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Abstract 12 

Thick-section composite parts are difficult to manufacture using thermosetting resins due to 13 

their exothermic curing reaction. If processing is not carefully controlled, the build-up of heat 14 

can lead to warpage or material degradation. This risk can be reduced or removed with the use 15 

of a low-exotherm resin system. Material and process models are presented which describe 16 

vacuum-bag-only processing of thick-section composites using a novel, low-exotherm epoxy 17 

powder. One-dimensional resin flow and heat transfer models are presented which govern the 18 

fabric impregnation and temperature evolution, respectively. A semi-empirical equation is 19 

presented which describes the sintering of the epoxy powder. The models are coupled via 20 

laminate thickness change, which is determined for a simplified ply microstructure. The 21 

resulting system of equations are discretised and solved numerically using a finite difference 22 

code. A case study is performed on a 100-ply laminate, and the advantages and disadvantages 23 

of using epoxy powders are discussed.  24 

Keywords: A. Epoxy powder, C. Process modelling, E. Consolidation, E. Cure 25 

 26 

1. Introduction 27 

The concept of using polymer powders for composite manufacturing has been explored since 28 

the 1970s [1]. In the late 1980s and early 1990s, NASA and supporting academics conducted 29 

several investigations into ‘towpregging’ and tape production using both thermoplastic and 30 

thermosetting powders [2–5]. More recently, significant research has been focused on the use 31 

of epoxy powders for the production of low-cost, vacuum-bag-only (VBO) prepregs, which 32 
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can be used to manufacture wind and tidal turbine blades (e.g. European projects 1 

MARINCOMP and POWDERBLADE). These projects investigated the processing of epoxy 2 

powder composites [6–8] and their mechanical performance [9–11]. The results of the projects 3 

showed that epoxy powder composites were mechanically comparable to conventional epoxy 4 

composites used by the wind energy industry. They also revealed that the epoxy powder has 5 

several processing advantages which make it well suited to the VBO prepreg format. Firstly,  6 

the epoxy powder could maintain a viscosity of 10 – 100 Pa s for up to 3 hr at 120°C, which is 7 

low enough to infuse glass-fibre (GF) and carbon-fibre (CF) fabrics when using a VBO prepreg 8 

format [8]. Secondly, the epoxy powder has excellent storage stability which means that the 9 

epoxy powder doesn’t suffer from ‘out-time’ curing effects to the same extent as conventional 10 

epoxy-based VBO prepregs (i.e. they could be left at ambient conditions for several months 11 

without any significant change in the degree of cure (DoC)). Its chemical stability at 12 

temperatures up to 120°C also provides the potential to infuse composite parts separately (e.g. 13 

wind turbine blade skins, spars, shear webs, etc.), and then co-cure them to form a “one-shot” 14 

structure without the need for adhesive bonding [6]. In terms of its curing behaviour above 15 

120°C, the epoxy powder produces relatively little exothermic heat (< 200 J/g) compared to 16 

conventional epoxies (e.g. 400 – 600 J/g), which is significant for the manufacture of thick-17 

section components due to the risk of “thermal runaway” [8]. 18 

While the aforementioned results showed the potential of the epoxy powder, the material 19 

characterisation experiments focussed on processing small samples using programmed 20 

temperature cycles. In practical terms, however,  manufacturing thick-section composite parts 21 

is significantly more complex. It has been shown that the initial state of the powder-based 22 

composite can affect how the material is processed; Ramasamy et al. [12] noted that braiding 23 

with powder-coated towpregs was challenging due to the increased bulk of the tows and 24 

preform. Moreover, for thick-sections, temperature divergence from the programmed 25 

temperature cycle is unavoidable due to the lag in heat transfer, particularly in the centre of the 26 

laminate [13]. It is impossible to know whether the overall manufacturing process will benefit 27 

from the seemingly advantageous characteristics of the epoxy powder without taking a more 28 

holistic view of the system. This system includes key processes such as resin flow and heat 29 

transfer, which can be modelled mathematically.  30 

The modelling and simulation of flow processes in composite materials has undergone a great 31 

deal of development in the last three decades, owing largely to the advent of liquid composite 32 

moulding (LCM) processes [14]. In most cases, thermoset resin flow through a fibre-bed has 33 
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been modelled using Darcy’s Law as the governing equation [15]. Numerous resin flow models 1 

have been developed to describe manufacturing methods which utilise through-thickness flow 2 

(e.g. Resin Film Infusion (RFI), Compression Resin Transfer Moulding (CRTM), VBO 3 

prepregs, etc.) [16–18]. These models vary in their complexity depending on the processing 4 

phenomena which they describe. For  VBO prepregs (a.k.a. out-of-autoclave (OoA) prepregs), 5 

plies are partially impregnated by resin, which means the resin is only required to flow into the 6 

adjacent plies. This a less complex flow problem than RFI or CRTM where resin must flow 7 

through an entire preform. As such, some resin flow models for VBO prepregs have been 8 

comparatively simple. Centea and Hubert [18] used Darcy’s Law to model the process as one-9 

dimensional (1D) radial resin flow into the fibre tows, using an equivalent hydraulic radius 𝑅  10 

for the elliptical geometry of the tows. Alternatively, the resin flow in VBO prepregs can be 11 

considered dual-scale in nature [19]; macroscopic flow around the fibre tows (inter-tow flow), 12 

and microscopic flow within the fibre tows (intra-tow flow), with up to four orders of 13 

magnitude difference between the permeabilities of these regimes [20,21]. Cender et al. [19] 14 

modelled the dual-scale flow phenomena as 1D resin flow through two porous media in series; 15 

assuming that the resin would fill the inter-tow region entirely before beginning to impregnate 16 

the intra-tow region due to the difference in permeabilities.  17 

It should be noted that these VBO prepreg resin flow models were used to simulate the 18 

processing of thin laminates only (< 4 mm thick), with simplified assumptions made for the 19 

temperature conditions. For example, Cender et al. [19] assumed isothermal conditions for their 20 

experiments and were able to solve the resin flow problem analytically, while Centea and 21 

Hubert [18] input the time-temperature data directly into the model and assumed uniform 22 

temperature throughout the laminate. For thick-section composites, a uniform temperature 23 

distribution cannot be assumed because large temperature gradients are known to develop 24 

within the laminates due to the inherent insulating properties of the fibres and polymer matrix. 25 

This is compounded by using exothermic thermosetting resin systems which can cause 26 

“thermal runaway” of the composite part during manufacture, as previously mentioned. As a 27 

result, a considerable amount of research has been carried out on heat transfer modelling of 28 

thick-section composite parts manufactured using thermosetting prepregs. Several heat transfer 29 

models for thick-section composites were developed in the 1980s and early 1990s [13,22–25]. 30 

For these models, heat transfer within the laminate was described using the well-known heat 31 

equation with an additional term for heat generation from the exothermic curing reaction.  32 
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In general, the aforementioned publications vary in terms of whether or not they account for 1 

consolidation of the thick-section laminate. Bogetti and Gillespie [13] opted not to model 2 

consolidation, due to the added complexity of modelling in 2D, however, they acknowledged 3 

that thickness effects would strongly influence the processing of thick sections. With 4 

simulations, they demonstrated that increasing laminate thickness created a thermal lag 5 

between the prescribed temperature cycle and the centre of the laminate. Building on this, 6 

Twardowski et al. [25] implemented approximations for consolidation (based on either uniform 7 

linear or exponential change in FVF over a set period of time) and found that it had a significant 8 

effect on heat transfer in the laminate during processing. This trend was corroborated by Shi 9 

[26] via analytical models, numerical simulations, and experiments. Oh and Lee  [27] modelled 10 

both heat transfer and consolidation, however, the simulations were performed separately so 11 

that the models were not fully coupled i.e. data from the heat transfer model was input into the 12 

consolidation model, but not vice versa. Shin and Hahn [28], on the other hand, developed a 13 

finite difference code which fully coupled resin flow and heat transfer of a thick prepreg 14 

laminate processed in a heated press.  15 

Initial work on the process modelling of thick-section epoxy powder-based composites began 16 

with a focus using on coupling resin flow to heat transfer via cure kinetics and chemorheology, 17 

and coupling heat transfer to resin flow via thickness change [29,30], however, these models 18 

did not account for the thickness change due to powder sintering. The bulk volume of epoxy 19 

powder is up to twice the volume of fully sintered powder depending on the packing of 20 

particles. Greco and Maffezzoli [31] presented models to describe the melting and sintering of 21 

polymer powder. While polymer melting and sintering are linked, densification of the powder 22 

due to sintering does not occur instantaneously upon the polymer reaching its melting point. 23 

