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Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and
ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that
ranges from directed movement to milling to disordered swarming. Typically, such
macroscopic patterns arise from decentralized, local interactions among constituent
components (e.g., individual fish in a school). Preeminent models of this process
describe individuals as self-propelled particles, subject to self-generated motion and
“social forces” such as short-range repulsion and long-range attraction or alignment.
However, organisms are not particles; they are probabilistic decision-makers. Here,
we introduce an approach to modeling collective behavior based on active inference.
This cognitive framework casts behavior as the consequence of a single imperative:
to minimize surprise. We demonstrate that many empirically observed collective
phenomena, including cohesion, milling, and directed motion, emerge naturally
when considering behavior as driven by active Bayesian inference—without explicitly
building behavioral rules or goals into individual agents. Furthermore, we show that
active inference can recover and generalize the classical notion of social forces as
agents attempt to suppress prediction errors that conflict with their expectations.
By exploring the parameter space of the belief-based model, we reveal nontrivial
relationships between the individual beliefs and group properties like polarization
and the tendency to visit different collective states. We also explore how individual
beliefs about uncertainty determine collective decision-making accuracy. Finally, we
show how agents can update their generative model over time, resulting in groups that
are collectively more sensitive to external fluctuations and encode information more
robustly.

collective motion | active inference | agent-based models | Bayesian inference | animal behavior

The principles underlying coordinated group behaviors in animals have inspired research
in disciplines ranging from zoology to engineering to physics (1–3). Collective motion
in particular has been a popular phenomenon to study, due in part to its striking visual
manifestation and ubiquity (e.g., swarming locusts, schooling fish, flocking birds, and
herding ungulates), and in part to the simplicity of models that can reproduce many of
its qualitative features; like cohesive, directed movement (4–7). Because of this, collective
motion is often cited as a canonical example of a self-organizing complex system, wherein
collective properties emerge from simple interactions among distributed components.

Popular theoretical models cast collective motion as groups composed of self-propelled
particles (SPPs) that influence one another via simple “social forces.” Early models like the
Vicsek model (6) consider only a simple alignment interaction, where each particle aligns
its direction of travel with the average heading of its neighbors. While oversimplifying
the biological mechanisms in play, SPP models—like the Vicsek model—are useful for
their amenability to formal understanding, e.g., the computation of universal quantities
and relations through hydrodynamic and mean-field limits (8–11).

Recent research has shifted toward more biologically motivated approaches that aim to
model the specific behavioral circuits and decision-rules that govern individual behaviors
(12–15). While these models are less analytically tractable than SPP models, they are
more appealing to domain specialists like biologists, as they can generate predictions
about sensory features in an individual’s environment that are necessary and sufficient for
evoking behavior. Furthermore, these predictions can be tested experimentally (14, 16).
This data-driven approach can thus provide mechanistic insights into the biological and
cognitive origins of decision-making (13, 17).

In this work, we propose a model class that blends the first-principles, theoretical
approach of physical models with biological plausibility, resulting in an ecologically valid
but theoretically grounded agent-based model of collective behavior. Our model class
is based on active inference, a framework for designing and describing adaptive systems
where all aspects of cognition—learning, planning, perception, and action—are viewed
as a process of inference (18–21). Active inference originated in theoretical neuroscience
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as a normative account of self-organizing, biological systems as
constantly engaged in predictive exchanges with their sensory
environments (22–25).

Collective Motion Models: From SPP to
Bayesian Agents
In popular SPP models, an individual’s movement is described
as driven by a combination of social and environmental forces.
These forces are often treated as vectors that capture various
tendencies seen in biological collective motion, such as repulsion,
attraction (to neighbors or external targets), and alignment. These
forces can then be combined with various nonlinearities and
weights to capture mechanisms of interaction.

In contrast, the active inference approach forgoes specifying
explicit vectorial forces, and instead starts by modeling all
behavior as the solution to an inference problem, namely the
problem of inferring the latent causes of sensations. Perception
and action strive to improve the agent’s predictions of sensory
inputs, based on its internal model of its world (Fig. 1A).
By equipping this internal model with expectations about the
environment’s underlying tendencies, social forces can emerge
naturally as agents attempt to suppress sensory data that are
mismatched with their expectations. This perspective shift offers
a unifying modeling ontology for describing adaptive behavior,
while also resonating with cybernetic principles like homeostatic

regulation and process theories of neural function like predictive
coding (26–29).

Active inference blends the construct validity of cognitivist
approaches with the first-principles elegance of physics-based ap-
proaches by invoking minimization of a single, all-encompassing
objective function that explains behavior: surprise, or, under
certain assumptions, prediction error. As an example of this
perspective shift, in this work, we investigate a specific class of
generative models that can be used to account for the types of
collective behaviors exhibited by animal groups. In doing so,
we hope to showcase the benefits of the framework, while also
proposing a testable model class for use in studies of biological
collective motion.

Active Inference and Generative Models of
Behavior
A common pipeline in the quantitative study of animal behavior
involves selecting a candidate behavioral algorithm or decision
rule that may explain a given behavior and then fitting the
parameters of the candidate model to experimental or obser-
vational data (16, 30). While these approaches often yield strong
quantitative fits to data, the explanatory power of the models
reduces to the interpretation of hard-coded parameters, which
often have opaque relationships to real biological mechanisms or
constructs (31).

