and speed.

As another example, consider the TAS exemplar from [30]. TAS
is a telehealth service-based system that uses third-party services
(i) to analyse the vital parameters of home-based patients with long-
term health conditions, and, when the patient condition changes
significantly, (ii) to order new medication, or (iii) to alert a medi-
cal team. Its MAPE loop is responsible for ensuring that the TAS
reliability and response time remain within acceptable bounds,
by switching to a functionally equivalent “backup” service when
the reliability or performance of any of its three services becomes
inadequate. However, because the backup services can also expe-
rience technical difficulties, the reliability and response time that
the MAPE loop assumes for each of them are affected by epistemic
uncertainty. To reduce this uncertainty, and thus to avoid switching
to a backup service that has become unavailable or too slow, TAS
should occasionally test these services by invoking their functions.
Given the unavoidable overheads of these uncertainty-reduction
invocations, their timing, frequency and number should be con-
tinually adapted to reflect the current TAS workload, the recent
reliability and performance trends of the services used by TAS, etc.

Problem definition: The UNDERSEA and TAS scenarios we de-
scribed are instances of a general problem faced by SAS whose
MAPE loops make decisions based on estimates of variables affected
by epistemic uncertainty. The precision of these estimates can be
increased by using SAS-specific uncertainty-reduction “services”,1
accessing these services incurs a cost that may consist of CPU or
memory overheads, bandwidth or energy use, carbon footprint, etc.
As such, using these services continuously is unaffordable. More-
over, invoking them with a constant frequency is likely to yield
suboptimal tradeoffs between the uncertainty-reduction cost and
the effectiveness of the MAPE decision-making. Thus, the adaptive
uncertainty reduction problem tackled in our paper is to determine
which uncertainty-reduction service(s) should be invoked when in
order to ensure that the SAS goals are optimally satisfied.

Our approach: To address the problem summarised above, we in-
troduce a new paradigm for adaptive uncertainty reduction in self-
adaptive systems, or Parley2 for short. The fundamental premise
behind Parley is that acquiring new knowledge to reduce epis-
temic uncertainty represents one of the paramount tasks that a
SAS should be concerned with. In line with this premise, Parley is
underpinned by a new SAS architecture (Fig. 1) that includes a ded-
icated uncertainty reduction controller (URC). The role of this new
type of controller is to monitor the estimated values of uncertainty-
affected variables that the existing MAPE loop (referred to here

1These services may suffer from aleatoric uncertainty, i.e., irreducible uncertainty due,
for instance, to natural variability; e.g., the GPS services used by the UNDERSEA robot
from our example can only provide the robot location with a certain accuracy.
2From the French parler (to speak); parley means to discuss and come to an agreement.
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Figure 1: Parley self-adaptive system architecture: an uncer-

tainty reduction controller drives the adaptive reduction of

epistemic uncertainty through the invocation of uncertainty

reduction “services” provided by the managed system, its

environment, or a combination thereof.

as uncertainty-aware controller (UAC)) operates with and to dy-
namically adapt this controller’s use of the available uncertainty-
reduction services by considering factors such as those from our
earlier UNDERSEA and TAS scenarios. The use of different con-
trollers for uncertainty reduction and managed-system adaptation
to uncertainty in our Parley architecture has two major benefits.
First, as with any architecture that promotes a separation of con-
cerns between different system functions, Parley can lead to less
complex and easier to maintain control loops than a monolithic
architecture. Second, our two-tier control architecture makes the
augmentation of an existing SAS with an uncertainty reduction
controller straightforward.

In addition to this new architecture, Parley comes with a tool-
supported method for the formal synthesis of uncertainty reduction
controllers for SAS whose behaviour can be modelled using proba-
bilistic state-transition models such as discrete-time Markov chains
(DTMCs). This method uses a combination of probabilistic model
checking andmulti-objective genetic algorithms to synthesise URCs
guaranteed to satisfy strict reliability, performance and other qual-
ity constraints, and to be Pareto-optimal with respect to a set of
quality optimisation objectives.

Contributions: The main contributions of our paper are:
• The Parley hybrid self-adaptation paradigm, and associated
two-tier controller architecture;

• The Parleymethod for synthesising correct-by-construction
uncertainty reduction controllers;

• A toolchain which automates the application of the URC
synthesis method, and which includes a new tool for aug-
menting the discrete-time Markov chain model of a SAS
with the new states and transitions required for the URC
synthesis;

• The evaluation of Parley within SAS case studies from the
mobile robot navigation and server infrastructure manage-
ment domains.

Paper structure: The rest of the paper is organised as follows. In
Section 2, we compare Parley to related research on self-adaptive
systems. Next, Section 3 provides a running example used to il-
lustrate the components and stages of Parley in its description
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from Section 4. Finally, Section 5 presents our evaluation of Par-
ley, and Section 6 concludes the paper with a brief summary and
suggestions for further work.

2 RELATEDWORK

Handling uncertainty has been one of the driving forces of re-
search in the area of self-adaptive systems [4, 12, 21, 26, 31, 35].
In the following, we review selected approaches that are particu-
larly related to Parley. Uncertainty handling may follow a control-
theoretical [15, 23, 28, 29], an architecture-based [5, 22, 24, 25, 34]
or a planing-based [1, 3, 8, 22, 25, 27] adaptation approach.

Control-theoretical approaches: Shevtsov et al. [28] apply con-
trol theory to deal with adaptation problems for systems with strict
goals and control theoretical requirements (set point, thresholds,
optimisation) as well as to handle and provide assurances under
various sources of uncertainty. In contrast, Michelmore et al. [23]
developed a framework for evaluating the safety of autonomous
driving using end-to-end Bayesian Neural Network (BNN) con-
trollers. With their work, uncertainty estimates for the controller’s
decisions can be obtained with a priori statistical guarantees. While
in their work they optimise for safety constraints, our optimal pol-
icy aims for a broader spectrum where epistemic uncertainties can
be mitigated as the system objectives are satisfied. The work by
Kobayashi et al. [15] proposes a methodology to build more robust
controllers against perceptual uncertainty through an automated
workflow. By providing optimal policies over the behaviour, our
work goes one step further as it takes probabilities into account
and provides means to build extensible controllers through the
separation of concerns between uncertainty-aware and -reduction
controllers. Moreover, the controller synthesis in Parley can inher-
ently accommodate not only multiple parameters but also multiple
thresholds through trading off objectives. Solano et al. [29] propose
an assurance process to handle uncertainty through a generative
approach that uses a goal model augmented with uncertainties. As
an outcome, reliability and cost algebraic formulae are used by a
PID controller to provide policies and assure the properties of the
managed system. Their solution, however, does not allow for ar-
chitecturally decoupling the controllers’ behaviours and concerns,
which could render the controller’s maintainability and scalability
infeasible.