Instead, it is dependent on the viscosity and surface energy of the polymer [32]. Kandis and 24 

Bergman  [33] developed an Arrhenius-type semi-empirical relation to describe the kinetics of 25 

the sintering process. Greco and Maffezzoli [31] fit this sintering model to thickness 26 

measurements from thermal mechanical analysis (TMA) and showed that it better described 27 

the densification of the powder than their original melting model.  28 

Part I of this study focuses on the development of numerical models for simulating the 29 

manufacture of thick-section structures using epoxy powder technology. Process models are 30 

presented for coupled resin flow and heat transfer, and a semi-empirical model is introduced 31 

which describes the sintering of the powder. These models are combined with existing material 32 

models for the epoxy powder [8] to describe how temperature, viscosity, DoC, degree of 33 
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impregnation (DoI), and laminate thickness evolve during the manufacturing process. 1 

Experimental validation of the model and additional simulations are the subject of Part II of 2 

this study [34]. 3 

 4 

2. Methodology 5 

2.1 Semi-empirical sintering model for epoxy powder 6 

An epoxy powder system (GRN 918), supplied by ÉireComposites Teo., is considered in this 7 

study [35]. This system was previously characterised using thermogravimetric analysis (TGA), 8 

differential scanning calorimetry (DSC) and parallel-plate rheometry (PPR), and semi-9 

empirical models were developed to describe its cure kinetics and chemorheological behaviour 10 

with respect to temperature [8]. 11 

For this study, a HAAKE MARS II rheometer (Thermo Scientific) was used to perform an 12 

additional set of PPR tests which measured the compaction of the powder due to sintering. 13 

Khoun et al. [36,37] showed that it was possible to measure the thickness change of an epoxy 14 

sample by monitoring the gap height between the parallel plates for a given normal force. For 15 

the MARS II rheometer, a Peltier module was used to heat the lower plate, and a PEEK sample 16 

hood was used for insulation. For all tests, the top plate was lowered onto the powder sample 17 

until it resisted compaction (the rheometer had a limiting normal force of 50 N). A normal force 18 

of 50 N was approximately equivalent to 52 kPa of pressure for the 35 mm plates that were 19 

used. Isothermal tests at 50°C, 55°C, and 60°C were carried out because these temperatures 20 

were near the glass transition temperature (𝑇 ) of the epoxy powder; the temperature at which 21 

the powder would begin to sinter. The rheometer began recording the sample thickness as soon 22 

as the test temperature was reached. No resin squeeze-out was observed during testing due to 23 

the resin’s high viscosity at the test temperatures (> 20,000 Pa s [8]) 24 

The results of the tests were fitted to a semi-empirical model developed specifically for GRN 25 

918. Kandis and Bergman [33] previously modelled the polymer powder sintering process 26 

using an Arrhenius-type expression due to the exponential temperature dependence of the 27 

polymer viscosity [32]  (i.e. as the viscosity reduces, the powder collapses due to surface energy 28 

or some external driving force). From chemorheological modelling of GRN 918, it was known 29 

that its viscosity reduction was best modelled using the Williams-Landel-Ferry (WLF) 30 
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equation [8]. As such, the results of the PPR testing were fitted to the following WLF-type 1 

model, 2 

 
𝑑𝜒𝑑𝑡 = −𝜒 exp 𝐶 [𝑇 − 𝑇 ]𝐶 + 𝑇 − 𝑇 (𝜒 − 𝜒 )  (1) 

Where 𝜒  is a pre-exponential rate constant, 𝜒  is the powder void fraction at 𝑡 = ∞, 𝑇 is 3 

temperature [K] at time 𝑡 [s], and 𝑇  is the onset temperature for melting [K]. 𝐶 , 𝐶  [K], 4 

and 𝐵 are fitting constants. The powder void fraction 𝜒 at time 𝑡 is described by, 5 

 𝜒 = 1 − 𝜌𝜌  (2) 

Where 𝜌  is the bulk density of the polymer, and the density 𝜌  is determined using, 6 

 𝜌 = 𝜌 𝐿𝐿  (3) 

Where 𝜌  is the initial density of the powder, 𝐿  is the initial thickness of the powder samples, 7 

and 𝐿 is the thickness at time 𝑡, which was measured using PPR.  8 

The sintering model parameters for GRN 918 are given in Table 1. From the PPR tests, the 9 

initial powder void fraction was estimated as being approximately 0.503. This was confirmed 10 

by manually compacting the powder in a 5 ml graduated cylinder and weighing it on a 11 

microbalance.  12 

 13 

Table 1. Parameters for the sintering model. 14 

Parameter [units] Value 𝜒  3 × 10-5 

𝐶   11.5 𝐶  [K] 24.5 𝑇  [K] 313.48 𝜒  0.0 𝐵 0.5 𝑑𝜒𝑑𝑡 = −𝜒 exp 𝐶 [𝑇 − 𝑇 ]𝐶 + 𝑇 − 𝑇 (𝜒 − 𝜒 )  
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2.2 Resin flow 1 

Vacuum-bag-only (VBO) prepregs are plies of fabric reinforcement partially impregnated with 2 

resin on one or both sides. When manufacturing thick laminates, a prescribed number of plies 3 

are stacked on top of each other, as shown in Figure 1. At the beginning of the manufacturing 4 

process, the lay-up of plies is effectively a system of alternating resin and fabric layers. As heat 5 

and pressure are applied, the resin viscosity drops, and the resin is forced to flow into the fabric 6 

layer, leading to a change in laminate thickness.  7 

Figure 2 illustrates the resin flow pattern which is expected for an epoxy powder based VBO 8 

prepreg, i.e. resin flow around the fibre tows (inter-tow flow), followed by resin flow into the 9 

fibre tows (intra-tow flow). Note that, while Figure 2 serves to illustrate the dual-scale flow 10 

phenomena in VBO prepregs, VBO prepregs are usually partially impregnated with resin; 11 

meaning some of the inter-tow and intra-tow regions may already be filled. While the model 12 

developed by Centea and Hubert [18] is perhaps more accurate in modelling the porous media 13 

as an ellipse, it assumes that the initial degree of impregnation (DoI) has been advanced to the 14 

point that the inter-tow region is completely filled. This is not always the case as a lower DoI 15 

can increase the air permeability of the VBO prepreg [38], leading to improved gas evacuation 16 

and low porosity [39]. For epoxy powder VBO prepregs, the powder is dispersed on only one 17 

side of the VBO prepreg, meaning that the “dry side” of the VBO prepreg is not completely 18 

filled with powder, hence there is inter-tow space which the epoxy must fill. Given the high 19 

initial viscosity of the epoxy powder (measured as approx. 20,000 Pa s at 70°C [8]), relatively 20 

slow viscous resin flow can be expected in the inter-tow region when processing thick-section 21 

structures, despite the its high permeability (circa 10-9 m2). Moreover, ÉireComposites Teo.’s 22 

recommended drying temperature for the epoxy powder ranges from 40°C to 55°C; at 40°C, 23 

the epoxy is solid with a viscosity approaching infinity, while, at 55°C, the powder sinters and 24 

has a viscosity of 5×106 Pa s (predicted using the chemorheological model from [8] – see 25 

Equation A.1). As such, both inter-tow and intra-tow resin flow are considered herein. 26 

 27 
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 1 

Figure 1. (Top) A thick laminate lay-up of glass-fibre/epoxy-powder VBO prepreg plies (60 plies). 2 
(Middle) Schematic representation of the VBO prepreg with alternating layers of resin and fabric. 3 

(Bottom) Zoomed-in images of the VBO prepreg arrangement. As heat and pressure are applied, the 4 
resin flows into the fabric layers.  5 

For the model development, the following assumptions are made: 6 

- Compaction due to gas evacuation is instantaneous 7 

- The resulting fibre-bed is incompressible 8 

- Nesting of fibre tows is negligible 9 

- Resin flows through-thickness only (i.e. no in-plane flow) 10 

- Resin flows into the adjacent fabric layers only (i.e. no global resin flow through 11 

multiple layers) 12 

These assumptions simplify the governing equations for resin flow in VBO prepregs [18] 13 

compared to process models which consider the fibre bed compaction of VBO prepregs [40–14 

42] or process models which consider resin flow through multiple layers of fabric [16,17]. 15 