A

B

Fig. 1. (A) Schematic illustrating the Bayesian perspective in the context of our single agents, where the hidden states of the environment are segregated
from a focal agent by means of sensory data yt (Right panel of A). This contrasts with classic SPP models (Left panel of A), where environmental or social
information manifests in terms of social forces on the focal individual, who emits its own actions based on hand-crafted decision-rules (e.g., changes to heading
direction). (B) Schematic illustration of the sector-specific distance tracking. The Left panel shows a Bayesian network representation of a dynamic generative
model (i.e., a time-series model), that represents the time-evolution of a latent variable x1,...,T and simultaneous observations y1,...T . Shown are both a standard
time-series representation (Lower Left) and its equivalent representation as generalized coordinates of motion x̃t = (xt , x′t , x

′′
t , ...) (Right). We show the orders of

differentiation used for our model in practice (3 orders of motion for x̃ and 2 orders of motion for ỹ). The Middle panel of B shows how each component of the
vectorial hidden state x = (xh,1 , ..., xh,L) is computed as the average nearest-neighbor distance for the neighbors within each visual sector. Observations are
generated as noisy, Gaussian samples centered on the sector-wise distance hidden state (Right panel of B). This requires the agent to estimate the true hidden
state xt by performing inference with respect to a generative model of how sensory data are generated p(ỹ, x̃).
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In the active inference framework, we rather ask: What is
the minimal model an organism might have of its environment
that is sufficient to explain its behavior? Behavior is cast as the
process by which the agent minimizes surprise or prediction error,
with respect to this model of the world (22, 32). The principle
of prediction-error minimization enjoys empirical support in
neuroscience (26, 33) and a theoretical basis in the form of
the Free Energy Principle (22, 23, 25), an account of all self-
organizing systems that casts them as implicit models of their
environments, ultimately in the service of minimizing the surprise
(a.k.a., self-information) associated with sensory states (34–36).

What states-of-affairs count as surprising hinges on a gener-
ative model that can assign a likelihood to sensory data? When
it comes to modeling behavior driven by this principle, the
challenge then becomes specifying a generative or world model,
whereby a particular pattern of behavior simply emerges by
minimizing surprise.

According to active inference, agents minimize surprise by
changing their beliefs about the world (changing which obser-
vations are considered surprising) or by acting on the world to
avoid surprising sensory data. The former strategy is thought to
correspond to passive processes such as perception and learning,
whereas the latter corresponds to processes like active sensing and
movement. Action is thus motivated by the desire to generate
sensations that are as least surprising as possible.

In this paper, we describe the motion of mobile, mutually
sensing agents as emerging from a process of collective active
inference, whereby agents both estimate the hidden causes of their
sensations, while also actively changing their position in space in
order to minimize prediction error. In contrast to models that use
prespecified behavioral rules for generating behavior, generative
models entail collective behavior by appealing to a probabilistic
representation of how an organism’s sensory inputs are generated.

A Generative Model for a (Social) Particle
We now consider a sufficient generative model for an individual
in a moving group. We equip this individual, hereafter referred
to as the focal agent, with a representation of a simple random
variable: the local distance x between itself and its neighbors.
For generality, we can expand this into a multivariate random
variable to describe a set of distances x = (x1, x2, ..., xL) that track
the distance between the focal agent and its neighbors within L
different sensory sectors (Fig. 1B). We analogize these L sectors
to adjacent visual fields of an agent’s field of view (37, 38).

The focal agent possesses a model of the distance(s) x and
its sensations thereof y. In particular, our focal agent represents
the dynamics of x using a stochastic differential equation (a.k.a.,
a state-space model) defined by a drift f and some stochastic
forcing !—we refer to this component of the generative model
as the dynamics model. The stochastic term ! captures the
agent’s uncertainty about paths of x over time. The agent also
believes it can sense x via observations y, mediated by a sensory
map, which we call the observation model. This is defined by
some (possibly nonlinear) function g with additive noise z. The
agent’s generative model is then fully described by a pair of
equations that detail 1) the time-evolution of the distance and 2)
the simultaneous generation of sensory samples of the distance:

Dx̃ = f̃ + !̃ ỹ = g̃ + z̃. [1]

All random variables are described using generalized coor-
dinates of motion with the convention q̃ = {q, q′, q′′, ...}.
Generalized coordinates allow us to represent the trajectory of a

random variable using a vector of local time derivatives (position,
velocity, acceleration, etc.). The matrix D is a generalized
derivative operator that moves a vector of generalized coordinates
up one order of motion D(x, x′, x′′, ...)> = (x′, x′′, x′′′, ...)>.
The generalized functions f̃ and g̃ therefore operate on vectors
of generalized coordinates (see SI Appendix, section S1 for details
on generalized coordinates and filtering).

Generalized Filtering and Active Inference
An agent equipped with this dynamic generative model then
performs active inference by updating its beliefs (state estimation,
or filtering) and control states (action) to minimize surprise.

Inference entails updating a probabilistic belief over hidden
states x̃ in the face of sensory data ỹ. Our agents solve this filtering
problem using generalized filtering (39, 40), an algorithm for
approximate Bayesian inference and parameter estimation on
dynamic state-space models. This is achieved by minimizing
the variational free energy F , a tractable upper bound on
surprise (i.e., negative log evidence or marginal likelihood).
The agent minimizes the free energy with respect to a belief
distribution q(x̃) with parameters �; this approximates the true
posterior q�(x̃) ≈ p(x̃|ỹ), which is the optimal solution in
the context of Bayesian inference. The true posterior p(x̃|ỹ)
is difficult to compute for many generative models due to the
difficult calculation of the marginal (log) likelihood ln p(ỹ).
Variational methods circumvent this intractable marginalization
problem by replacing it with a tractable optimization problem:
namely, adjusting an approximate posterior to match the true
posterior by minimizing F with respect to its (variational)
parameters �.

We parameterize q(x̃) as a Gaussian with mean-vector �̃,
which is a natural choice for this generative model since the
assumption of normally distributed noises z̃, !̃ imply that
the true posterior will be Gaussian near the posterior mode
arg max p(x̃|ỹ). The implicit Gaussian (i.e., Laplace) assumption
is ubiquitous in the modeling and signal processing literature
(41) and can be regarded as a “minimal” assumption, by appeal
to things like the central limit theorem and related principles (e.g.,
Jaynes’ maximum entropy principle). According to generalized
filtering, �̃ is updated using a sum of prediction errors:

d �̃
dt
∝ −∇�̃F (�̃, ỹ)

∝ "̃z − "̃!,
where "̃z = ỹ − g̃(�̃)

"̃! = D�̃− f̃(�̃). [2]

The ensuing evidence accumulation can be regarded as a
natural generalization of predictive coding (26, 42, 43), where
beliefs about local trajectories �̃ are updated using a running
assimilation of sensory and model prediction errors: "̃z and
"̃!, respectively. For notational clarity, we have omitted terms
that weigh these prediction errors; the so-called generalized
sensory and model precisions Π̃z, Π̃!, which encode the agent’s
assumptions about the magnitude and correlation structure of
noise. The importance of these precisions will become clear later,
when understanding the relationship between precision-weighted
prediction errors and social forces.