Architecture-based adaptation approaches: Regarding the han-
dling of uncertainties following an architecture-based adaptation
approach,Weyns and Iftikar [34] proposeActivForms-ta, an architec-
ture-based adaptation approach based on the MAPE-K reference
model. Moreno et al. [24] introduced the concept of uncertainty
reduction to manage uncertainty in self-adaptive systems and show
how uncertainty reduction decisions can be integrated into self-
adaptation decisions. Our work addresses some challenges put
forward by Moreno et al. Besides following a MAPE-K adaptation
approach, Parley focuses on allowing an explicit representation and
the correct-by-construction synthesis of uncertainty controllers. In
particular, employing the estimate of the uncertainty-aware con-
troller, Parley can act on handling uncertainties if and when neces-
sary.We believe thework byCamara et al. in [5] is the closest to ours.
In that work, they present a formal reasoning technique based on
stochastic multiplayer games to improve decision-making through

uncertainty-aware and uncertainty-ignorant decision-making in
regions of the state space in which aleatoric uncertainty matters.
Parley also benefits from such a separation of uncertainties for
the controllers together with a formal technique underpinning our
uncertainty reduction service in the formalism of pDTMC. Addi-
tionally, Parley resorts to a meta-heuristic approach to find near-
optimal adaptation policies. Kreutz et al. [17] recently proposed a
new approach to model uncertain knowledge to estimate the best
adaptation tactic. We argue that their paper, again, shows the need
for adaptive uncertainty resolution to best utilise their modelling
notation.

Planning-based approaches: Various planing-based approaches
for tackling the decision-making process under uncertainties have
also been proposed in the literature [1, 3, 8, 22, 25, 27]. Partially
Observable Markov Decision Processes (POMDP) have been ex-
tensively used: (i) in the robotic domain to reason for imperfect
robot actions and environment observations [19], (ii) in partially-
observable domains for online planning in the belief space of long-
endurance missions [1], (iii) to deal with partial satisficements in
environment changes [25], (iv) the human-robot uncertainty inter-
action problem [22] or (v) on the decision-making process for SASs
while offering awareness of non-functional requirements’ priorities
at runtime through a vector-valued reward function [27]. Despite
the inherent ability of POMDP to robustify systems in the presence
of uncertainty, POMDP planning is computationally intractable
in the worst case. Moreover, our approach goes one step further
through the separation of concern between the adaptive behavior
and resolving (epistemic) uncertainty in the URC layer. Esfahani et
al. [8] propose POISED, in which a “possibility” distribution is used
for tackling the complexity of automatically making adaptation
decisions under internal uncertainty. Parley goes one step further
by encountering trade-offs, particularly when the probability of
satisfying the system’s objectives falls under a certain threshold,
even without prior knowledge of the probability distribution of the
monitored phenomena required by POISED.

3 RUNNING EXAMPLE

Throughout this paper, we use a simplified discrete mobile robot as
a running example, navigating within the constraints of a known
10x10 discrete grid map. Maps of similar size have been investigated
in literature [11]. The robot can move North, South, East, and West,
without leaving the map. The robot’s primary mission is to traverse
from its initial location to a specified destination without crashing
into static obstacles. Such a crash might damage the robot and is
hence considered a mission failure. Figure 2 visualises such a map,
with the robot starting in the lower left corner, the destination set
to the upper right corner, and walls as static obstacles.

To facilitate the robot’s movement, we construct amovement con-
troller that leverages Dijkstra’s shortest path algorithm. Each move
incurs a fixed cost (e.g., due to energy consumption). To discour-
age the robot from venturing too close to obstacles, we introduce
penalties for cells near obstacles. To optimise its performance at
runtime, we pre-compute moves for every conceivable position on
the map, as indicated by the red arrows in Figure 2. At runtime,
the movement controller selects moves based on its estimate of the
robot’s location (𝑥,𝑦).
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Figure 2: A sample map for our running example. The robot

starts in the lower left corner and its mission is to traverse to

the destination in the upper right corner without crashing

into static obstacles. Red arrows denote move commands.

We consider that each move can have uncertain outcomes, for
instance, due to wheel slip [6]. However, the robot perceives all
moves as successful, updating its estimate accordingly. Thus, in-
herent uncertainties can lead to discrepancies between the robot’s
estimated location and its actual location (𝑥,𝑦) after any move.

A notable challenge arises from the controller’s reliance on its
estimated location when planning the next move: Eventually, this
poses a risk for the robot to crash into an obstacle or not reach the
specified destination.

To reduce this uncertainty, a localisation service is available that
aligns the robot’s estimated location with its actual location. We
assume that this service has a cost equivalent to five moves. The
concrete problem is to determine the frequency 𝑐 with which the
localisation service should be used concerning the estimated loca-
tion to minimise cost while maximising the mission success rate.
A policy for invoking the localisation service can be modelled as a
function 𝑓 : (𝑋,𝑌 ) → 𝐶 where (𝑋,𝑌 ) represents the set of possible
estimates about the robot’s location and 𝐶 denotes a frequency for
invoking the service.

The objectives for each mission are twofold: to successfully reach
the destination and to minimise cost. We define the following ob-
jectives accordingly:
(O1): Mission success: The probability of reaching the destina-

tion should be maximised, and
(O2): Cost: The mission cost of moving and invoking the localisa-

tion service should be minimised.
We evaluate policies based on these objectives. Striking a balance
between these objectives aims to optimise the robot’s efficiency,
ensuring precise navigation with resource conservation in mind.

