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Abstract 10 

This work explores a novel route for the fabrication of hybrid-matrix composites based on a recently 11 

developed liquid thermoplastic acrylic resin. This liquid resin was modified using a poly(phenylene 12 

ether) (PPE) oligomer with vinyl functionality. Glass fibre-reinforced laminates based on acrylic and 13 

PPE-modified acrylic matrices were produced by a room-temperature vacuum infusion and in-situ 14 

polymerisation process. Comparative assessments of their mechanical performance and mode-I 15 

interlaminar fracture behaviour revealed enhanced matrix ductility, transverse flexural properties 16 

and initiation fracture toughness. Crazing was identified as the dominant mechanism for improved 17 

resistance to crack initiation.  18 

1 Introduction 19 

Innovative low-viscosity liquid thermoplastic (LTP) resins can readily infiltrate into fibrous 20 

reinforcement under conditions of relatively low temperature and pressure in the same way 21 

that thermoset (TS) resins can [1–4].  Room-temperature infusible acrylic resins with 22 

viscosities as low as 100 mPa.s have received considerable research attention in recent years 23 

[5–13]. In our previous work, we presented comparisons between the mechanical 24 

performance of acrylic composites with equivalent epoxy composites and reported inferior 25 

transverse flexural performance [7] and impact damage resistance [8] in the acrylic-matrix 26 

composites. 27 

Structural composites typically comprise a thermoset matrix or a semi-crystalline 28 

thermoplastic matrix. Cross-linked networks and crystalline domains contribute to enhanced 29 

matrix rigidity, making them ideal candidates for high-performance applications. In contrast, 30 

purely amorphous matrices such as acrylics do not contain cross-links or crystalline regions 31 

within their molecular structure. Thus, this might influence composite properties, 32 

particularly when matrix strength plays a key role.  33 
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Therefore, there is a significant scope to tailor the structure of acrylic-matrix composites for 1 

enhanced performance under different loading conditions.  Recent works on this topic have 2 

used Nanostrength™ triblock copolymers comprising polymethylmethacrylate-b-3 

polybutylacrylate-b-polymethylmethacrylate [9–11] and hybrid fibre reinforcements [12] to 4 

realise improved composite properties. However, TP-TP hybridisation of an acrylic matrix, 5 

via in-situ polymerisation, is novel and never investigated before.  6 

Poly(phenylene ether) (PPE) – an amorphous engineering thermoplastic, is arguably one of 7 

the most successfully applied as a modifier in TS-matrix composites [14–16]. Unlike the 8 

acrylic matrix, which is a purely aliphatic amorphous TP, PPE contains aromatic rings, which 9 

may confer some rigidity in a hybrid system and is thus, worthy of exploration.  10 

This present study investigates an innovative route to obtaining vacuum-infusible hybrid-11 

matrix composites based on acrylic and PPE. To promote reactive blending during in-situ 12 

polymerisation of the hybrid matrix, PPE with vinyl functionality was selected for this study.  13 

The effects of hybridisation on mechanical and morphological properties are presented 14 

herein.  15 

2 Experimental 16 

2.1 Materials and fabrication 17 

Two 4-mm thick (nominally) test laminates were prepared by a room-temperature vacuum 18 

infusion and in-situ polymerisation process. Table 1 provides an overview of the materials 19 

used. Full details of the materials and the fabrication processes used are supplied in Appendix 20 

A. 21 
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Table 1. Summary of materials used for composite fabrication. 1 

 Elium® 188 O a NORYL™ SA9000 b 
 

Q-UD Glass c 

Unreinforced polymer samples d 
A100/P0 100 0 0 
A95/P5 95 5 0 

Composite samples d 
GF/A100/P0 100 0 50 
GF/A95/P5 95 5 57 

a A Liquid acrylic resin [A] supplied by Arkema GRL, France. 
b An oligomeric PPE resin [P] with vinyl functionality, supplied by SABIC. 
c TEST2594 – a quasi-unidirectional (UD) glass non-crimp fabric (NCF) supplied by 
Ahlstrom-Munksjö. GF: glass fibre. Fibre volume fraction. 
d Polymerised using a dibenzoyl peroxide initiator – BP50FT supplied by United Initiators. 