While inference entails changing the approximate posterior
means �̃ to best explain sensory data, action entails changing
the data itself to better match the data to one’s current beliefs.

PNAS 2024 Vol. 121 No. 17 e2320239121 https://doi.org/10.1073/pnas.2320239121 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

L
E

E
D

S 
H

E
A

L
T

H
 S

C
IE

N
C

E
 o

n 
A

pr
il 

18
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

81
.7

7.
20

.4
5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2320239121#supplementary-materials


Similar to the update scheme in Eq. 2, actions are also updated
by minimizing free energy:

da
dt

= −∇aF (�̃, ỹ(a))

= −∇ỹF (�̃, ỹ(a))∇aỹ(a)

∝ −"̃>z ∇aỹ(a). [3]

Actions thus are updated using a product of sensory prediction
errors "̃z and a “sensorimotor contingency” ∇aỹ(a) or reflex
arc. This sort of “reflexive action”—where control is simply
targeted at minimizing sensory prediction errors—underlies
active inference accounts of motor control (27, 44), and can
be formally related to proportional-integral-derivative (PID)
control (45). These prediction errors measure how far an agent’s
observations are from its expectations; the agent then acts using
Eq. 3 to minimize this deviation. Active inference agents are thus
driven to act in a way that aligns with their (biased) expectations
about the world (46). In the next section, we will see how building
a particular type of bias into each agent’s generative model leads
to the appearance terms in Eq. 3 that resemble social forces.

Social Forces as a Consequence of Predictive
Control
In particular, we take the agent’s action to be its heading direction
a = v and examine the case where the agent observes the
distance to its neighbors within a single sensory sector, i.e.,
L = 1, x = (x1). We distinguish the agent’s representation
of the distance x from the actual distance using the subscript h.
Therefore, xh = (xh,1, xh,2, ..., xh,L) denotes the average distances
(and corresponding sensory samples yh) calculated using the
actual positions of other agents. For the case of L = 1, and
assuming the agent observes both the distance and its rate of
change y′h,1, this is,

xh,1 =
1
K

∑
j∈Nin

‖rj − r‖ yh,1 = xh,1 + zh,1,

x′h,1 =
dxh,1
dt

y′h,1 = x′h,1 + z′h,1. [4]

Nin is the set of neighbors within the agent’s single sensory
sector, K is the size of this set, r is the focal agent’s position
vector, and rj is the position vectors of neighbor j. The sensory
observation of the generalized distance ỹh = (yh,1, y′h,1) is a
sample of the hidden state, perturbed by some additive noises
z̃ = (zh,1, z′h,1). By expanding the active inference control rule
in Eq. 3, we arrive at the following differential equation for the
heading vector:

dv
dt

= �′zΔr̂,

�′z = �′z,1(y
′

h,1 − �
′

h,1),

Δr̂ =
1
K

∑
j∈Nin

Δrj
‖Δrj‖

,Δrj = rj − r. [5]

The average vector Δr̂ is exactly the (negative) sensorimotor
contingency term ∇aỹ(a) from Eq. 3 (see SI Appendix, section
S1 for detailed derivations):

∇v ỹ(v) = ∇ry =
1
K

∑
j∈Nin

r− rj
‖r− rj‖

= −Δr̂. [6]

The simple action update in Eq. 5 means that the focal agent
moves along a vector pointing toward the average position of
its neighbors. Whether this movement is attractive or repulsive
is determined by the sign of the precision-weighted prediction
error �′z = �′z,1(y

′

h,1 − �′h,1), and its magnitude depends on
two factors: 1) the sensory precision or “reliability” �′z,1 that the
agent affords observations of the rate-of-change of yh,1; and 2) the
degree to which these rate-of-change observations deviate from
their predicted value y′h,1 − �

′

h,1.
The presence of both attractive and repulsive forces depends

on the agent’s model of the distance dynamics, captured by the
functional form of f̃ . In particular, consider forms of f̃ that relax
x to some attracting fixed point � > 0. Equipped with such a
stationary model of the local distance, inference dynamics (c.f.,
Eq. 2) will constantly bias its predictions � according to the prior
belief that the distance is pulled to �. Given this biased dynamics
model and the action update in Eq. 3, such an agent will move to
ensure that distance observations ỹh are equal to the fixed point �.

This action update shows immediate resemblance to the
attractive and repulsive vectors common to social force-based
models (4, 5, 7), which often share the following general form:

Fattr ∝
∑
j∈ZA

rij
‖rij‖

,

Frepul ∝ −
1
K

∑
j∈ZR

rij
‖rij‖

, [7]

where ZA, ZR refer to distance-defined zones of attraction
or repulsion, respectively. In the active inference framework,
these social forces emerge as the derivative of the observations
with respect to action ∇a ỹ, where the sign and magnitude of
the precision-weighted sensory prediction error �′z determines
whether the vector is attractive (toward neighbors) or repulsive
(away from neighbors). The transition point between attraction
and repulsion is therefore given by �, the point at which
prediction errors switch sign.

An important consequence of this formulation is that, unlike
the action rule used in social force-based models, the “steady-
state” solution occurs when all social forces disappear (when
prediction errors vanish). In this case, the agent ceases to change
its heading direction and adopts its previous velocity. This occurs
when the agent’s sensations align with its (biased) predictions
yh,1 ≈ �. In classic SPP models, this is equivalent to the different
social force vectors exactly canceling each other.

We can therefore interpret social force-based models as lim-
iting cases of distance-inferring active inference agents, because
one can conceive of social forces as just those forces induced
by free energy gradients; namely, the forces that drive belief-
updating. In the case of our active inference agents, attractive
and repulsive forces emerge naturally when we assume a) agents
model the local distance dynamics as an attractor with some
positive-valued fixed point �; b) agents can act by changing their
heading direction and c) agents observe at least the first time
derivative of their observations (e.g., y′h,1, but see SI Appendix,
section S1 for detailed derivations).