9 
 

Under these assumed conditions, there is a fixed volume of inter-tow space and intra-tow space 1 

that the resin could flow into and fill. The dual scale resin flow models developed by Cender 2 

et al. [19] are chosen as a suitable basis for modelling the epoxy powder VBO prepreg system. 3 

Some modifications are required, however, to adapt the equations for the highly transient 4 

temperature conditions of thick-section composite processing.  5 

 6 

 7 

Figure 2. Schematic of the dual-scale flow pattern in VBO prepregs. (Left) If the DoI is zero, as shown no 8 
resin has flowed into the fabric layer (which is bounded by the red dashed line). (Middle) Resin flows first 9 
into the inter-tow space due to its higher permeability. (Right) Resin then flows into the low permeability 10 

tow.  11 

To solve for transient temperature conditions (i.e. accounting for viscosity change due to 12 

temperature and DoC), Darcy’s Law is written as, 13 

 
𝑑𝑙𝑑𝑡 = − 𝐾𝜑𝜂 ∙ 𝑑𝑃𝑑𝑥 (4) 

Where 𝑙 is the flow front position [m] at time 𝑡 [s], 𝐾 is the permeability [m2], 𝜑 is the porosity, 14 𝜂 is the resin viscosity [Pa s], which is temperature and cure dependent, and 𝑃 is pressure [Pa].  15 

Equation 4 is integrated over the pressure boundary conditions for inter-tow flow, 𝑃| =16 𝑃  and 𝑃| = 0, 17 

 
𝑑𝑙𝑑𝑡 𝑑𝑥 = − 𝐾𝜑𝜂 ∙ 𝑑𝑃𝑑𝑥 𝑑𝑥    ,     𝑙 < 𝐿  (5) 

 
𝑑𝑙𝑑𝑡 = 𝐾𝜑 𝜂 𝑃𝑙    ,     𝑙 < 𝐿  (6) 

Where 𝐿  is the characteristic length of the inter-tow region [m], 𝐾  is the inter-tow 18 

permeability [m2], 𝜑  is the inter-tow porosity, and 𝑃  is the pressure applied by the vacuum 19 

bag [Pa]. The viscosity along with the cure-dependent glass transition temperature (𝑇 ) and the 20 
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DoC (𝛼) are described using Equations A.1, A.2, and A.3, respectively, in Appendix A. 1 

Supplementary material.  2 

For intra-tow flow, Equation 4 is integrated over pressure boundary conditions of 𝑃| = 𝑃  3 

and 𝑃| = 0,  4 

 
𝑑𝑙𝑑𝑡 = 𝐾𝜑 𝜂 ∙ 𝐾 𝑃𝐾 𝐿 + 𝐾 (𝑙 − 𝐿 )      ,     𝑙 ≥ 𝐿  (7) 

Where the pressure at the boundary of the intra-tow region is, 5 

 𝑃 = 𝐾 𝑃 (𝑙 − 𝐿 )𝐾 𝐿 + 𝐾 (𝑙 − 𝐿 ) (8) 

Where 𝐾  is the intra-tow permeability [m2] and 𝜑  is the intra-tow porosity. The derivation of 6 

Equation 8 is given in Appendix A. Supplementary material. 7 

 8 

 9 

Figure 3. Physical representation of the 1D resin flow model at nodal position j and time step i. Resin 10 
flows into the fabric layer from above and below; in this case, the resin flow front position is defined as 11 

the distance from the inlet (dashed red line i.e. 𝒙 = 𝟎) to the flow front. The fabric layer is separated into 12 
inter-tow and intra-tow regions which are in series. The layer thicknesses are summed to calculate the 13 

total laminate thickness change.  14 

Cender et al. [19] showed that the fill time is proportional to the square of the flow distance i.e. 15 

halving the flow distance results in a factor of four reduction in the time taken to fill the fabric. 16 

For this reason, it is important to account for resin flow into the fabric layer from above and 17 
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below, as illustrated in Figure 3. The total impregnation depth for each ply, 𝑙 ( , ) [m] is found 1 

by combining the resin flow front position from the top (𝑙 ( , )) and bottom (𝑙 ( , )), 2 

 𝑙 ( , ) = 𝑙 ( , ) + 𝑙 ( , ) (9) 

 3 

2.3 Thickness change 4 

It is known that resin flow in VBO prepregs corresponds with a reduction in laminate thickness 5 

as the resin flows into the fabric layers [40,43]. For the finite difference code developed herein, 6 

a simplified ply microstructure is defined so that this thickness change can be computed. As 7 

mentioned in the previous section, it is assumed that compaction due to air evacuation has 8 

already occurred, and the fibre-bed is incompressible. The simplified ply microstructure is 9 

segmented into: a resin layer thickness, ℎ  [m]; a fabric layer thickness, ℎ  [m]; and the total 10 

impregnation depth 𝑙  (see Figure 3). By summing these quantities, it is possible to determine 11 

the total laminate thickness, ℎ  [m] for each time step 𝑖, 12 

 ℎ , = 𝑙 ( , ) + (ℎ − 𝑙 ( , )) + ℎ ( , ) (10) 

Where 𝑁  is the number of plies in the laminate.  13 

As impregnation progresses, the thickness of the resin layer diminishes from its initial value 14 ℎ ( , ): 15 

 ℎ ( , ) = ℎ ( , ) − 𝛽 𝜑 ℎ  (11) 

Where 𝜑  is the porosity of the fabric layer, and 𝛽 is the degree of impregnation (DoI), which 16 

can be written as, 17 

 𝛽 =  𝑙𝜑 ℎ      ,     𝑙 < 𝐿  (12) 

 𝛽 =  𝜑 ℎ + (𝑙 − 𝜑 ℎ )𝜑𝜑 ℎ       ,     𝑙 ≥ 𝐿  (13) 

The characteristic length, 𝐿  is assumed to be equivalent to the inter-tow thickness i.e. 𝜑 ℎ .  18 

Assuming that there are no significant gaps between tows in the same fabric layer (i.e. the 19 

vertices of each tow touch the vertices of the adjacent tows), the inter-tow porosity, 𝜑  is 20 
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constant for an elliptical tow geometry, bound at its vertices and co-vertices by a rectangular 1 

cross-section (red dashed line in Figure 2),  2 

 𝜑 = 𝐴 − 𝐴𝐴 = constant ≅ 0.2146 (14) 

Where 𝐴  is the total area of the rectangular cross-section [m2] outlined in Figure 2, and 𝐴  3 

is the area of the elliptical tow [m2]. 4 

For a known intra-tow porosity, 𝜑 , the porosity of the fabric layer, 𝜑  is determined as 5 

follows [44,45], 6 

 𝜑 = 𝜑 + 𝜑 − 𝜑 𝜑  (15) 

For a fully impregnated ply, 𝑙  is equivalent to ℎ  such that the second term on the righthand 7 

side of Equation 10 cancels. Naturally, the calculation of ply thickness, ℎ  reduces to the sum 8 

of the fabric thickness and any excess resin layer that remains: 9 

 ℎ = ℎ + ℎ  (16) 

The resin volume fraction, 𝜑, determines the quantity of resin in the ply and can be written as, 10 

 𝜑 = 𝜑 ℎ + ℎℎ + ℎ  (17) 

Rearranging, 11 

 ℎ = ℎ 𝜑 − 𝜑1 − 𝜑  (18) 

Note: in the case that 𝜑 is less than 𝜑 , this term becomes negative and the code outputs an 12 

error messages warning that the plies will not achieve full impregnation.  13 

Combining Equations 16 and 18, ℎ  is approximated for a given 𝜑, 14 

 ℎ = ℎ 1 − 𝜑1 − 𝜑  (19) 

As can be seen with the above set of equations, only the cured ply thickness (ℎ ), the resin 15 

volume fraction (𝜑), and the intra-tow porosity (𝜑 ) are required to fully describe the ply 16 

microstructure shown in Figure 3. The cured ply thickness and the resin volume fraction can 17 

be measured experimentally, while values of intra-tow porosity can be found in the literature.  18 
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Another important consideration for modelling the thickness change is the initial form of the 1 

epoxy resin i.e. powdered or solid resin layer. For a powder layer, significant thickness 2 

reduction is expected during the sintering process. As such, the thickness of the resin layer, 3 ℎ ( , ) is recalculated using, 4 

 ℎ ( , ) = ℎ ( , )∗1 − 𝜒( , ) (20) 

Where ℎ ( , )∗  is the thickness of the fully sintered resin layer, and the powder void fraction, 5 𝜒( , ), is modelled using Equation 1.  6 