We use a discrete mobile robot as a running example that navi-
gates through a discrete map. The robot’s moves suffer uncertain
outcomes, and the location can only be estimated accurately by
invoking a localisation service. Essentially, our goal is to deter-
mine how the frequency with which the localisation service is
invoked should ideally be adapted to minimise mission costs
while maximizing the mission success rate.

4 PARLEY

In this section, we present the Parley methodology to synthesise
dedicated controllers that reduce uncertainty with formal guar-
antees. First, we discuss the architecture of a system employing
Parley before describing the process of Parley, including assump-
tions on the underlying system, synthesis of the new controller,
computing formal guarantees, and finally its behaviour at runtime.
We illustrate these points in the running example of a mobile robot
introduced in the previous section. Afterwards, we elaborate on
a tool that instantiates the Parley methodology to automatically
generate a URC and synthesise policies which the stakeholders can
choose from.

4.1 Architecture

To separate the concerns within an adaptive or autonomous system,
we propose to emphasise uncertainty reduction by establishing it
as a dedicated controller, bringing it on par with controllers that
are concerned with adapting the managed system’s behaviour.

In Parley, the existing notion of a change management layer
(cf. [16]) is handled by two separate controllers, as visualised in
Fig. 1: First, an uncertainty-aware controller (UAC) that employs the
existing notion of adapting the managed system. This controller
works distinctly with the estimates of variables, clearly incorporat-
ing uncertainty. Secondly, a novel uncertainty reduction controller
(URC) is solely concerned with mitigating epistemic uncertainty to
aid the UAC in its decision-making by adapting when and how the
UAC monitors the managed system and the environment.

With our two-layer control architecture, we propose a separation
of concerns, with the UAC reducing uncertainty in its estimates
at a fixed frequency and the URC dedicated to adapting this
frequency dynamically to optimise the system’s objectives.

Example: In our running example, the movement controller is the
UAC, controlling the robot’s movement using its estimated location
and invoking the localisation service with a fixed period. The URC
adapts the frequency with which the localisation service is invoked
to reduce uncertainty based on the estimated location.

4.2 Process

In the remainder of this section, we elaborate on the Parleymethod-
ology step-by-step from assumptions on the underlying system,
to the controller synthesis, until we finally describe its runtime
behaviour. The inputs to our automated process are:

• a system model depicting the environment, UAC, managed
system and uncertainty reduction services,

• a range for thresholds or frequencies with which these ser-
vices can be employed,

• a list of variables that the URC relies on for its control, and
• formalised system objectives;

to produce the following output:

• an extended system model with a URC,
• a list of Pareto-optimal policies to trade off when to employ
the uncertainty reduction services.
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4.2.1 Assumptions on the Uncertainty-Aware Controller. First, we
begin by clarifying assumptions about the UAC and the managed
system. We assume that the UAC and the managed system are mod-
elled as a discrete-time Markov chain (DTMC)𝑀 that encodes the
behaviour of the system, and its adaptation strategies. M consists
of states, a transition matrix 𝑃 that depicts probabilities of transi-
tioning from one state to another and an initial state. Each state in
𝑀 is a tuple

state = (𝑠, 𝑧, 𝑧),
where 𝑠 corresponds to information fully known to the UAC, and 𝑧
is the UAC’s estimate of the information 𝑧 that the controller does
not know. Due to this uncertainty, the UAC makes its decisions
solely based on 𝑠 and 𝑧. Transitions over these states, defined by a
transition probability function 𝑃 , depict the dynamic behaviour of
the system. We further assume that the controller’s estimate 𝑧 can
be optimised using uncertainty reduction services3. The controller
naively invokes the services, that is, for example with fixed frequen-
cies, or when some variable is below a threshold. We assume that
these frequencies or thresholds are encoded in a constant vector,
namely 𝑐 such that 𝑐 is of dimension 𝑛 if 𝑛 uncertainty reduction
services are available.

Additionally, we assume that there are formalised objectives for
the system. Typically, these refer to functional (e.g., success rate)
or non-functional (e.g., costs, performance) properties. As is typical
for DTMCs, a reward structure assigning rewards to selected states
can be useful for modelling non-functional properties. Probabilis-
tic model checking can be used to calculate the probability with
which a property is satisfied by M or to calculate the estimated
accumulated reward of M (see later steps).

We assume a self-adaptive system, with a controller relying on
its estimate of variables suffering uncertainty to adapt the man-
aged system. The controller naively invokes services to reduce
the uncertainty in its estimate, e.g., using fixed frequencies or
thresholds 𝑐 . We assume that the system, including its controller
and environment, is modelled as a DTMC.

Example: For our robotic example, we construct a DTMC with
PRISM [18] (cf. Lst. 1). We employ PRISM’s notion of modules which
synchronise over labelled transitions, i.e., the transition east, cf. ll. 8,
17, 28, can be invoked only if all three modules can invoke the
transition, invoking it in one single step and updating the rewards
accordingly (cf. l. 36). In the model’s first module, we depict the
ground truth 𝑧 = (𝑥,𝑦) (cf. ll. 5-14) resembling the robot’s actual
location, which changes when the robot moves. For the second
module, we employ Dijkstra’s shortest path algorithm to construct
the movement controller, which resembles the UAC, as explained
in Sec. 3. This module (cf. ll. 16-20) controls which move the robot
should make depending on its estimated location 𝑧 = (𝑥,𝑦), as
depicted, e.g., in l. 17. Finally, the controller’s knowledge is handled
by a dedicated module that includes the estimated location, cf. ll. 24-
25. Additionally, a 𝑠𝑡𝑒𝑝 counter is modelled in the Knowledge (cf.
l. 26), which is incremented after everymove of the robot (cf. l. 32). A
localisation service is available (cf. Sec. 3) that aligns the estimated
location with the actual location. It is invoked if 𝑠𝑡𝑒𝑝 exceeds a
3Often only one such service will be available and the optimised estimate will be 𝑧
itself.

constant limit 𝑐 (cf. l. 22), which may have been set to, e.g., 𝑐 = 2.
𝑠𝑡𝑒𝑝 is reset (cf. transition 𝑙𝑜𝑐𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛, l. 31), accordingly. In this
sense, 𝑠𝑡𝑒𝑝 is part of the information fully known to the UAC, 𝑠 .
Note, that any movement or invocation of the localisation service
incurs a cost (cf. ll. 35-40). We employ the objectives discussed in
Sec. 3, accordingly.