It is worth highlighting the absence of an explicit, vectorial
alignment force in this model, consistent with experimental
findings in two species of fish (12, 17). The heading vectors
of neighbors are nevertheless implicitly incorporated into the
calculation of first-order prediction errors �′z via the first-order
hidden state x′h,1 (c.f., Eq. 4 and SI Appendix, section S1 and
Eq. S40). In particular, the x′h,1 (from which the observations
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y′h,1 are sampled) is equivalent to the “relative velocity” term used
in so-called selective attraction and repulsion models, where the
instantaneous rate at which neighbors approach or move away,
is used to drive movement (47). However, explicit alignment
forces as seen in the Vicsek model (6) and 2- and 3-Zone Couzin
models (7, 48) can also be recovered if we assume agents have
a generative model of the average angle between their heading
vector and those of their neighbors (see SI Appendix, section S2
for derivations of alignment forces).

Multivariate Sensorimotor Control
Having recovered social forces as free energy gradients in the
case of a single sensory sector (L = 1), we now revisit the
general formulation of the generative model’s state-space, where
the hidden variable x is treated as an L-dimensional vector
state: x = (x1, x2, ..., xL), with correspondingly L-dimensional
observations y = (y1, y2, ..., yL).

Specifically, we consider each xl to represent the average
distance-to-neighbors within one of a subset of adjacent sensory
sectors, where each sector is offset from the next by a fixed
intersector angle (see Fig. 1B for a schematic of the multisector
set-up). The rest of the generative model is identical; the agents
estimate these distances (and their temporal derivatives x′l , x

′′

l , ...)
while changing their heading direction to minimize free energy.
Following the same steps as in the case of a single sector, the
resulting update rule for v is a weighted sum of “sector-vectors,”
where generalized observations from each sector-specific modality
ỹl are used to compute the prediction errors that scale the
corresponding sector-vector. This generalizes the scalar-vector
product in Eq. 5 to a matrix-vector product:

dv
dt

= �̃>z ΔR̂,

ΔR̂ = −


∇v ỹ1
∇v ỹ2

...
∇v ỹL

 , [8]

where now the (negative) sensorimotor contingency −∇aỹ =
ΔR̂ is a matrix whose rows contain the partial derivatives ∇v ỹl
(i.e., the sector-vectors). Each sector vector is a vector pointing
toward the average neighbor position within sector l .

Numerical Results
Given a group of active inference agents—equipped with
the generative models described in previous sections—it is
straightforward to generate trajectories of collective motion by
integrating each agent’s heading vector over time: ṙi = vi, i ∈
{1, 2, ..., N } where N is the number of agents. We update all
heading directions {vi}Ni=1 and beliefs {�̃i}Ni=1 in parallel via a
joint gradient descent on their respective free energies:

v̇1 = −∇v1F (�̃1, ỹ1) ˙̃�1 = −∇�̃1F (�̃1, ỹ1)

v̇2 = −∇v2F (�̃2, ỹ2) ˙̃�2 = −∇�̃2F (�̃2, ỹ2)
...

...

v̇N = −∇vN F (�̃N , ỹN ) ˙̃�N = −∇�̃N F (�̃N , ỹN ). [9]

For the simulation results shown here, each agent tracks
the average distance xl within a total of L = 4 sensory

sectors that each subtend 60◦ (starting at −120◦ and ending
at +120◦, relative to the focal agent’s heading direction) and
observe the sector-specific distances calculated using all neighbors
lying within 5.0 units of the focal agent’s position. Each agent
represents the vector of local distances as a generalized state with
3 orders of motion: x̃ = {x, x′, x′′}, �̃ = {�,�′,�′′}. Agents can
observe the first and second orders of the distance ỹ = {y, y′},
i.e., the distance itself and its instantaneous rate-of-change. In the
numerical results to follow, we use active inference to study the
relationship between the properties of individual cognition (e.g.,
the parameters of agent-level generative models) and collective
phenomenology.

Collective Regimes. Simulated groups of these distance-inferring
agents display robust, cohesive collective motion (Fig. 2A and
Movies S1–S5). Fig. 2A displays examples of different types of
group phenomena exhibited in groups of active inference agents,
whose diversity and types resemble those observed in animal
groups (49, 50) and in other collective motion models (6, 7, 51).
These range from directed, coherent movement with strong
interagent velocity correlations (“polarized motion”) to group
rotational patterns, like milling, which features high angular
momentum around the group’s center of mass.

Relating Individual Beliefs to Collective Outcomes. In all but
the most carefully constructed systems (31, 52, 53), the re-
lationship between individual and collective representations is
often opaque. In particular, the relationship between individual-
level uncertainty or “risk” and collective behavior is an open
area of research. For instance, some research has indicated that
increased risk-sensitivity at the level of the individual may lead
to decreased risk-encoding at the collective level (54). Inspired
by these observations, we use active inference to examine the
quantitative relationship between uncertainty at the individual-
level and collective phenomenology. We begin by examining
common metrics of group motion like polarization and angular
momentum (7). In Fig. 2B we explore how polarization and
angular momentum are affected by two components of agent-
level sensory uncertainty (i.e., inverse sensory precision): 1) the
absolute precision that agents associate with sensory noise and 2)
the autocorrelation or “smoothness” associated to that noise.

These components are encoded in each agent’s observation
model, which assumes generalized distance observations ỹ are
normally distributed around the generalized state x̃:

P(ỹ|x̃) = N (ỹ; x̃, Σ̃z), [10]

where we focus on the parameterization of the inverse of the

covariance matrix, a.k.a., the precision matrix Π̃z =
(
Σ̃z
)−1

.
This precision matrix factorizes into two submatrices, one
encoding the amplitude of random fluctuations z and one
encoding their temporal smoothness, i.e., the inverse of the
covariance between different derivatives of random fluctuations
(e.g., between z and z′):

Π̃z = Πz
⊗ Π̃z ,

where Πz =


Γz,1 0 . . . 0

0 Γz,2
...