 7 

2.4 Heat transfer 8 

Transient one-dimensional (1D) heat conduction in a plane wall is used as the basis for the heat 9 

transfer model under the assumption that convective heat transfer due to resin flow is negligible 10 

[46,47]. The heat transfer equation is written using an explicit forward time, centred space 11 

finite difference formulation (illustrated in Figure 4). For the model developed here, ∆𝑧 can 12 

vary as a function of resin flow in each fabric layer (i.e. heat transfer is coupled to the resin 13 

flow model via thickness change).  14 

The structure of the heat transfer model is also approximated as individual layers of resin (ℎ ), 15 

fabric (ℎ ), and impregnated fabric (𝑙 ) in series (see Figure 3). Each layer is treated as a 16 

separate material with a unique thermal conductivity, which can be modelled as thermal 17 

resistances in series. These resistances change based on the state of the resin (powder or liquid) 18 

and the progression of resin flow. The contact resistance between these layers is assumed to be 19 

negligible.  20 

As such, the heat equation is approximated as, 21 

 
𝑇 − 𝑇∆𝑡 = 1∆𝑧𝜌𝑐 , 𝑇 − 𝑇𝑅 , + 𝑇 − 𝑇𝑅 , + 𝑚 𝐻𝑐 𝑑𝛼𝑑𝑡 ,  (21) 

Where subscripts 𝑖 and 𝑗 represent the time step and nodal position, respectively, 𝑇 is 22 

temperature [K], ∆𝑡 is the time step size [s], ∆𝑧 is the element thickness of node 𝑗 [m], 𝜌 is 23 

density [kg/m3], 𝑐  is specific heat capacity [J/kg K], 𝑅 ,  is the thermal resistance of the 24 

material [m2K/W] between nodes 𝑗 and 𝑗 − 1, 𝑚  is the resin mass fraction, and 𝐻  is the total 25 

enthalpy of the curing reaction [J/g], which is 184 J/g [8]. The final term in Equation 21 couples 26 
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heat transfer to the cure kinetics model, which is given by Equation A.3 in Appendix A. 1 

Supplementary material. 2 

 3 

 4 

Figure 4. Illustration of the forward time, centred space scheme used for the heat transfer model. The 5 
temperature for the time step, 𝒊 + 𝟏, is calculated explicitly based on the conditions at time step, 𝒊. The 6 
various layers of resin, dry fabric and impregnated fabric are approximated as thermal resistances in 7 

series.  8 

The element thickness is approximated by,  9 

 ∆𝑧( , ) = ℎ ( , ) + ℎ  (22) 

The density of the material at each node is approximated by, 10 

 𝜌( , ) = 𝜌 ℎℎ + ℎ ( , ) (23) 

Where 𝜌  is the composite density [kg/m3], which is determined via the rule of mixtures. The 11 

specific heat capacity, 𝑐  is also determined via the rule of mixtures method (see Appendix A. 12 

Supplementary material for the corresponding equations; Equations A.7 and A.8, respectively). 13 

The thermal resistances 𝑅( ,( , )) and 𝑅( ,( , )) are written as, 14 

 𝑅( ,( , )) = ℎ ( , )2𝜅 ( , ) + 𝑙 ( , )𝜅 , ( , ) + ℎ − 𝑙 ( , )𝜅 + ℎ ( , )2𝜅 ( , ) (24) 
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 𝑅( ,( , )) = ℎ ( , )2𝜅 ( , ) + 𝑙 ( , )𝜅 , ( , ) + ℎ − 𝑙 ( , )𝜅 + ℎ ( , )2𝜅 ( , ) (25) 

Where 𝜅  is the thermal conductivity of the epoxy [W/m K], 𝜅 ,  is the transverse thermal 1 

conductivity of the impregnated composite [W/m K], and 𝜅  is the thermal conductivity of 2 

the dry fabric [W/m K].  3 

The resin mass fraction, 𝑚  is:  4 

 𝑚 ( , ) = 𝜌 ( , )(1 − 𝑉 )𝜌 𝑉 + 𝜌 ( , )(1 − 𝑉 ) (26) 

Where 𝑉  is the volume fraction. 5 

 6 

2.5 Thermal boundary conditions 7 

Two sets of boundary conditions (BCs) are considered for this work: specified temperature 8 

BCs for heated tooling; and forced convection BCs for oven heating. Heat transfer due to 9 

radiation is not modelled explicitly. 10 

As described by Bogetti and Gillespie [13], the specified temperature BC is implemented by 11 

setting the surface node temperature at time step 𝑖, 𝑇( , ) [K] equal to the programmed 12 

temperature cycle, 𝑇 ( ) [K]: 13 

 𝑇( , ) = 𝑇 ( ) (27) 

For describing heat transfer by forced convection, the following expression from Çengel [48] 14 

is used, 15 

 𝜌𝑐 ∆𝑧2 𝑇( , ) − 𝑇( , )∆𝑡 = ℎ 𝑇 ( ) − 𝑇( , ) + 𝜅 𝑇( , ± ) − 𝑇( , )∆𝑧  (28) 

Where ℎ is the heat transfer coefficient (HTC) [W/m2K], and 𝑇( , ± ) is equal to 𝑇( , ) for the 16 

bottom BC and 𝑇( , ) for the top BC.  17 

For forced convection BCs, Zimmermann and Van Den Broucke [49] recommended that a 18 

convective HTC of 10 – 100 W/m2K be used for gases in an autoclave. Similarly, average 19 

convective HTCs have been experimentally measured in the range of 10 – 40 W/m2K for 20 

autoclaves [50,51]. A convective HTC of 40 W/m2K was chosen for all simulations in this 21 

study. The remaining material parameters in Equation 28 depend on the surface composition. 22 
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For VBO prepreg manufacturing it is expected that the top boundary would consist of bagging 1 

materials, while the bottom boundary would be the B-side of the mould tool. Oh and Lee [27] 2 

assumed negligible thermal contact resistance between the bagging, laminate, and tooling; the 3 

same assumption is made in this work. Conduction through any additional layers (i.e. tooling, 4 

bagging, insulation, etc.) is modelled for all BCs. These additional layers are also modelled as 5 

thermal resistances in series. The corresponding equations are given in Appendix A. 6 

Supplementary material. 7 

 8 

2.6 Material properties 9 

This work focusses on manufacturing simulations for GRN 918 epoxy powder with glass-fibre 10 

fabrics. Some important material characteristics of GRN 918 epoxy powder have already been 11 

discussed, however, additional data for thermal conductivity and specific heat capacity is 12 

required for heat transfer modelling. It is assumed that the specific heat capacity of GRN 918, 13 

as a function of temperature and DoC, follows the empirical relationship given by Shin and 14 

Hahn [28], and that it is valid for epoxy in both its powder and liquid form, as it is a quantity 15 

which is independent of volume. Similarly, it is assumed that the thermal conductivity of the 16 

fully sintered epoxy follows the empirical relationship given by Shin and Hahn [28] to describe 17 

the thermal conductivity as a function of temperature and DoC. 18 

To the author’s knowledge, no data is available for the thermal conductivity of epoxy powders, 19 

however, the thermal conductivity of polyamide powder, 𝜅 ,  was reported to be 0.05 – 20 

0.0913 W/m K [52,53]. Given that the bulk thermal conductivity of polyamide and epoxy is 21 

similar (0.15 – 0.25 W/m K), data for polyamide powder is judged to be a reasonable 22 

approximation. The transition from powder to liquid resin is described for thermal conductivity 23 

using the following expression, 24 

 𝜅 = 𝜅 ,  𝜒𝜒 + 𝜅 , (1 − 𝜒𝜒 ) (29) 

Where 𝜒 is the void fraction of the powder as determined using Equation 1, and 𝜒  is the initial 25 

void fraction of the powder. 26 

An alternative to the above may be to use analytical models to determine the effective thermal 27 

conductivity of the epoxy powder. Several such models have been developed for porous solids 28 

[54]. These models are a function of void fraction and the thermal conductivities of the two 29 
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phases (i.e. epoxy powder and vacuum). These models return a range of thermal conductivities 1 

for epoxy powder from 0.041 W/m K to 0.083 W/m K, which overlaps with the range reported 2 

for polyamide powder. Note, this range was based on a void fraction of 0.503 and Shin and 3 

Hahn’s empirical relationship for the thermal conductivity of epoxy [28] at 55°C.  4 

The thermal properties used for epoxy in this study are summarised in Table A.4 in Appendix 5 