1 dtmc

2 const int N = 9; //map size

3 const double p = 0.01; // probability of deviation in moves

4
5 module Robot

6 x : [0..N] init 0;

7 y : [0..N] init 0;

8 [east] true ->

9 (1-3*p): (x'=min(x+1, N)) +

10 p: (y'=min(y+1, N)) +

11 p: (y'=max(y-1, 0)) +

12 p: (x'=max(x-1, 0));

13 ...

14 endmodule

15
16 module Adaptation_MAPE_Controller

17 [east] (𝑥 =0) & (�̂�=0) -> true;

18 [north] (𝑥 =1) & (�̂�=0) -> true;

19 ...

20 endmodule

21
22 const int c = 2;

23 module Knowledge

24 𝑥 : [0..N] init 0; // estimated position

25 �̂� : [0..N] init 0; // estimated position

26 step : [1..10] init 1;

27 ready : Bool init true;

28 [east] ready -> (𝑥 '=min( ˆ𝑥 + 1, N)) & (ready '= false);

29 [north] ready -> (�̂� '=min( ˆ𝑦 + 1, N)) & (ready '= false);

30 ...

31 [localisation] step >=c & !ready -> (𝑥 '=x) & (�̂� '=y) & (step '=1) &

(ready '=true);

32 [skip] step <c & !ready -> (step '=step +1) & (ready '=true);

33 endmodule

34
35 rewards "cost"

36 [east] true : 1;

37 [north] true : 1;

38 ...

39 [localisation] true : 5;

40 endrewards

Listing 1: Excerpt of PRISM code for the robot’s movement.

4.2.2 Synthesising the URC. We propose to synthesise a dedicated
controller, the URC, to control when the UAC employs its uncer-
tainty reduction services. To this end, the URC adapts the vector
that depicts the frequencies of updates or thresholds 𝑐 . The URC
performs these adaptations based on variables of the UAC: 𝑠 and
𝑧. We propose that the designers select which of these variables
the URC can use to decide how it should adapt the UAC4. Note,
that adaptation decisions cannot be made based on the ground
truth as the ground truth is unknown to the controllers. We depict
possible adaptation decisions based on the selected set of variables
as a function 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑠, 𝑧) for any value in the selected subset of
𝑠 and 𝑧, accordingly, that computes a vector of dimension 𝑛 if 𝑛
uncertainty reduction services are available. To synthesise the URC,
we extend the DTMC such that 𝑐 can be set dynamically during
any run, corresponding to the desired frequencies or thresholds.

4Usually, a subset of these variables will be sufficient to perform adequate adaptations.
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An augmented state is now a tuple

stateaug = (𝑠, 𝑧, 𝑧, 𝑐).

where 𝑐 depicts the frequencies of updates or thresholds. We aug-
ment the transition matrix 𝑃 accordingly, such that the transition
probability for any augmented state (𝑠, 𝑧, 𝑧, ∗)5 is set to the corre-
sponding transition probability in 𝑃 , and 𝑐 is set according to the
decision function, i.e.,

𝑃 ′ ((𝑠, 𝑧, 𝑧, 𝑐), (𝑠′, 𝑧′, 𝑧′, 𝑐′)) :={
𝑃 ((𝑠, 𝑧, 𝑧), (𝑠′, 𝑧′, 𝑧′)) 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑠′, 𝑧′) = 𝑐′

0 otherwise

Therefore, any of the existing transitions, including the UAC’s
adaptations of the managed system, remain unchanged. 𝑃 ′ reflects
solely the desired selection of 𝑐 in every transition, according to the
values selected by the 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 function. Since the decision function
has not been selected yet, the concluding model 𝑀′ becomes a
parametric DTMC (pDTMC). Concrete values for these parameters
will be determined by probabilistic model checking (see next step).
One concrete instance of this function, assigning concrete values
to 𝑐 , is called a policy.

For DTMC models in the PRISM modelling language, we provide
a tool that automatically performs this augmentation to pDTMC
models, using the set of variables that a decision should be based
on, as well as transitions that are supposed to happen before and
after the adaptations. The latter input ensures that the URC only
adapts the UAC when it is in a quiescent state and that the aug-
mentation does not introduce any non-determinism. Our tool then
automatically adds parameters depicting the decision function, as
well as a new module, called Uncertainty_Reduction_Controller to
the PRISM file making the model a pDTMC. Listing 2 showcases
such an extension: the variable 𝑡𝑢𝑟𝑛 is used to depict when the UAC
is quiescent. For practical reasons, we enforce an upper bound on
𝑐 , which can be adapted to any value in the defined range (cf. l. 5).

We synthesise a URC that is responsible for adapting the frequen-
cies or thresholds 𝑐 with which uncertainty reduction services are
invoked. The adaptation decisions are modelled as parameters,
resulting in a parametric DTMC.

Example: In our example, we automatically add a module Uncer-
tainty_Reduction_Controller (cf. ll. 4-13 in Lst. 2) to the model and
move the variable 𝑐 to this module (cf. l. 5 in Lst. 2)6. Hence, the
URC can adapt 𝑐 . To depict quiescent states in which an adapta-
tion is permitted, we use 𝑡𝑢𝑟𝑛 (cf. l. 6 in Lst. 2) that sequentially
interrupts the system and UAC to allow for adaptations performed
by the URC, i.e., when 𝑡𝑢𝑟𝑛 = 2 (cf. l. 9). In our example, each
simulation alternates between movements, adaptations, and finally
invoking or skipping the localisation service. We choose that poten-
tial adaptations of the URC depend only on the estimated location
𝑥 and 𝑦. Thus, the decision function depicts the URC’s adaptations
as parameters for any possible value of 𝑥 and 𝑦, i.e., 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑥_𝑦
depicts 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑧) with 𝑧 = (𝑥,𝑦) (cf. l 2). We leave the parameters
without concrete values since no policy has been defined yet.

5With ∗ denoting a wildcard, depicting that the probability does not depend on c.
6L. 22 in Lst. 1 is deleted, accordingly.

1 ...

2 const int decision_0_0; // decision to invoke service at (0, 0)

3 ...