. . .

0 Γz,L

 , [11]

Π̃z =
[

1 0
0 2�2

z

]
. [12]
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A

B

Fig. 2. (A) Example snapshots of different collective states in schools of N = 50 active inference agents. Each line represents the trajectory of one individual,
and color gradient represents time, from earliest (light blue) to latest (purple). The polarized regime in the Left panel was simulated with the default parameters
listed in SI Appendix, Table S1. The milling regime (Middlepanel) was achieved by increasing the variance of velocity fluctuations (encoded in �2

z′ ,h) from 0.01 to 0.05
(relative to the default configuration) and increasing �z from 1.0 to 1.2. The disordered regime was achieved by increasing the sensory smoothness parameter
to 2.0 and decreasing � from 1.0 to 0.5 and � from 0.5 to 0.1 (relative to the default configuration). (B) Average polarization (Left) and milling probability (Right)
shown as a function of the two factorized components of the sensory precision, Γz (log-transformed) and �z . For each combination of precision parameters, we
ran 500 independent trials of “free schooling,” and then averaged the quantities of interest across trials. Each free schooling trial lasted 15 s (1,500 time steps
with dt = 0.01s); the time-averaged metrics (polarization and milling probability, respectively, were computed from the last 10 s of the trial.

Intuitively, Γz encodes the variance or amplitude that the
agent associates with the noise in each of its L sensory sectors
zl , and �z encodes how “smooth” the agent believes the noise
is (40, 55). A higher value of �z implies that the agent believes
sensory noise is more serially correlated (e.g., random fluctuations
in optical signals caused by smooth variations in refraction due
to turbulence in water). SI Appendix, section S3 shows how the
smoothness parameter�z can be derived from a noise process with
a Gaussian autocorrelation function. The consequences of this
parameterization can be mapped back to the first-order prediction
errors �′z that drive action in Eqs. 5 and 8:

�′z =


2Γz,1�2

z (y
′

h,1 − �
′

h,1)
2Γz,2�2

z (y
′

h,2 − �
′

h,2)
...

2Γz,L�2
z (y
′

h,L − �
′

h,L)

 . [13]

Here, we have simply written the precision assigned to noise
zh,l in a particular sensory sector as a product of the amplitude
and smoothness parameters: �′z,l = 2Γz,l�2

z .
Fig. 2B shows how the different components (amplitude and

smoothness) of the agent’s beliefs about uncertainty determine

group behavior, as quantified by average polarization and milling
probability. Average polarization is defined here as the time
average of the polarization of the group, where the polarization
at a given time p(t) measures the alignment of velocities of agents
comprising the group (7, 56):

p̂ =
1

T − t0

T∑
t=t0

p(t) p(t) =
1
N
‖

N∑
i=1

vi(t)‖. [14]

Note that the time average is calculated once steady state has
been reached, where the beginning of this state is indicated by t0
(for the heatmaps shown in Fig. 2B, we calculate these average
metrics with t0 = 5 s). High average polarization indicates
directed, coherent group movement. The Left panel of Fig. 2B
shows how Γz and �z contribute to the average polarization of
the group. An increase in either parameter causes polarization
to decrease and angular momentum to increase, reflecting the
transition from directed motion to a milling regime, where
the group rotates around its center of mass. We calculate
the milling probability (c.f. Right panel of Fig. 2B) as the
proportion of trials where the time-averaged angular momentum
surpassed 0.5. The average angular momentum can be used to
quantify the degree of rotational motion, and is calculated as the
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time- and group-average of the individual angular momenta
around the groups’ center of mass c:

m̂ =
1

T − t0

T∑
t=t0

m(t) m(t) =
1
N
‖

N∑
i=1

ric(t)× vi(t)‖,

[15]

where ric is a relative position vector for agent i, defined as the
vector pointing from the group center c to agent i’s position:
ri − c. We observed a large range of Γz and �z for which the
milling regime (high average angular momentum) was stable
(Fig. 2 B, Right). This stands in contrast to earlier self-propelled
particular models like the original 3-zone Couzin model, where
milling was only stable under a relatively limited range of
parameters (7).

These collective changes can be understood by recalling how
first-order prediction errors �′z (and thus the velocity update)
depend on Γz and �z :

�′z ∝ 2Γz�2
z . [16]

In practice, this means that as the group believes in more
predictable (less rough) first-order sensory information y′z , the
group as a whole is more likely to enter rotational, milling-
like regimes. However, the enhancing effect of these first-
order prediction errors �′z on rotational motion is bounded; if
prediction errors are overweighted (e.g., high Γz and/or �z),
the group becomes more polarized again and likely to fragment
(SI Appendix, Fig. S1). This fragmentation probability occurs at
both low and high levels of Γz and �z , implying that there is an
optimal range of individual-level sensory precision where cohesive
group behavior (whether polarized or milling) is stable. Thus, our
model predicts that assuming one’s sensory information is highly
precise is neither required, or in fact even desirable, for animals
in order to facilitate collective motion.

We have seen how one can use active inference to relate features
of individual-level beliefs (in this case, beliefs about sensory
precision) to collective patterns, focusing in the present case on
common metrics for studying collective motion like polarization
and the tendency to mill.

In the following sections, we move from looking at group-
level patterns that occur during free movement, to studying
the consequences of individual-level uncertainty for collective
information-processing. We begin by investigating how collective
information transfer depends on individual-level beliefs about
the relative precisions associated with different types of sensory
information.

Collective Information Transfer. In this section, we take inspira-
tion from the collective leadership and decision-making literature
to investigate how individuals in animal groups can collectively
navigate to a distant target (48, 57–59). This phenomenon is
an example of effective leadership through collective information
transfer and is remarkable for a number of reasons; one that
speaks to its emergent nature, is the fact that these collective
decisions are possible despite—and indeed even because of—the
presence of uninformed individuals in the group (57). Fig. 3A
shows that active inference agents engaged in this task reproduce
a result from earlier work (48) on the relationship between the
proportion of uninformed individuals and collective accuracy.
Namely, as the proportion of informed individuals increases, so
does the accuracy of reaching the majority-preferred target. In the
same vein as earlier sections, we also investigated the dependence
of this effect, as well as the average target-reaching accuracy, on
individual-level beliefs.