A. Supplementary material. 6 

Characterisation of the fibre-bed was not within the scope of this project. For this reason, most 7 

of the fibre-bed properties have been taken from the literature. Properties for stitched uni-8 

directional (UD) fabrics and stitched triaxial fabrics were used in this study. The triaxial fabrics 9 

are treated as 3 UD plies in series. Assuming that the thermal conductivity of a composite 10 

lamina is transversely isotropic, the model developed by Clayton [55] is used to describe the 11 

through-thickness thermal conductivity, 𝜅 ,  of the UD plies. Some authors have 12 

experimentally measured the through-thickness conductivity of dry fabric under vacuum 13 

[56,57]. For dry GF fabric, they measured through-thickness thermal conductivities of 0.1 – 14 

0.2 W/m K, depending on the fibre architecture (i.e. stitched UD, plain weave, twill weave, 15 

etc.). 16 

Some properties and parameters are required to describe the fibre-bed for the flow models 17 

also. The permeability of a fibre-bed can be modelled or measured experimentally, however, 18 

reported values can vary significantly. The Gebart model for a quadratic packing structure 19 

[58]  is used to calculate the intra-tow permeability for all simulations presented here. 20 

Experimental values from the literature were used for the inter-tow permeabilities of stitched 21 

UD fabrics.  22 

 23 

 24 

 25 

 26 

 27 

 28 

Table A.5 in Appendix A. Supplementary material compiles the fibre-bed properties, 29 

parameters, and models that are used for the process simulations. 30 
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Additional material properties are required for the bagging materials and the mould tooling. 1 

For simplicity, the bagging is treated as one layer and the values reported by Joshi et al. [59] 2 

are used (see Table A.6 in Appendix A. Supplementary material). The bagging layer thickness 3 

is assumed to be 1.5 mm. 4 

 5 

2.7 Initial conditions 6 

Table 2 summarises the initial conditions that are used for the process simulations. A 100-ply 7 

glass-fibre/epoxy-powder laminate is used as a case study for the simulations. The cured ply 8 

thickness (ℎ ) of a thin laminate was measured experimentally. The initial FVF of the VBO 9 

prepreg is controlled during the prepregging process using automated powder deposition. In-10 

plane resin flow is expected to be negligible during processing, so it is assumed that the final 11 

FVF is approximately the same as the initial FVF i.e. no significant resin bleeding. An initial 12 

DoI of 0.113 is chosen based on experimental fitting detailed in Part II of this study [34]; this 13 

equates to a quarter of the available inter-tow space being filled during the powder deposition 14 

process. It is assumed that the epoxy powder is brought above its 𝑇  during the prepregging 15 

process so that it adheres to the fibre-bed, but still retains its powder form. It is assumed that 16 

this prepregging process has a negligible effect on the DoC and there are negligible out-time 17 

effects between prepregging and laminate processing. For initialising the heat transfer model, 18 

this study assumed a uniform DoC (𝛼) and temperature throughout the thick laminate. Based 19 

on real-world observations of vacuum bagged parts, an applied pressure of 90×103 Pa (90 kPa) 20 

is used for simulating laminate manufacture; it has been shown that deficient pressure 21 

conditions commonly occur and can be an important factor in VBO processing [43].  22 

 23 

Table 2. Initial conditions used for the process simulations. 24 

Parameter [units] Value 

No. of plies, 𝑁  100 

Cured ply thickness, ℎ  [mm] 1.0 

Fibre volume fraction, 𝑉  0.5 

Degree of impregnation, 𝛽 0.113 
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Powder void fraction, 𝜒   0.485 

Degree of cure, 𝛼 0.01 

Applied pressure, 𝑃   [Pa] 90 × 103 

Laminate/bagging/tool temperature [°C] 23 

 1 

2.8 Numerical computation 2 

The finite difference code is run in MATLAB R2015a. To simulate the processing of a thick-3 

section laminate, the laminate is discretized through the thickness, and the process models are 4 

numerically solved at the nodes. Many explicit and implicit finite difference methods exist for 5 

solving the heat equation, however, as previously indicated, an explicit forward time, central 6 

space scheme is used in this work. This is a first-order scheme, so it has limited accuracy (due 7 

to a large temporal truncation error), however, it is very simple to implement and is stable if 8 

the following criterion is met [48,60], 9 

 𝛾 ∆𝑡∆𝑧 < 12 (30) 

Where 𝛾 is the thermal diffusivity [m2/s], 10 

 𝛾 = 𝜅𝜌𝑐  (31) 

Similarly, the Euler method is implemented for solving any ordinary differential equations 11 

(ODEs) in the simulation (e.g. cure kinetics, resin flow, etc.). Again, this is an explicit first 12 

order method which is simple to implement but has limited accuracy.  13 

The number of nodes, 𝑁  is based on the number of plies i.e, 14 

 𝑁 = 𝑁 + 1 (32) 

The thermal diffusivity of the laminate, as well as that of the bagging and tooling, must be 15 

considered when choosing the maximum allowable time step size for a simulation. In cases 16 

where aluminium or steel tooling is used, the thermal diffusivity of the tooling is much higher 17 

than the composite material itself and limits the time step size. The maximum allowable time 18 

step size for a 1 mm thick ply of GF/Epoxy-powder is approximately 2.80 s (see Figure A.1 in 19 

Appendix A. Supplementary material), while it is 0.57 s for a 10 mm aluminium tool, and 3.55 20 

s for a 10 mm steel tool. For a small enough time step, first order methods provide sufficient 21 
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accuracy due to the low rates of change associated with manufacturing thick-section 1 

composites i.e. slow ramp rates are used. As such, a time step of 0.5 s is chosen for all 2 

simulations using an aluminium tool, while a time step of 2.5 s is chosen for all simulations 3 

using a steel tool. Simulations show that there is no loss of accuracy when increasing from 0.5 4 

s to 2.5 s increments for a steel tool (see Figure A.2 in Appendix A. Supplementary material). 5 

 6 

 7 

Figure 5. Comparison of the results from RAVEN and from the finite difference code developed in 8 
MATLAB. The simulations were carried out for a 96-ply GF/Epoxy-powder laminate heated on a 10 mm 9 

steel plate in an oven.  10 

As a final verification of the numerical methods, the solution of the finite difference code is 11 

compared with results from RAVEN, a commercially available software for performing 1D 12 

heat transfer and cure kinetics simulations on composite laminates. Figure 5 shows that there 13 

is little difference between the solutions (< 5°C at any time). The simulations did not include 14 

compaction due to resin flow because it was not a featured capability of RAVEN. Furthermore, 15 

cure kinetics were excluded as it was not possible to implement a user-defined cure kinetics 16 

model in RAVEN which could simulate the cure kinetics of the GRN 918 epoxy powder. 17 

 18 
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3. Results and discussion 1 

3.1 Powder sintering model 2 

Figure 6 shows the results of the powder sintering model compared to the experimental data; 3 

converted from sample thickness to powder void fraction via Equations 2 and 3. As can be 4 

seen, Equation 1 is relatively accurate in describing the sintering behaviour of the GRN 918 5 

powder. The sintering process corresponded to a 50% reduction of the powder sample’s 6 

thickness. This highlighted that using epoxy powder would significantly increase the initial 7 

thickness of a composite preform compared to liquid epoxy. 8 

 9 

 10 

Figure 6. Results of the sintering model and experimental data for GRN 918.  11 

Discrepancies between the data and model could be a result of the experimental set-up, which 12 

relied upon one-sided heating and an insulating sample hood. Use of a full environmental 13 

chamber may have given better temperature control, but it was unavailable at the time of 14 

testing.  Another limitation of the test results was that the applied pressure was 52 kPa rather 15 

than 101.35 kPa (i.e. it was roughly half the pressure that would be expected for VBO 16 

processing). As such, the relationship of applied pressure and rate of sintering is not fully 17 

understood, and an improvement would be to repeat tests under various levels of applied 18 

pressure and determine if there is any significant effect.  19 

 20 
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3.2 Case study – Oven processing of a 100-ply laminate  1 

As a starting point for investigating thick-section processing, the standard manufacturing 2 

process for a 100-ply laminate was considered. A thick-section laminate of GF/Epoxy-powder 3 

may be processed on a heated tool or in an oven using an extended version of the standard 4 

temperature cycle used for thin laminates i.e. with longer isothermal dwells to allow heat to 5 

transfer through all the plies. For this case study, the simulations focussed on a laminate being 6 

processed in an oven, on a steel plate with one layer of vacuum bagging around it. 7 