4 module Uncertainty_Reduction_Controller

5 c : [1..10] init decision_0_0;

6 turn : [1..3] init 1;

7 [east] turn=1 -> (turn '=2);

8 ...

9 [] turn=2 & 𝑥 =0 & �̂�=0 -> (c'= decision_0_0) & (turn '=3);

10 ...

11 [localisation] turn=3 -> (turn '=1);

12 [skip] turn=3 -> (turn '=1);

13 endmodule

Listing 2: Excerpt of the PRISM code depicting the URC

adapting 𝑐 based on the estimated location, automatically

synthesised based on Listing 1.

4.2.3 Generating Policies with Guarantees. To find suitable policies
that can satisfy the specified objectives for the pDTMC constructed
in the previous step, we employ probabilistic model checking. With
probabilistic model checking, we can evaluate a particular policy.
If the number of possible policies is small enough, an extensive
evaluation of every possible policy can be performed. In case the
potential number of policies is very large, however, we propose to
resort to a meta-heuristic approach that finds near-optimal policies.
While this does not provide guarantees for optimality, invoking a
probabilistic model checker such as PRISM [18] guarantees the near-
optimal trade-offs between objectives that have been identified by
the meta-heuristic search.

Policies define values for the parameters and reflect the URC’s
behaviour. These policies can be found by employing probabilistic
model checking of the pDTMC. If the objective space is too large,
meta-heuristic search can be applied.

Example: In our running example, each policy consists of 100 pa-
rameters, one for each possible (estimated) location on the map (100
cells in the 10x10 map). We choose to limit the maximum interval
between two invocations of the localisation service to ten steps due
to the amount of obstacles that are present on the maps and the re-
sulting high likelihood of a crash. Since each parameter can denote
any interval between 1 and 10, the number of possible policies is
10100. Due to the large search space, we resort to EvoChecker [10],
a meta-heuristic approach to finding policies. Figure 3a visualises
the Pareto-front of policies that EvoChecker provides for the given
map (cf. Fig. 2) and guaranteed trade-offs of the objectives.

4.2.4 Selecting a Policy for the URC. The policies identified in
the previous step form a Pareto-front concerning the specified ob-
jectives. At runtime, the stakeholders can trade off the objectives
and select one of the policies of the Pareto-front accordingly. This
trade-off is essential as it enables the stakeholders to prioritise the
objectives, i.e., the requirements. Potential techniques to automat-
ically select a policy, for instance with the knee method, can be
used. The selected policy is deployed in the URC.

Stakeholders select a policy from the Pareto-front by trading off
objectives and prioritising requirements, accordingly.

Example: In our robotic example, we encounter that the robot only
has limited energy available during its mission. Therefore, we only
consider policies that incur a cost of less than 100. Additionally,
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Figure 3: Policy selection for the robotic example.

the stakeholders decide that the probability of a successful mission
should exceed 80%. Fortunately, the Pareto-front contains policies
satisfying these constraints. Otherwise, the stakeholders would
have to compromise and prioritise one of the requirements, for
example, if the map contains so many obstacles on the robot’s main
path to its destination that the chance of a crash is greater than usual.
In our example, however, we choose the policy depicted by a red dot
in Figure 3a as it guarantees the highest mission success probability
while staying below a cost of 100. The parameters provided by this
policy are displayed in Figure 3b. Every identified policy can be
found in our publicly accessible online repository7.

4.2.5 Enacting and Executing the Selected Policy. At runtime, the
URC monitors the variables chosen for its decision-making. Using
the selected policy, it adapts the frequencies or thresholds 𝑐 in the
UAC.

The selected policy is invoked at runtime and the URC adapts
when the uncertainty reduction services are invoked.

Example: In the robotic example, the URC updates the intervals
between invocations of the localisation service by the UAC at run-
time. We make the following observation: The URC adapts 𝑐 such
that shorter intervals are used when the robot’s planned path has
an obstacle nearby, e.g., at location (4, 4) (shaded blue cell in Fig. 3b).
However, in locations that the robot only steps into due to devia-
tions in its movement, such as (3, 2) (shaded orange cell in Fig. 3b),
the interval is set to the maximum. We assume that this is because
the robot can only estimate that it is in this location when it has
performed a localisation anyway. Thus, the URC helps to reduce the
use of resources while maintaining a high probability of a successful
mission (cf. Fig. 3a).

7https://github.com/carwehlm/PARLEY/tree/main/plots/fronts

4.3 Automated Tool

We instantiate the Parley methodology and provide an automated
tool8 that performs the steps described in the previous subsections.
Our tool uses the following inputs:

• a PRISM file containing a DTMC depicting the managed sys-
tem, environment (ground truth) and URC with its estimates,

• transition labels occurring before adaptations from the URC,
• transition labels occurring after adaptations from the URC,
and

• a list of variables which are used for the URC’s decision.
to automatically add modules to the PRISM file depicting the URC,
as shown in Listing 2. Afterwards, our tool automatically calls
EvoChecker and uses objectives defined in PCTL to provide a list
of Pareto-optimal policies which the stakeholders can choose from.

5 EVALUATION

To evaluate Parley, we formulate the following research questions
that we investigate on the robotic use case outlined previously.
RQ1: Effectiveness: How effective is Parley’s adaptive uncer-

tainty reduction in terms of achieving the system’s objectives
(success rate and costs) compared to a baseline that resolves
uncertainty periodically?

RQ2: Diversity: How diverse are the policies provided by Parley
to enable trading off multiple objectives compared to the
baseline?

RQ3: Scalability: How scalable is Parley when increasing the
model size (size of the map)?

To evaluate the practicality of Parley, we formulate an additional
research question:
RQ4: Practicality: Does Parley work in a realistic setting of a

robotic use case, and is Parley applicable to other types of
systems?

8https://github.com/carwehlm/PARLEY

https://github.com/carwehlm/PARLEY/tree/main/plots/fronts
https://github.com/carwehlm/PARLEY
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Experimental Setup for RQ1 and RQ2: To evaluate the effec-
tiveness and diversity of Parley on the robotic use case (Sec. 3)
according to the PRISM model discussed in Sec. 4, we randomly
generate 90 maps of size 10x10. The robot should traverse from
the bottom-left to the upper-right corner of the map. Obstacles are
placed randomly on the map9. Based on the 90 individual maps
and their movement controllers, we synthesise 90 PRISM models,
as discussed in Sec. 4. In this context, uncertainty occurs due to
non-deterministic outcomes of the robot’s movements and it can be
reduced by using a localisation service to obtain the actual location
of the robot (cf. Sec. 3). We use the objectives defined in Sec. 3
accordingly.