We operationalize the notion of an agent being “informed”
(about an external target) by introducing a new latent variable to
its generative model; this variable xtarget represents the distance
between the informed agent’s position r and a point-mass-like
target with position vector T = [T1, T2]. We thus define this
hidden state and observation as follows: xtarget = ‖T − r‖,
ytarget = xtarget+ztarget. Just like the “social” distance observations
yh, this target distance observation ytarget represents a (potentially
noisy) observation of the true distance xtarget. As before, the agent
represents both the target distance xtarget and its observations
ytarget using generalized coordinates of motion. Each informed
agent has a dynamics model of x̃target, whereby they assume the
target distance is driven by some drift function ftarget(xtarget) =
−�txtarget which relaxes to 0. As with the social distances, we
truncate the agent’s generalized coordinates embedding of the

A B

Fig. 3. (A) Collective accuracy as a function of proportion informed or pinf for differing values of the sensory precision assigned to social observations Γz−Social.
Average accuracy for each condition (combination of pinf ,Γz−Social ,Γz−Target) was computed as the proportion of successful hits across 500 trials. Here, the
average accuracy is further averaged across all the values of the Γz−Target parameter, meaning each accuracy here is computed as the average of 15,000 total
trials (500 trials per condition× 30 different values of Γz−Target). (B) Collective accuracy as a function of both the social and target precisions (Γz−Social ,Γz−Target ,
shown in log-scale) averaged across values of pinf ranging from pinf = 0.15 to pinf = 0.40. Each condition’s accuracy was computed as the proportion of
accurate decisions from 500 trials.
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target distance to three orders of motion and the generalized
observations to two orders of motion.

Each informed agent maintains a full posterior belief �̃ =
(�̃1, �̃2, ..., �̃L, �̃target) about the local distances x̃1, x̃2, ..., x̃L as
well as the target distance x̃target.

Using identical reasoning to arrive at the action updates in Eqs.
5 and 8, one can augment the matrix-vector product in Eq. 8
with an extra sensorimotor contingency and prediction error that
represents target-relevant information:

dv
dt

= �̃>z
[
ΔR̂
ΔT

]
ΔT = −∇v ỹtarget =

T− r
‖T− r‖

. [17]

This matrix-vector product can then be seen as a weighted
combination of social and target vectors, with the weights
afforded to each equal to their respective precision-weighted
prediction errors:

dv
dt

= �socialΔR̂︸ ︷︷ ︸
Social vector

+ �targetΔT︸ ︷︷ ︸
Target vector

. [18]

This expression is analogous to the velocity update in equation
3 of ref. 48, where a “preferred direction” vector is integrated
into the agent’s action update with some predetermined weight.
This weight is described as controlling the relative strengths of
nonsocial vs. social information. For active inference agents, the
weighting of target-relevant information emerges naturally as a
precision-weighted prediction error (here represented as �target),
and the target vector itself is equivalent to a sensorimotor reflex
arc, that represents the agent’s assumptions about how the local
flow of the target distance y′target changes as a function of the
agent’s heading direction v. An important consequence of this
construction, is that, unlike in previous models where this weight
is “baked-in” as a fixed parameter, the weight assigned to the
target vector is dynamic, and fluctuates according to how much
the agent’s expectations about the target distance �̃target predict
the sensed target distance ytarget.

Using this construction, we can simulate a group of active
inference agents, in which some proportion pinf of agents
represent this extra set of target-related variables as described
above. To generate ỹtarget observations for these informed
individuals, we placed a spatial target at a fixed distance away
from the group’s center-of-mass and then allowed the informed
individuals to observe the generalized target distance ỹtarget =
(ytarget, y′target). We then integrated the collective dynamics over
time and measured the accuracy with which the group was able
to navigate to the target (see Materials and Methods for details).
By performing hundreds of these trials for different values of
pinf , we reproduced the results of ref. 48 in Fig. 3. We see
that as the number of informed individuals increases, collective
accuracy increases. However, this performance gain depends
on the agents’ beliefs about sensory precision, which we now
dissociate into two components: Γz-Social ( the precision assigned
to the social distance observations) and Γz-Target (the precision
assigned to target distance observations). By varying these two
precisions independently, which respectively scale �social and
�target in Eq. 18, we can investigate the dependence of collective
accuracy on the beliefs of individual agents about the uncertainty
attributed to different sources of information.

Fig. 3A shows the average collective accuracy as a function
of pinf , for different levels of the social distance precision
ΓzSocial. The pattern that emerges is that the social precision,
that optimizes collective decision-making, sits within a bounded
range. The general effect of social precision is to essentially
balance the amplification of target-relevant information through-
out the school, with the need for the group to maintain
cohesion. When social precision is too high, agents overattend
to social information and are not sensitive to the information
provided by informed individuals; when it is too low, the
group is likely to fragment and will not accurately share target-
relevant information; meaning only the informed individuals
will successfully reach the target. Fig. 3B shows that a similar
optimal precision-balance exists for ΓzTarget. Here, we show
average collective accuracy (averaged across values of pinf as a
function of social- and target-precision. Maximizing collective
accuracy appears to rely on agents balancing the sensory precision
they assign to different sources of information; under the active
inference model proposed here, this balancing act can be exactly
formulated in terms of the variances (inverse precisions) afforded
to different types of sensory cues.

Online Plasticity through Parameter Learning. The ability of
groups to tune their response to changing environmental con-
texts, such as rapid perturbations or informational changes, is a
key feature of natural collective behavior (15, 54). However,
many SPP models lack a generic way to incorporate this
behavioral sensitivity (48) and exhibit damped, “averaging”-like
responses to external inputs (60). This results from classical
models usually equipping individuals with fixed interaction
rules and constant weights for integrating different information
sources. While online weight-updating rules and evolutionary
algorithms have been used to adaptively tune single-agent
parameters in some cases (48, 59, 61), these approaches are often
not theoretically principled and driven by specific use-cases [with
notable exceptions (62–64)].