 2 

2.2 Mechanical and thermomechanical characterisation 3 

2.2.1 Tensile testing 4 

Tensile properties were evaluated in accordance with ASTM D3039 under transverse tension.  5 

2.2.2 Short beam shear testing 6 

Short beam shear properties were evaluated by short beam shear testing using a span-to-7 

thickness ratio of 4:1 in accordance with ASTM D2344. 8 

2.2.3 Flexural testing 9 

Non-standard flexural testing was performed on unreinforced matrix samples as detailed in 10 

Appendix B. To gain further insights on differences in fracture behaviour of the matrices, 11 

SEM inspections were also performed.  12 

Flexural properties of glass fibre-reinforced composite samples were determined by three-13 

point bending (ASTM D7264 – Procedure A) using a span-to-thickness ratio of 32:1 under 14 

longitudinal and transverse loading.  15 

2.2.4 Mode-I interlaminar fracture toughness (ILFT) testing 16 

Mode-I ILFT was evaluated using double cantilever beam tests per ASTM D5528. SEM 17 

inspections were conducted on DCB fracture surfaces to assess fracture behaviour.   18 

The interested reader is referred to Appendix B for supplementary specimen and test 19 

specifications. 20 
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3 Results and discussions 1 

3.1 Flexural test results of unreinforced matrices 2 

PPE modification appears to improve flexural strength and stiffness of the GF/A95/P5 3 

sample as evidenced by the stress-displacement curves in Figure 1(a). Although mid-span 4 

deflections were not measured during testing, the observed increase in stiffness may 5 

tentatively indicate an increase in modulus. These results are based on single-sample tests 6 

and are thus, not conclusive. These results provide interesting insights, however, that are 7 

worthy of further investigation.  8 

The micrographs from the regions of interest, diagrammatically shown in Figure 1(b), reveal 9 

relatively flat fracture topography for A100/P0 (Figure 1(c)), and multi-planar fractures for 10 

the A95/P5 matrix (Figure 1(d)), which suggests an interplay of crack deflection and crack 11 

penetration mechanisms as detailed in Appendix C [17]. At higher magnifications, the 12 

A100/P0 matrix appears homogenous (Figure 1(e)); a biphasic morphology comprising 13 

discrete domains was observed for the A95/P5 matrix (Figure 1(f)). These domains are likely 14 

PPE-rich phase, surrounded by an acrylic-rich phase.  15 
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 1 

Figure 1. Flexural stress-displacement curves (a) and diagrammatic representation of the 2 

SEM region of interest (b). SEM micrographs of fracture surfaces of unreinforced (c) & (e) 3 

A100/P0 and (d) & (f) A95/P5 samples at different magnifications (×300 & ×2000).  4 

3.2 Results of composites testing 5 

3.2.1 Transverse tensile test results 6 

Representative stress-strain responses and average transverse tensile strengths, moduli and 7 

failure strains of the GF/A100/P0 and GF/A95/P5 materials are presented in Figure 2(a). 8 

Both materials exhibit similar linear behaviour initially; however, an earlier onset of damage 9 

initiation (matrix cracking) was observed with the GF/A95/P5 samples. From Points 1 to 3 10 

Figure 2(a), matrix crack accumulation occurs before ultimate failure. In contrast, the 11 

GF/A100/P0 material undergoes plastic deformation up to failure. Matrix hybridisation 12 

resulted in reduced (-18%) transverse tensile strength with a slight increase in modulus 13 

(+8%) and significant increases in failure strain (+58%). Thus, hybridisation appears to 14 

increase both transverse composite modulus and ductility. Moreover, higher areas bounded 15 

under GF/A95/P5 curves may suggest enhanced toughness.  16 
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3.2.2 Short beam shear test results 1 

Figure 2(b) shows the results of short beam shear tests performed on the GF/A100/P0 and 2 

GF/A95/P5 materials. For both materials, all samples exhibited plastic deformation up to 3 

their respective ultimate shear stress values (Point 1). However, beyond this point, the curves 4 

of GF/A95/P5 samples exhibited a more abrupt loss in stiffness with increasing displacement 5 

between Points 1 and 2.  6 

 7 

Figure 2. Representative curves and results for GF/A100/P0 (red) and GF/A95/P5 (blue) 8 

following loading in (a) transverse tension; (b) short beam shear; (c) longitudinal flexure 9 

and (d) transverse flexure. 10 

3.2.3 Flexural test results 11 

Results from longitudinal flexural tests are presented in Figure 2(c). All samples of both 12 

materials exhibited a three-stage stress-strain evolution: (i) an initial linear-elastic region, 13 

(ii) a region of slight nonlinearity, and (iii) the onset of damage (Point 1). Post-peak strain 14 
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evolution between Points 2 and 3 was relatively more confined in GF/A100/P0 samples than 1 

in GF/A95/P5. Progressive fibre fractures over a broader range of strains may provide 2 

evidence of superior damage resistance and possibly toughness in the GF/A95/P5 material. 3 

Moreover, it exhibited markedly higher (18%) average failure strain than the GF/A100/P0. 4 

Hybridisation did, however, produce a laminate with lower longitudinal flexural strength (-5 