We compare Parley to a baseline on each of the 90 PRISMmodels
denoting 90 scenarios of the robotic use case. The baseline generates
10 policies that invoke the localisation service with fixed frequen-
cies (i.e., periodically). The first policy invokes the localisation
service after each movement of the robot, the second policy after
every other movement, etc.10 The baseline policies form a Pareto-
front concerning the objectives, as depicted by the red crosses in
Fig. 3a. In contrast, Parley generates policies that adapt the fre-
quency with which the localisation service is invoked depending
on the robot’s estimated location. Policies found by Parley also
form a Pareto-front, as depicted by the circles in Fig. 3a.

To quantify the effectiveness (RQ1), we compute the Hypervol-
ume [20] that measures the size of the objective space covered
by the Pareto-front obtained by each approach. Hypervolume is
considered a comprehensive quality indicator for the convergence,
diversity, and cardinality of a solution set that is applicable if the
number of objectives is rather low, which is true in our case. It
can be used to compare two solution sets while a higher Hyper-
volume indicates a “better” set in terms of Pareto dominance [20].
To quantify the diversity (RQ2), we compute the Spread [20] of a
Pareto-front obtained by each approach. Spread is a quality indi-
cator dedicated to the diversity of solutions on a Pareto front. It
is applicable to bi-objective problems and measures the distribu-
tion and uniformity of the solutions in a front. A smaller value is
preferred, indicating a better distribution [20]. For the a-posterior
analysis of the Pareto-fronts obtained by Parley and the base-
line, we compute the Hypervolume and Spread concerning prac-
tically relevant solutions, which are constrained by individual re-
quirements on the two objectives. Particularly, we denote with
𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∈ {0.6, 0.7, 0.8} the minimal success rate (Objective
O1 from Sec. 3) and with𝑚𝑎𝑥_𝑐𝑜𝑠𝑡𝑠 ∈ {100, 80, 60} maximal costs
that are required (Objective O2 from Sec. 3). We consider all com-
binations of these two requirements, resulting in nine settings to
cover a wide range of practically relevant solutions. We depict one
such setting with dotted lines in Fig. 3a and only investigate policies
that are within the area of acceptable policies (non-shaded area).

To address the stochastic nature of the metaheuristic search
(EvoChecker11) in Parley, we run Parley ten times on each map.
In contrast, the baseline is deterministic so that one run is sufficient.
9For each cell, we generate a random number with a standard normal distribution. If
the number is outside of [−𝜎, 𝜎 ], an obstacle is placed in the cell. For every map we
used, we checked that there exists a path from the robot’s start to the destination.
10As discussed in the previous section, we set the maximum interval between two
invocations of the service at 10 steps.
11We use EvoChecker out of the box and set a population size of 100 across 40
generations.

We further quantify the gain of Parley concerning Hypervolume
and Spread, and test for statistical significance of the gain using
Mann-Whitney U and a 95% confidence level (p<0.05) (cf. [2]).
Experimental Setup for RQ3: To investigate Parley’s scalability,
we employ the same setup of a robotic use case described previously
but scale the map size from 5 to 20 in steps of 5 to analyse how
large the DTMC’s state space is, how quickly PRISM can verify the
objectives to evaluate a policy12, and finally how large the objective
space is for Parley.
Experimental Setup for RQ4: We investigate RQ4 in two di-
mensions: We deploy Parley to ROS Gazebo13 to demonstrate its
feasibility in a realistic setting. We further apply Parley to a self-
protectingweb application used in the literature [24] to demonstrate
its applicability to a different type of system.

5.1 RQ1: Effectiveness

For the first research question, we investigate if the policies pro-
vided by Parley are better, that is, closer to the optimum (minimal
cost and maximum probability of a mission success), than those
provided by the baseline. Table 1 reports the results in terms of
Hypervolume gains achieved by Parley over the baseline in the
upper entries of each row. For instance, for a minimal success rate
of 70% and maximal cost of 80, Parley significantly outperforms
the baseline on 48 out of 90 maps, it is significantly outperformed
by the baseline in 11 maps, and the results for the remaining 31
maps are similar (i.e., no statistically significant difference). Most
importantly, we can observe that Parley improves its performance
over the baseline when we strengthen the requirements, that is,
we increase the required minimal success rate (𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠) and
reduce the maximal cost (𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 ). For strong requirements of
𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 80% and𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 ≤ 60, Parley significantly out-
performs the baseline in 60 out of 90 maps. In contrast, for weak
requirements of𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 60% and𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 ≤ 60, the base-
line performs better than Parley on more maps. This shows that for
cases with weak requirements, a naive approach such as the base-
line can be used, while cases with stronger requirements demand a
smart approach such as Parley. Thus, on average across all nine
requirement settings (each with 90 maps), Parley provides statisti-
cally significant improvements in 405 out of 810 cases. Figure 4a vi-
sualises the results for eachmap for one setting (𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 70%
and𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 ≤ 80)14.

We conclude that Parley significantly helps to achieve the sys-
tem’s objectives by determining when to reduce uncertainty in
50% (405/810) of the cases compared to the baseline. Most impor-
tantly, it showed increased performance improvements over the
baseline when strengthening the requirements. In such settings,
Parley would be preferred over the baseline.

5.2 RQ2: Diversity

For the second research question, we investigate if the policies
provided by Parley provide more diverse trade-offs than those

12We use PRISM in version 4.7 on an M1 MacBook Pro with 16GB RAM.
13Gazebo is a simulator for systems based on the Robotic Operating System (ROS).
14We provide plots for other settings in our replication package https://github.com/
carwehlm/PARLEY/tree/main/plots/box-plots .

https://github.com/carwehlm/PARLEY/tree/main/plots/box-plots
https://github.com/carwehlm/PARLEY/tree/main/plots/box-plots
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Figure 4: Gain in (a) Hypervolume and (b) Spread of Parley compared to baseline across different maps in requirement setting

𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 70% and𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 ≤ 80.