Active inference offers an account of tunable sensitivity, using
the same principle used to derive action and belief-updating in
previous sections: minimizing surprise. In practice, this sensitivity
emerges when we allow agents to update their generative models
per se in real-time. Updating generative model parameters over
time is often referred to as “learning” in the active inference
literature (65), since it invokes the notion of updating beliefs
about parameters rather than states, where parameters and states
distinguish themselves by fast and slow timescales of updating,
respectively. We leverage this idea to allow agents to adapt
their generative models and thus adapt their behavioral rules,
referring to this process as plasticity, in line with the notion of
short-term plasticity in neural circuits (66). To enable agents to
update generative model parameters, we can simply augment the
coupled gradient descent in Eq. 9 with an additional dynamical
equation, this time by minimizing free energy with respect to
model parameters, which we subsume into a set �:

�̇ = −∇�F (�̃, ỹ, �). [19]

The generative model parameters � represent the statistical
contingencies or regularities agents believe govern their sensory
world; this includes the various precisions associated with sensory
and process noises Π̃z , Π̃! and the parameters of the dynamics
and observation models, f̃ , g̃. Since the free energy is a smooth
function of all the generative model parameters, in theory,
learning can be done with respect to any parameter using the
procedure entailed by Eq. 19.
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In practice, combining parameter learning with active infer-
ence usually implies a separation of timescales, whereby learning
or plasticity occurs concurrently to state inference and action
but at a slower update rate. In all the results shown here, agents
update parameters an order of magnitude more slowly than they
update beliefs or actions. To furnish an interpretable example of
plasticity, in the simulations described here, we enabled agents
to update their beliefs about the sensory smoothness parameter
�z . We chose sensory smoothness due to its straightforward
relationship to the magnitude of sensory prediction errors (c.f.
the relation in Eq. 16 and SI Appendix, section S3). As agents
tune �z to minimize free energy, belief updating and action will
at the same time become quadratically more or less responsive to
sensory information.

One example of where behavioral plasticity is crucial for
collective information processing is a group’s ability to rapidly
amplify behaviorally relevant information, e.g., detecting the
presence of a predator (67–69). To study the effect of behavioral
plasticity on collective responsiveness, we perturbed single agents
in groups of active inference agents while enabling or disabling
online plasticity. We perturbed groups by inducing transient
“phantom” prediction errors in random subsets of agents and

measuring the resulting turning response of the group (see
Materials and Methods for details). These prediction errors were
structured (Fig. 4A) to mimic a transient visual stimulus, e.g.,
a loom stimulus or approaching predator (70), which reliably
induces a sustained turning response in the chosen individual
(60). Fig. 4 shows the effect of enabling plasticity on the size
and sensitivity of collective responses to these perturbations.
Not only do plasticity-enabled groups respond more strongly
to perturbations of single-agents, compared to their plasticity-
disabled counterparts (Fig. 4B), but the magnitude of the
collective response is also more sensitive to the size of the
perturbation (Fig. 4C ). As has been measured in biological
collectives (71), the plasticity-enabled groups collectively encode
the size of perturbations with a higher dynamic range than
plasticity-disabled controls.

The active inference framework provides a flexible and
theoretically principled approach to modeling adaptive, collective
behavior with tunable sensitivity, that eschews ad hoc update rules
or expensive evolutionary simulations. The plasticity mechanism
proposed here is not limited to updating beliefs about sensory
smoothness: it can be extended to update beliefs about any
model parameter using the same principle. The ability to adapt

A B

C

Fig. 4. (A) Schematic of the sensory perturbation protocol. The “pseudomotion” stimulus consists of repetitively perturbing the agent’s sensory sectors with a
moving wave of prediction errors in the agent’s velocity-observation modality y′h. The Top panel shows the stimulus pattern as a heatmap over (amplitude over
time) with two repetitions, starting from negative (red, sectors 1 and 2) and transitioning to positive (blue, sectors 3 and 4) prediction errors. The sign-switch in the
stimulus (from negative to positive) mimics a moving object that first moves toward focal individual and then moves away. The temporal order of the stimulus
across the sectors can be used to selectively emulate a right-moving vs. left-moving object, relative to the focal individual’s heading-direction. The Bottom panel
shows how the stimulated agent’s beliefs about the distance hidden state � changes over the course of the motion stimulus, with these beliefs being analogized
to hypothetical neural activity. (B) Response magnitude to a perturbation in the presence or absence of parameter learning. Left panel: example pair of 2-D
trajectories of active inference agents with matched preperturbation histories, in response to an individual perturbation. The ability to perform parameter
learning is left on in one stochastic realization (green) and turned off in the other (blue), following the perturbation. Right panel: initialization-averaged collective
responses (group turning angle) to perturbation of active inference agents when learning is enabled or disabled. The perturbation response of a 2-zone SPP
model (purple line) based on ref. 48 is also shown for reference. (C) Collective response as a function of the number of perturbed individuals, comparing
simulations where parameter learning is enabled to those where it’s disabled. Shown is the mean response with highest density regions (HDRs) of integrated
turning magnitude within 500 to 1,000 ms of the perturbation (Left) and response probability (Right) computed from Ni = 200 independent initializations of
each condition. For each initialization, the average metric is computed across Nr = 50 independent realizations that were run forward from the same point in
time, following a sensory prediction error perturbation (to a randomly chosen set of perturbed agents). Response probability is computed as the proportion of
independent realizations, per initialization, where the group turning rate exceeded � radians within the first 10 s of the perturbation.
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generative model parameters in real-time represents a promising
avenue for future research in active inference and collective
behavior and may lead to more biologically plausible hypotheses
about the mechanisms underlying adaptive responses in the
natural world.