The following temperature cycle was used: 8 

- Drying stage: Ramp to 55°C and hold for 900 min  9 

- Impregnation stage: Ramp to 120°C at 1.5°C/min and hold for 360 min 10 

- Cure stage: Ramp to 180°C at 1.5°C/min and hold for 200 min 11 

- Cool down 12 

 13 

3.3 Temperature profile 14 

Figure 7 shows how the temperature is predicted to evolve within the laminate with respect to 15 

time. Despite having symmetric thermal BCs, the temperatures at the bottom and top of the 16 

laminate (Ply 1 and Ply 100, respectively) are asymmetric because of the presence of the tool 17 

and bagging. During the drying stage (0 – 15 hr), the temperature at the centre of the laminate 18 

lags behind the outside of the laminate significantly. Heat transfer improves as the epoxy 19 

powder sinters, and the temperature of the laminate is predicted to approach the programmed 20 

temperature due to a small amount of exothermic heat being generated by the curing reaction 21 

(i.e. the DoC increases to approximately 0.2 during the drying stage; see Figure 8). The rate of 22 

heat transfer improves during the impregnation stage (15 – 22 hr), and again during the cure 23 

stage (22 – 26 hr). This is due to the increasing thermal diffusivity of the material as the 24 

laminate compacts and the thermal properties of the resin changes w.r.t. temperature and DoC; 25 

see Figure A.3, Figure A.4, and Figure A.5 in Appendix A. Supplementary material for plots 26 

of specific heat capacity, density and thermal conductivity, respectively. Naturally, the density 27 

of the laminate increases as the powder sinters and the fabric is impregnated. The thermal 28 

conductivity is influenced by these processes also due to the difference in thermal 29 

conductivities for powder vs fully sintered resin (ratio of approximately 1:2) and dry GF fabric 30 

vs fully impregnated GF fabric (ratio of approximately 1:1.3) – note, these ratios are 31 
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representative and assume ambient temperature and no curing. There is no thermal overshoot 1 

predicted for the laminate during the cure stage (i.e. above 120°C) due to GRN 918’s low 2 

enthalpy of reaction. Conversely, the heat that is generated during the curing reaction aids heat 3 

transfer and allows the laminate to approach the programmed temperature, as previously 4 

mentioned for the drying cycle.  5 

 6 

 7 

Figure 7. Plot of simulated ply temperatures within a 100-ply laminate. There is no temperature 8 
overshoot predicted, however, large thermal gradients are still present.   9 

 10 

3.4 Cure profile 11 

It has been demonstrated previously that GRN 918 epoxy powder can maintain a very low rate 12 

of cure up to 120°C due to the use of latent curing agents; allowing sufficient time for fabric 13 

impregnation to occur [8]. Despite this, the drying temperature (55°C) for the standard 14 

processing cycle is higher than the 𝑇  of GRN 918 powder (approximately 40°C), resulting in 15 

increased molecular mobility for the epoxy. As such, Figure 8 shows that the simulations 16 

predict a slow increase in DoC during the drying stage. The rate of curing increases during the 17 

impregnation stage as the temperature increases, however, none of the plies are predicted to 18 

reach the gel point of the epoxy (i.e. DoC = 0.56) prior to the cure stage. Upon heating past 19 

120°C, the DoC increases rapidly as the latent curing agent is activated. The entire laminate is 20 

predicted to reach a DoC > 0.9 within the first 3 hr of the cure stage, which is approximately 21 
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15% of the total processing cycle time (the impregnation stage accounts for approximately 1 

27%, and the drying stage accounts for approximately 58%).  2 

 3 

 4 

Figure 8. Plot of the simulated DoC evolution within the laminate.  5 

 6 

3.5 Powder sintering, resin flow, and thickness change 7 

An additional consequence of drying the powder above its 𝑇  is that the powder is predicted to 8 

melt and sinter as the viscosity of the epoxy resin decreases (see Figure 9). This is beneficial 9 

for heat transfer in the laminate because fully sintered polymers have a higher thermal 10 

conductivity than polymer powders. On the other hand, dynamic vapour sorption (DVS) 11 

analysis has shown that powder sintering negatively affected the desorption properties of the 12 

epoxy [61]. By sintering the powder, moisture can no longer desorb from the surface of the 13 

powder particle and must diffuse through the bulk polymer. Furthermore, the powder acts as 14 

permeable layer through which gases can be evacuated, whereas the sintered epoxy forms a 15 

barrier and the gases must pass through the dry fibre tows; similar to conventional VBO 16 

prepregs [38,62].   17 

 18 
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 1 

Figure 9. Powder sintering during the drying stage. 2 

The sintering process also results in a significant decrease in the laminate thickness; 3 

approximately 26% as shown in Figure 10. Ideally, a shortened drying stage would be carried 4 

out below the 𝑇  of the epoxy powder (due to the advantageous sorption properties of the 5 

powder), and then an additional stage at an intermediate temperature could be introduced to 6 

promote powder sintering and improve heat transfer within the laminate. To optimise the 7 

drying stage in this way, more research is required which is outside the scope of this work.  8 

After the drying stage, the remaining thickness reduction predicted (19%) in Figure 10 is due 9 

to resin flow; in total the laminate thickness decreases by approximately 45%. As shown in 10 

Figure 11, the simulation predicts that the inter-tow region (DoI < 0.45) would fill during the 11 

drying stage when powder has sintered and reaches a sufficiently low viscosity to flow between 12 

the tows. For the outer plies, it is predicted that the inter-tow region would be completely filled 13 

within the first few hours of the temperature cycle, however, the inner plies lag by several hours 14 

due to slow heat transfer. The timescale for this process confirms the need to model inter-tow 15 

flow for the current material system. In contrast, intra-tow filling (DoI > 0.45) is relatively fast 16 

when the resin viscosity is sufficiently low (see Figure 12 for the viscosities). 17 

 18 
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 1 

Figure 10. The thickness change plot of the GF/Epoxy-powder laminate during the temperature cycle. A 2 
large reduction in thickness is predicted during the drying stage due to the sintering of the powder. After 3 

the cessation of sintering, the resin is predicted to slowly flow into and fill the inter-tow region of the 4 
fibre-bed. During the impregnation stage, the viscosity of the resin reduces, the resin fills the fibre tows, 5 

and the laminate thickness decreases again.  6 

 7 

 8 

Figure 11. Plot of the degree of impregnation during the simulated temperature cycle. The inter-tow 9 
region (DoI < 0.45) fills during the drying cycle, but lower viscosities are required for filling the fibre tows 10 

(DoI > 0.45).  11 

It is noted that the simulated viscosities in Figure 12 are relatively high for GF fabric 12 

impregnation, however, additional calculations using the analytical solution described by 13 

Cender et al. [19] confirms that, even for a resin viscosity of 1000 Pa s, a ply could be fully 14 

impregnated within 80 mins. Whether this is true remains unclear, as other factors can inhibit 15 
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the completion of filling (e.g. pressure sharing of the fibre-bed, pressure deficient conditions, 1 

etc.). 2 

 3 

 4 

Figure 12. Plot of the resin viscosity during the impregnation and cure stages of the temperature cycle 5 
(note the reduced time span on the horizontal axis). The viscosities are predicted to drop significantly 6 

when the temperature is increased to 120°C. Upon heating above 120°C, the epoxy reaches its gel point, 7 
and the viscosity tends towards infinity.  8 

 9 

4. Conclusions 10 

The development of 1D numerical models for manufacturing thick-section composites using  11 

powder-based VBO prepregs has been described. This includes process models for coupled 12 

resin flow and heat transfer within VBO prepregs, and material models specifically developed 13 

for an epoxy powder system. Using first order numerical methods, it was possible to solve these 14 

models for a typical composites temperature cycle. The accuracy of the heat transfer model 15 

was verified by comparing the results of the code to results from the commercial composite 16 

processing software, RAVEN. Due to limitations with RAVEN, it was not possible to verify 17 

or validate the cure kinetics model, resin flow model, or powder sintering model. Validation 18 

experiments for these models are the subject of concurrent work (Part II [34]). 19 