Table 1: Results for gains in Hypervolume (HV) and Spread

(SP) of Parley compared to baseline in all settings, denoted

by three values: the number of maps in which Parley is

significantly better / significantly worse / insignificant com-

pared to the baseline.

min_success

max_cost

60 80 100

60%

HV
SP

29/34/27
90/00/00

36/27/27
89/01/00

37/22/31
89/01/00

70%

HV
SP

46/11/33
90/00/00

48/11/31
90/00/00

45/11/34
90/00/00

80%

HV
SP

60/12/18
86/00/04

54/12/24
86/02/02

50/11/29
86/02/02

provided by the baseline. If so, more different trade-offs along the
Pareto front rather than similar trade-offs are available and can be
selected by stakeholders for decision-making, which results in more
diverse options for self-adaptation. To this end, we compute the
Spread (a lower value indicates a higher diversity). Table 1 reports
these results in the lower entries of each row for the nine require-
ment settings. For instance, for a minimal success rate of 70% and
maximal cost of 80, Parley significantly outperforms the baseline
on all 90 maps. For all settings, Parley achieves significantly better
results for at least 86 out of 90 maps, and on average, across all nine
settings, Parley provides statistically significant improvements in
796 out of 810 cases. Figure 4b additionally visualises the gain in
Spread (lower is better) achieved by Parley over the baseline for
one setting (𝑚𝑖𝑛_𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 70% and𝑚𝑎𝑥_𝑐𝑜𝑠𝑡 ≤ 80).

We conclude that the policies provided by Parley are significantly
more diverse than the baseline policies in 98.3% (796/810) of the
cases, which offers a more diverse set of trade-offs, from which
stakeholders can select for self-adaptation.

5.3 RQ3: Scalability

In the third research question, we are concerned with the scalability
of our approach. Multiple facets need to be considered here:

• State space: The state space of the pDTMC determines how
long the evaluation of a policy with a model checker such
as PRISM takes,

• Search space: The domains of variables that are available to
make a decision, as well as all possible decisions, determine
the search space of possible solutions.

We investigate different map sizes of the running example. Tab. 2
shows the results. We can see an exponential growth in the pDTMC
state space, the time to perform model checking grows accordingly.
In combination with the exponential growth of the search space for
possible solutions, we conclude that our approach might not scale
well to larger problems. For a larger map (20x20) and 50 generations
with a population size of 50, the model checker would be invoked
2,500 times per objective (property), resulting in a total verification
time of ≈ 83 minutes (2,500 × 1s × 2 properties). In contrast, model
checking every policy with PRISM would take ≈ 10518 minutes
(20400 × 1s × 2 properties). Thus, Parley improves the scalability,
which, however, can still be an issue for applying Parley at runtime
in highly dynamic systems.

Scalability remains an issue for Parley but might be tackled
by more abstract models, more computational resources, or a
reduced search space for policies.

5.4 RQ 4: Practicality

To investigate the final research question, we first apply Parley in
a realistic robotic setting. Afterwards, we investigate how Parley
can be applied to the self-protecting web application.

Table 2: Scalability of Parley. With larger maps, the

pDTMC’s state space (#S) increases as well as the time of

model checking in PRISM for the two properties O1 and O2,

and the search space of possible policies.

Map size #S PRISM (s) Search space

5x5 2,413 0.01, 0.032 525 ≈ 1017
10x10 2,977 0.092, 0.067 10100
15x15 6,593 0.313, 0.297 15225 ≈ 10264
20x20 11,276 0.864, 0.897 20400 ≈ 10520



SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Carwehl, et al.

Continuous Robot: Expanding from the problem investigated so
far we consider a more realistic setup. Specifically, a Turtlebot3Waf-
fle15 must travel to a destination while not crashing into obstacles
or leaving the area. The system now contains a continuous robot
concerning its position. The robot now also has a heading angle, \ ,
discretised into four directions: North, East, South, and West.

For modelling purposes, the environment is discretised similarly
to before. The environment is 21𝑚𝑥21𝑚 discretised into 3𝑚𝑥3𝑚
cells, resulting in a 7𝑥7 environment. The heading angle also suffers
uncertainty, hence the controller works with an estimate that can
become inaccurate over time. Therefore, the controller’s estimates
are as follows:

𝑧 = (𝑥,𝑦, \̂ )

The movement controller determines the shortest path as de-
scribed earlier and executes the series of commands based on its
estimates. However, the left wheel is slightly faulty, operating at 99%
power. This means the robot will drift over time. For this problem,
the robot has no sensors but can use a localisation service similar
to the running example. The system has the same objectives as the
running example. We set the maximum frequency between two
localisations to five given the robot’s high drift and apply Parley
to generate a Pareto-front of policies, visualised in Fig. 5a. Parley
provides 30 Pareto-optimal policies compared to just five policies
found in the baseline.

We conducted simulations in Gazebo using ROS packages. To
acquire the probability transitions the robot was first initialised in a
cell, and chose random actions (North, East, South, West) until the
robot crashed or left the environment. These traces were recorded
to attain the state transitions and the corresponding probabilities.
The code for running the experiments can be found online, along
with a video capturing the simulation16.
Web Application: Moreno et al. [24] presented a web application
containing a web server (A) and a database (B). They motivate that
an attacker might infiltrate A and that the system uses an intrusion
detection system (IDS) to receive alerts about such cyber-attacks. If
the attacker is successful, A is compromised, and the attacker might
go on to infiltrate B as well. In case B, too, becomes compromised,
a high cost is assumed due to the sensitivity of the data in B. A con-
troller has the options to restore A to a non-compromised version
(restoreA), restore both servers to non-compromised versions (re-
storeAB), not intervene at all (NOP), or to reduce the uncertainty in
the IDS alert and determine accurately if A is compromised scanA.
Note, that while all actions except NOP reduce uncertainty in some
way, we only consider scanA as an uncertainty reduction service as
the other actions have additional implications on the system other
than to solely reduce uncertainty, i.e., restoring a server.