Discussion
We have proposed active inference as a flexible, cognitively
inspired model class that can be used in the theoretical study of
collective motion, as well as in empirical settings as an individual-
level model of behavior. By framing behavior as the consequence
of prediction-error minimization—with respect to an individual’s
world model—we offer examples of how naturalistic collective
motion emerges in, where individual behavior is driven by the
imperative to minimize the surprisal associated with sensory
signals. Under mild distributional assumptions, this surprise
is scored by an interpretable proxy; namely, prediction error.
In the particular case of collective motion, a group of active
inference agents equipped with a simple generative model of local
social information can recover and generalize the social forces
that have been the core mechanism in classical SPP models of
collective motion. The active inference framework also provides
a probabilistic interpretation of ad hoc “weight” parameters that
are often used in these models, in terms of the precisions that
agents associate with different types of sensory information.

We have also shown how the active inference framework can be
used to characterize the relationship between generative model
parameters and emergent information-processing capacities, as
measured by collective information transfer and responsiveness
to external perturbations. Active inference’s generality allows us
to relax the typically static behavioral rules of SPP models, by
enabling agents to flexibly tune their sensitivity to prediction
errors. This is achieved via principled processes like parameter
learning (i.e., “plasticity”), and can be used to model naturalistic
features of collective behavior, such as the tendency to amplify
salient (i.e., precise) information, that have largely evaded
modeling in the SPP paradigm, except in cases where adaptation
rules are explicitly introduced (48, 59). However, when we
simply allow agents to update parameters, in addition to beliefs
and agents, using the principle of surprise-minimization, many
hallmarks of these naturalistic behaviors can be easily obtained.

The surprise minimization approach adopted here is both
theoretically grounded in fundamental physical, cybernetic, and
informational principles (23, 72–74) while also biologically
inspired, due to the scalability of the belief and action update
rules, which are hypothesized to be implementable on neuronal
circuits (43). Our approach thus also harmonizes with modern
“data-driven” approaches in behavioral biology, that aim to quan-
titatively estimate the behavioral algorithms used by different
biological systems directly from experimental data (13–15).

By providing a flexible modeling approach that casts percep-
tion, action, and learning as manifestations of the single drive
to minimize surprise, we have highlighted active inference as
a toolbox for studying collective behavior in natural systems.
Future work in this area could explore how the framework
can be used to investigate other forms of collective behavior
(not just collective motion), like multichoice decision-making,
social foraging, and communication (75, 76). The results shown
in the current work serve primarily as a proof of concept: we
started by writing down a specific, hypothetical active inference
model of agents engaged in group movement, and then generated
naturalistic behaviors by integrating the resulting equations of
motion (i.e., free energy gradients) for this particular model.

Taking inspiration from fields like computational psychiatry
(77, 78), we emphasize the ability to move from simple forward
modeling of behavior to data-driven model inversion, whereby
one hopes to infer the values of parameters that best explain
empirical data (of e.g., behavioral movement data). Instead of
using “force mapping” techniques to estimate social forces from
behavioral measurements (79, 80), our approach would instead
frame the problem as one of computational phenotyping, where
alternative generative models that a particular animal might be
equipped with, could be estimated from behavioral or neural data
acquired from that animal. The resulting social forces or interac-
tion rules would then emerge as those behaviors that minimize
surprise, relative to the generative model that best explains the
animal’s behavior. Both the estimation of model parameters and
alternative model structures can be achieved through Bayesian
model inversion and system identification methods like Bayesian
model selection, averaging, or reduction (81).

Materials and Methods

For all simulations we randomly initialized the positions and (unit-magnitude)
velocities of N particles, and integrated the equations of motion for active
inference and generalized filtering using a forward Euler–Maruyama scheme
with an integration window of Δt = 0.01s (see SI Appendix, section S6
for details). We varied group size N and the length of the simulation T (in
seconds) depending on the experiment. Detailed background on generalized
filtering, active inference, and derivations specific to the generative model
we used for collective motion can be found in SI Appendix, section S1. All
other parameters used for simulations, unless stated otherwise, are listed
in SI Appendix, Table S1. The code (written in JAX and Julia) used to
perform simulations can be found in the following open-source repository:
https://github.com/conorheins/collective_motion_actinf.

Quantifying Fragmented Groups. For all experiments, we excluded trials
where the group failed to maintain cohesion (or fragmented) to a sufficient
degree. We deemed any given trial fragmented, when at least one individual
was further than 2.0 dimensionless units away from all other individuals for at
least 3 of the last 10 s of the trial. For the perturbation experiments, groups
were excluded if this criterion was reached during the last 5 s of the 20 s
postperturbation period.

Collective Information Transfer Experiments. For each trial of collective
target-navigation, we initialized a group of N = 30 agents with random
positions and velocities (centered on the origin) and augmented the generative
models of a fixed proportion pinf of the total number of agents, where pinf
ranged from 0.05 to 1.0, with extra latent and observed variables representing
the distance to the target with position vector T. The distance to the target was
always 10 units from the origin. We measured collective accuracy as follows: we
count a given trial as successful if the group is able to navigate to within 0.25
units of the target without losing cohesion within T = 15 s (the length of each
trial). The accuracy for a given experimental condition was then computed as the
proportion of successes observed in 500 total trials.

Perturbation Experiments. For the perturbation experiments, we simulated
Ni = 200 randomly initialized independent runs of N = 50 agents, which we
term independent initializations. We ran each initialization forward for T = 100
s, a point at which metrics like average polarization, angular momentum, and
median nearest-neighbor distance were highly likely to have stopped changing
and fluctuate around a stationary value. Starting at T = 100 we then split
each initialization into two further sets of Nr = 50 parallel realizations. Each
realization used a different random seed used to a) generate the action- and
observation-noises; and b) select the candidate agent(s) for perturbation. Note
that the splitting of seeds at T = 100 means that each realization has an
identical history up until that point. We enabled parameter learning of �z in
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one set of realizations and we left it disabled in the other. We then perturbed
random subsets of agents in both learning-enabled and -disabled realizations
(2 to 50% of the group, i.e., 1 to 25 agents), by transiently inducing first-order
prediction errors �′z in the perturbed individuals (see SI Appendix, section S5 for
perturbation details). We computed the relative group turning angle after the
perturbation for 20 s to generate the plots in Fig. 4 B and C.

Data, Materials, and Software Availability. Github repository data have
been deposited in https://github.com/conorheins/collective_motion_actinf (82).
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