A case study was carried out on a 100-ply laminate which was processed in an oven on steel 20 

tooling. The study was used to demonstrate the capability of the numerical models and to 21 
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analyse a typical temperature cycle used by industry for manufacturing thick-section composite 1 

parts. For the drying stage, it was found that the current drying temperature was high enough 2 

to melt and sinter the powder throughout the laminate. This plays an important role in 3 

improving heat transfer within the laminate but may not be efficient in terms of drying the 4 

epoxy. With more analysis and modelling of moisture desorption and gas evacuation, it would 5 

possible to optimise the drying stage of the temperature cycle, however, this was outside the 6 

scope of this work. 7 

An existing dual-scale resin flow model for VBO prepreg was used as the basis of the resin 8 

flow in this system. This dual-scale model simulated resin flow around the fibre tows (inter-9 

tow) and into the fibre tows (intra-tow). It was found that the resin viscosity profile varied 10 

significantly depending on the resin’s position within the laminate. Due to the advancement of 11 

cure, the resin viscosity did not reach below 100 Pa s, however, the resin flow model still 12 

predicted that the fibre-bed would reach full impregnation during the 120°C dwell. The fabric 13 

impregnation, along with powder sintering, contributed to a 45% reduction in the thickness of 14 

the laminate. This thickness change was computed based on a simplified microstructural model 15 

which required values for the cured ply thickness, the intra-tow porosity, and the fibre volume 16 

fraction of an individual ply. This microstructural model also played a role in coupling resin 17 

flow to the heat transfer model by updating each ply’s thickness, and thermal properties. 18 

Simulated temperature profiles for the 100-ply laminate showed that heat transfer improved 19 

over the duration of the processing cycle. Powder sintering and fabric impregnation contributed 20 

to increases in thermal conductivity. Temperature-dependent and cure-dependent material 21 

properties were taken from the literature; these contributed to improved heat transfer also, 22 

especially during the cure stage. The low enthalpy of reaction for GRN 918 epoxy powder 23 

meant that there was no significant build-up of heat predicted in the laminate and subsequently 24 

no overshoot in temperature, thus eliminating the risk of thermal runaway.  25 

 26 
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Nomenclature [units] 7 

𝛼 Degree of cure 8 𝛽  Degree of impregnation 9 𝛾  Thermal diffusivity [m2/s] 10 𝜂 Viscosity [Pa s] 11 𝜅 Thermal conductivity [W/m K] 12 𝜅 ,  Transverse thermal conductivity of the 13 
impregnated composite [W/m K] 14 𝜅  Thermal conductivity of the dry fabric 15 
[W/m K] 16 𝜅  Thermal conductivity of the epoxy  17 
[W/m K] 18 𝜅 ,  Thermal conductivity of the liquid epoxy 19 
[W/m K] 20 𝜅 ,  Thermal conductivity of the epoxy powder 21 
[W/m K] 22 𝜌  Density [kg/m3] 23 𝜌   Initial density of the powder [kg/m3] 24 𝜌   Composite density [kg/m3] 25 𝜌  Fibre density [kg/m3] 26 𝜌   Bulk polymer density [kg/m3] 27 𝜌  Resin density [kg/m3] 28 𝜑 Total porosity/resin volume fraction 29 𝜑  Inter-tow porosity 30 𝜑  Intra-tow porosity 31 𝜑   Porosity of the fabric layer 32 𝜒  Powder void fraction during sintering 33 𝜒   Initial powder void fraction of the powder 34 𝜒  Pre-exponential rate constant for sintering 35 𝜒   Final powder void fraction during sintering 36 𝐴   Area of an ellipse [m2] 37 

𝐴  Area of a rectangle [m2] 38 𝐵 Fitting constant  39 𝑐   Specific heat capacity [J/kg K] 40 𝐶  Fitting constant for sintering model 41 𝐶  Fitting constant for sintering model [K] 42 ℎ Heat transfer coefficient [W/m2K] 43 ℎ   Thickness of the fabric layer [m] 44 ℎ  Total laminate thickness [m] 45 ℎ   Thickness of a fully impregnated ply (cured 46 
ply thickness) [m] 47 ℎ  Thickness of resin layer [m] 48 𝐻  Total enthalpy of reaction [J/g] 49 𝑖 Time step for finite difference code 50 𝑗 Through-thickness nodal position for finite 51 
difference code 52 𝐾  Permeability [m2] 53 𝐾  Inter-tow permeability [m2] 54 𝐾  Intra-tow permeability [m2] 55 𝐿 Thickness of sintered powder samples [m] 56 𝐿  Initial thickness of powder samples [m] 57 𝐿  Characteristic length of the inter-tow 58 
porous medium [m] 59 𝑙  Resin flow front distance from the inlet [m] 60 𝑙  Resin flow front distance from the bottom 61 
of the fabric layer [m] 62 𝑙  Resin flow front distance from the top of 63 
the fabric layer [m] 64 𝑙  Total impregnation depth [m] 65 𝑚  Resin mass fraction 66 𝑁   Number of nodes 67 
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𝑁   Number of plies 1 𝑃  Pressure [Pa] 2 𝑃   Applied pressure [Pa] 3 𝑅 ,   Thermal resistance of material between 4 
nodes 𝑗 and 𝑗 − 1 [m2K/W] 5 𝑅 ,   Thermal resistance of material between 6 
nodes 𝑗 + 1 and 𝑗 [m2K/W] 7 𝑇 Temperature [K] 8 

𝑇 ,  Surface temperature at time step 𝑖 [K] 9 𝑇 (𝑖)  Programmed temperature at time step 𝑖 [K] 10 𝑇   Onset temperature for melting [K] 11 𝑡 Time [s] 12 ∆𝑡 Time step size for finite difference code [s] 13 𝑉  Fibre volume fraction 14 𝑥  Flow direction 15 ∆𝑧  Element thickness of node 𝑗 [m] 16 

 17 
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Appendix A. Supplementary material 1 

Additional material models from Maguire et al. [8]  2 

The viscosity, 𝜂, is described using the following WLF-type chemorheological model which 3 

was developed by Kenny & Opalicki [63] for toughened epoxy systems,  4 

 𝜂 = 𝜂  exp −𝐶 𝑇 − 𝑇𝐶 + 𝑇 − 𝑇 𝛼𝛼 − 𝛼  (A.1) 

Where 𝜂  is the viscosity of the uncured resin [Pa s] at the initial glass transition temperature, 5 𝑇  [K], 𝛼  is the DoC at gelation, 𝐶 , 𝐶  [K], and 𝐴 are fitting constants. The cure-dependent 6 

glass transition temperature, 𝑇  [K], was modelled using the DiBenedetto equation [64], 7 

 
𝑇 − 𝑇𝑇 − 𝑇 = 𝜆𝛼1 − (1 − 𝜆)𝛼 (A.2)  

Where 𝑇  is the initial glass transition temperature of the uncured resin [K], 𝑇  is the glass 8 

transition temperature of the fully cured resin [K], and 𝜆 is a fitting constant. 9 

The viscosity couples the resin flow model to the heat transfer and cure kinetics models via the 10 

temperature dependency and DoC dependency, respectively. The following cure kinetics 11 

model was developed for GRN 918 [8], 12 

 
𝑑𝛼𝑑𝑡 = (𝑘 + 𝑘 + 𝑘 𝛼 )(1 − 𝛼)1 + exp [𝐶(𝛼 − 𝛼 )]   (A.3) 

Where 𝑘 , 𝑘 , and 𝑘  are cure rate constants [s-1], 𝑚 and 𝑛 are the reaction orders, 𝐶 is a 13 

diffusion constant, and 𝛼  is the temperature-dependent critical DoC, above which the reaction 14 

becomes diffusion-controlled. 15 

The fitting parameters for Equations A.1, A.2, and A.3 are given in Table A.1, Table A.2, and  16 

 17 

 18 

 19 

 20 

 21 
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 1 

 2 

Table A.3 respectively. 3 

 4 

 5 

 6 

 7 

Table A.1. Chemorheological model parameters for GRN 918 epoxy powder. 8 

Parameter [units] Value 𝜂  [Pa s] 2 × 1011 

𝐶  32.25 𝐶  [K] 30 𝛼  0.56 𝐴 1.6 

𝜂 = 𝜂  exp −𝐶 𝑇 − 𝑇𝐶 + 𝑇 − 𝑇 𝛼𝛼 − 𝛼  

 9 

Table A.2. Parameters for the DiBenedetto model. 10 

Parameter [units] Value 𝑇  [°C] 40 

𝑇  [°C] 106 𝜆 0.53 𝑇 − 𝑇𝑇 − 𝑇 = 𝜆𝛼1 − (1 − 𝜆)𝛼 

 11 

 12 
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 1 

 2 

 3 

 4 

 5 

 6 

Table A.3. Fitted cure kinetics parameters for GRN 918 epoxy powder. 7 

Parameter [units] Value Parameter [units] Value 𝐴  [s-1] 4.073 × 10-4 𝑚 1.24 𝐸  [J/mol] 12006 𝑛 1.8 𝐴  [s-1] 10.112 × 109 𝐶 50 𝐸  [J/mol] 111792 𝛼  0.006 𝑇 - 1.748 𝐴  [s-1] 1.636 × 1013   𝐸  [J/mol] 131240   𝑑𝛼𝑑𝑡 = (𝑘 + 𝑘 + 𝑘 𝛼 )(1 − 𝛼)1 + exp [𝐶(𝛼 − 𝛼 )]   ,       𝑘 = 𝐴 exp −𝐸𝑅𝑇  ,        𝑖 = 1,2,3 