We modelled such a system with an extension to include dy-
namic costs of restoring either server A or both servers to depict
that there might be times (e.g. during the night) when the server’s
downtime is not as expensive as at other times. Additionally, we
model variability in the IDS to depict that the quality of its predic-
tions may be dynamic, i.e., when the IDS’s rule set has not been
updated recently, its quality deteriorates.

15https://www.turtlebot.com/turtlebot3/
16https://github.com/carwehlm/PARLEY/blob/main/turtlebot.mp4

Table 3: Key characteristics of the systems and pDTMC mod-

els used for the evaluation.

Discrete
Robot

Continuous
Robot Web Application

Application
Domain mobile robot navigation

server
infrastructure
management

System Type CPS CPS
multi-server
system

pDTMC
# states 2,977 512 5,630
# transitions 4,779 1,070 11,540
# parameters 10100 107∗7∗4 132

Similar to the original model, we use the IDS’s prediction of
an attack to determine the controller’s action. However, we em-
ploy Parley to decide when scanA should be invoked to reduce
uncertainty, depending on the cost of restoring the servers and
the IDS’s confidence. In contrast to previous examples in this pa-
per, we now determine thresholds instead of frequencies at which
the uncertainty reduction service is invoked. Fig. 5b displays the
Pareto-front of policies generated by Parley and the baseline so-
lution, which does not consider the dynamic cost or the IDS’s
confidence w.r.t. the cost of an infected database (x-axis) and cost
of controlled actions (y-axis). Parley provides 139 Pareto-optimal
policies compared to just a single one provided by the baseline.
Summary: Table 3 displays the main characteristics of all systems
we investigated. While the robots are cyber-physical systems (CPS),
the web application provides initial evidence that Parley is further
applicable to another application domain. Thereby, with the robots
we considered systems with larger search spaces (# parameters),
and with the web application we considered a system with a larger
state space (# states and # transitions), which shows the practicality
of Parley in different settings.

We have successfully applied Parley to two further systems: a
realistic use case of a real continuous robot (Turtlebot3), and a
web application from literature. Parley was able to find more
policies than the baseline in both applications: 6 times more
for the continuous robot and 139 more for the server system.
This provides initial evidence about the practicality of Parley in
different domains and complexity of systems.

5.5 Threats to validity

Threats to the validity of our study are as follows:
Internal: The analysed maps for RQ1 and RQ2 pose a threat to
internal validity. We generated 90 different maps randomly to miti-
gate this threat. Additionally, we conducted ten runs of EvoChecker
for each of the maps to account for its meta-heuristic nature. For
RQ3, the investigated maps might not be representative of maps
of the selected sizes. The same holds for RQ4, where we merely
demonstrated the applicability to other applications, but did not in-
vestigate different problem instances in these domains. We refer to
the extensive literature on probabilistic model checkers, e.g. [13, 18]
for more information on their scalability. Currently, Parley uses

https://www.turtlebot.com/turtlebot3/
https://github.com/carwehlm/PARLEY/blob/main/turtlebot.mp4
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Figure 5: Pareto-fronts for different applications.

PRISM, which limits its scalability. Using EvoChecker [10], we
started addressing this concern but still limited the map size. Ad-
ditionally, we modelled the uncertainty reduction services as min-
imalistic mocks that rely on the ground truth. This will, usually,
not be possible in reality. Further, we might have made mistakes in
modelling any of the investigated systems. We reviewed the models
internally and make them accessible publicly online. Finally, we
used EvoChecker out of the box and did not experiment with tuning
its hyperparameters.
External:We selected three different systems from two different
domains (cf. Tab. 3) to mitigate the threat of generalisability. We
further plan to investigate additional systems in the future.
Conclusion: We used the Mann-Whitney U test for significant
differences between Parley and the baseline with a 95% confidence
level and relied on the extensive guidelines in [2] to conduct our ex-
periments to mitigate this threat. The selection of the requirement
settings for RQ1 and RQ2 is, however, a threat to the conclusion va-
lidity.Wemitigated this threat by considering nine different settings
covering all combinations of weaker and stronger requirements for
minimal success rate and maximal cost.

6 CONCLUSION AND FUTUREWORK

In this work, we motivated the need for a controller dedicated to
reducing epistemic uncertainty. We introduced Parley, an end-to-
end methodology and architecture that relies on a pDTMC system
model and synthesises an uncertainty reduction controller (URC),
clearly separating the concerns between adapting the managed
system’s functionality and reducing uncertainty. For models in the
PRISM language, we created a tool to automate the synthesis of
a URC. Parley further relies on probabilistic model checking to
provide formal guarantees for the synthesised controller. Given the
inherent limited scalability of model checking, we use EvoChecker,
a meta-heuristic approach based on PRISM that trades off multiple
objectives through Pareto-optimal solutions.

Parley was evaluated on 90 instances of the robotic example
with nine different requirement settings, and compared to a baseline

concerning effectiveness and diversity. The results show that Par-
ley significantly outperforms the baseline in 50% of all 810 cases
in terms of effectiveness while showing improved effectiveness
when strengthening the requirements. For the diversity, Parley
presented significant improvements compared to the baseline in
98.3% of all 810 cases. Thus, Parley enables a richer and more di-
verse set of trade-offs, from which the stakeholders can choose for
self-adaptation. Finally, we demonstrated Parley’s practicality by
applying it to three different systems from two domains, including
a self-protecting web application from the literature.

In future work, we aim to investigate if a tuning of EvoChecker’s
hyperparameters can guide the search toward even better results
and if different abstractions (models) improve scalability. While we
demonstrated Parley’s practicality by applying it to three different
systems, in future work we aim to apply Parley to more systems of
other domains, such as TAS [30]. To this end, we plan to model the
controller’s estimations with probabilistic distributions. Addition-
ally, we plan to investigate how changes in the model at runtime
can be handled by refining selected policies with EvoChecker, e.g.
when assumptions about the environment have changed. Our future
plans also include applying Parley to other sources of uncertainty,
such as those involving system goals and human interactions. A
special emphasis will be put on including aleatoric uncertainty
in the uncertainty reduction services, i.e., being able to express
imperfect sensors and services.

Data availability: We make all models, data, and code publicly
available in our reproduction package located at:
https://github.com/carwehlm/PARLEY.
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