 8 

Derivation of the pressure boundary condition at the interface of two porous media 9 

For intra-tow flow, the pressure boundary condition at the interface of the two porous media 10 𝑃  must be derived. Assuming mass conservation for resin flow through the porous media, 11 

 𝑑𝑢𝑑𝑥 = 0 (A.4) 

Then, 12 

 
−𝐾 (𝑃 − 𝑃 )𝜂𝐿 = −𝐾 (𝑃 − 𝑃 )𝜂(𝑙 − 𝐿 )  (A.5) 

Where 𝑃  is the pressure at the flow front (assumed to be zero under vacuum conditions). As 13 

such, the equation reduces to: 14 
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 𝑃 = 𝐾 𝑃 (𝑙 − 𝐿 )𝐾 𝐿 + 𝐾 (𝑙 − 𝐿 ) (A.6) 

 1 

Rule of mixtures equations for the heat transfer model 2 

A rule of mixtures approach was implemented by several authors for describing the composite 3 

density and specific heat capacity within the heat equation [22,23,49,59,65,66]: 4 

 𝜌 = 𝜌 𝑉 + 𝜌 (1 − 𝑉 ) (A.7)  

 𝑐 , = 𝑐 , 𝜌 𝑉 + 𝑐 , 𝜌 (1 − 𝑉 )𝜌 𝑉 + 𝜌 (1 − 𝑉 )  (A.8)  

Where 𝑉 is the volume fraction, and subscripts 𝑓 and 𝑟 denote fibre and resin, respectively.  5 

  6 

Equations for heat transfer through the bagging or tooling 7 

Heat transfer at the boundary of the laminate and bagging was written as, 8 

 ∆𝑧𝜌𝑐 𝑑𝑇𝑑𝑡 , = 𝑇 − 𝑇𝑅 , + 𝑇 − 𝑇𝑅 , + 𝑧 𝜌 1 − 𝑉 𝐻 𝑑𝛼𝑑𝑡 ,  (A.9) 

Where subscript 𝐵 represents the node at the boundary and is equivalent to node 𝑗 in the 9 

laminate. Note that the above can be easily written for the boundary of the laminate and tooling 10 

by changing the subscripts appropriately. 11 

The average spatial difference, ∆𝑧, was approximated by,  12 

 ∆𝑧( , ) = 2ℎ ( , ) + ℎ +2𝑧2  (A.10) 

Where 𝑧  is the spatial increment size for the bagging/tooling, represented by, 13 

 𝑧 = ℎ𝑁 − 1 (A.11) 

Where ℎ  is the total thickness of the bagging/tooling, and 𝑁 is the total number of nodes for 14 

the discretised bagging/tooling. 15 

The combined density and specific heat capacity at the boundary node were approximated 16 

using a rule of mixtures approach, 17 
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 𝜌( , ) = 𝜌 𝑧 + 𝜌 (ℎ ( , ) + ℎ 2⁄ )∆𝑧( , )  (A.12) 

Where the subscript 𝑏𝑡 refers to bagging/tooling.  1 

The thermal resistance, 𝑅 , , was taken to be equivalent to 𝑅 ,  (Equation 24). If the 2 

thermal conductivity and thickness of each bagging layer is known, a full thermal resistance 3 

term can be deduced. For this work, however, 𝑅 ,  was simply written as, 4 

 𝑅 , = 𝑧𝜅  (A.14) 

Where 𝜅  was a lumped thermal conductivity for the whole bagging layer. 5 

 6 

Properties and parameters used in the process models 7 

Table A.4. Thermal properties used to model heat transfer in GRN 918. 8 

Property [units] Value Source 

Specific heat capacity of epoxy, 𝑐 ,  [J/kg °C]* Equation A.15 [28] 

Thermal conductivity of liquid epoxy, 𝜅 ,  [W/m °C]* Equation A.16 [28] 

Thermal conductivity of powder epoxy, 𝜅 ,  [W/m K] 0.075** - 

 𝑐 , = 4184(0.468 + 5.975 × 10 𝑇 − 0.141𝛼) (A.15) 
 

 

 𝜅 , = 0.04184 [3.85 + (0.035 𝑇 − 0.41) 𝛼] (A.16) 

 9 
* Predicted temperatures within the simulation are converted to °C so that the empirical relationships can be 10 
used.  11 
** Average value taken from [52,53] 12 
 13 

 14 

 15 

 16 

 17 

 𝑐 , = 𝑐 , 𝜌 𝑧 + 𝑐 ( , )𝜌( , )(ℎ ( , ) + ℎ 2⁄ )𝜌 𝑧 + 𝜌( , ) ℎ ( , ) + ℎ 2⁄  (A.13) 
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Table A.5. Properties and parameters used for glass fibre fabric. 4 

Property/Parameter [units] Value Source 

Transverse thermal conductivity of impregnated GF fabric, 𝜅 ,  [W/m K]* 
Equation A.17 [55] 

Thermal conductivity of glass fibre, 𝜅  [W/m K] 0.417 [67] 

Thermal conductivity of dry GF fabric, 𝜅  [W/m K] 0.2 [57] 

Density of E-glass fibre, 𝜌  [kg/m3] 2560 [68] 

Specific heat capacity of E-glass fibre, 𝑐 ,  [J/kg K] 810 [26] 

Inter-tow permeability of stitched GF fabric, 𝐾  [m2]** 13.675 × 10-10 [20] 

Intra-tow permeability of GF 𝐾  [m2] Equation A.18 [58] 

Glass fibre radius, 𝑅  [m] 8.0 × 10-6 [69] 

Fibre volume fraction of glass fibre tow, 𝑉 ,  0.67 [45] 

 𝜅 ,𝜅 = 14 1 − 𝑉 𝜅𝜅 − 1 + 4𝜅𝜅 − 1 − 𝑉 𝜅𝜅 − 1  (A.17) 

 

 𝐾 = 𝐾 = 169𝜋√2 𝜋4𝑉 , − 1 / 𝑅  (A.18)  

 

 5 
* The Springer-Tsai model [70] can also be used with little change to the overall result. 6 
** Average value for stitched GF fabric. 7 

 8 

 9 

 10 

 11 

 12 
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Table A.6. Properties used for bagging and tooling materials. 4 

Property [units] Value Source 

Thermal conductivity of bagging [W/m K] 0.069 [59] 

Thermal conductivity of aluminium [W/m K] 216.3 [59] 

Thermal conductivity of tool steel [W/m K] 53.35 [51] 

Density of bagging [kg/m3] 355.6 [59] 

Density of aluminium [kg/m3] 2692.1 [59] 

Density of tool steel [kg/m3] 7822.8 [51] 

Specific heat capacity of bagging [J/kg K] 1256.0 [59] 

Specific heat capacity of aluminium [J/kg K] 916.9 [59] 

Specific heat capacity of tool steel [J/kg K] 485.0 [51] 

 5 

 6 

Figure A.1. The maximum allowable time step to achieve a stable solution for a GF/Epoxy-powder ply. 7 
The curing and compaction during the cycle causes the thermal diffusivity, 𝜸, and the spatial increment, 8 ∆𝒛, to change. This results in the max time step being reduced.  9 

 10 
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 1 

Figure A.2. Test of simulation accuracy for two time step sizes: 0.5 s, and 2.5 s. Heat transfer through a 2 
96-ply GF/Epoxy-powder laminate is simulated with a 10 mm steel tool.  3 

 4 

 5 

Figure A.3. Plot of the specific heat capacity variation during the temperature cycle. It increases with 6 
temperature, and it decreases with the advancement of cure.  7 

 8 
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 1 

Figure A.4. Plot of the density variation of the plies during the temperature cycle. The ply density 2 
increases as the epoxy powder sinters and infuses into the fibre-bed.  3 

 4 

 5 

Figure A.5. Plot of the effective thermal conductivity variation during the temperature cycle. It increases 6 
with temperature, and is also affected by sintering of the powder and impregnation of the fibre-bed. The 7 

values are back-calculated from the thermal resistances of each ply.  8 

 9 

 10 