8%) and modulus (-18%). 6 

In Figure 2(d), the results of transverse flexural tests are presented. All samples across both 7 

materials exhibited an initial region of linearity, beyond which, plastic deformation ensued 8 

with a distinct onset of failure (Point 1) and abrupt ultimate failure at Point 2. All GF/A95/P5 9 

samples underwent cumulative matrix cracking in plies under tension, such as those shown 10 

between Points 1 and 2. The hybrid-matrix composite exhibited improved transverse flexural 11 

strength (+15%), modulus (+18%) and failure strain (+24%) relative to the unmodified 12 

reference. 13 

Differences in the trends between the comparative transverse tensile and flexural 14 

performance were likely attributed to the sensitivity of the former to defect distribution 15 

across the gauge length. Thus, it can be concluded that hybridisation improved the composite 16 

transverse strength, modulus, ductility and overall interfacial strength. 17 

3.2.4 Mode-I interlaminar fracture toughness test results 18 

Representative DCB load-displacement curves and obtained results are shown in Figure 3(a). 19 

Despite exhibiting superior longitudinal flexural stiffness, GF/A100/P0 samples had 20 

unexpectedly lower crack opening stiffness up to initiation, which may be explained by a 21 

higher fibre volume fraction in the GF/A95/P5 laminate. Both materials underwent unstable 22 

crack growth due to the presence of 90° fibres within the fabric. 23 

 24 

Figure 3. (a) Representative load-displacement curves and (b) R-curves for GF/A100/P0 25 

(red) and GF/A95/P5 (blue) following double cantilever beam testing. 26 
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Hybridisation conferred a 5% increase in the initiation fracture toughness (GIC-init.); however, 1 

propagation fracture toughness (GIC-prop.) decreased by 29%. Similar results were reported by 2 

Lee et al. [18] who found that hybridisation only enhanced GIC-init., but GIC-prop. was reduced 3 

due to limited fibre bridging in the hybrid composite. This is supported by literature on 4 

factors affecting propagation behaviour [11,19,20]. Moreover, other factors limiting fibre 5 

bridging in the GF/A95/P5 material may be its plausibly higher matrix modulus [17] 6 

(evidenced by the higher stiffness reported in 3.1) and enhanced interfacial strength as 7 

discussed in 3.2.3 [21,22]. Interestingly, R-curves (Figure 3(b)) did not reveal discernibly 8 

distinct propagation behaviour between both materials.  9 

Figure 4 (a)-(f) presents DCB fracture surfaces of GF/A100/P0 and GF/A95/P5 samples 10 

obtained using SEM. Both surfaces appear texturally coarse and dull, indicating comparable 11 

ductility on a microscopic scale.  12 

 13 

Figure 4. SEM micrographs showing mode-I fracture surfaces of (a), (b) & (c) 14 

GF/A100/P0 and (d)-(h) GF/A95/P5. The larger broken arrows show the direction of 15 

crack propagation. In (f), arrows highlight paths of microcrack formation. 16 
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The GF/A95/P5 sample showed evidence of microcrack formation (Figure 4(f)) and multiple 1 

sites of crazing (Figure 4(g)), features which were not observed for GF/A100/P0. The 2 

microcracks appeared as long craze-like interpenetrating paths across the fracture surface; 3 

however, no coalescence was observed at their points of intersection. Crazing is a dominant 4 

plastic deformation mechanism in amorphous TP matrices [23,24], which may explain the 5 

increased GIC-init..  6 

The absence of discernible PPE-rich domains in the micrographs of the GF/A95/P5 sample 7 

compared with those of the A95/P5 sample may highlight the effects of fibres on the resulting 8 

phase morphology. However, further investigations would be required to substantiate this 9 

hypothesis.  10 

4 Conclusions 11 

This study represents the first implementation of a novel approach for room temperature 12 

vacuum infusion of continuous fibre, thermoplastic hybrid-matrix composites. The approach 13 

exploits the low viscosity of liquid TP acrylic resins and with a higher performance 14 

poly(phenylene ether) with vinyl functionality to realise enhanced reactivity during the in-15 

situ polymerisation processing. The following are the key observations and conclusions from 16 

the benchmarking of mechanical performance with respect to an unmodified acrylic reference 17 

laminate:  18 

 Enhanced ductility in the hybrid-matrix composite: failure strains increased 19 

under transverse tension (+58%), transverse flexure (+24%) and longitudinal flexure 20 

(+18%). 21 

 Improved composite transverse flexural strength (+15%) and modulus 22 

(+18%):  this may suggest enhancements in matrix strength, modulus and interfacial 23 

adhesion. 24 

 A 5% increase in initiation fracture toughness, possibly due to the effects of 25 

multiple crazing of the hybrid matrix system. 26 

 Decreased propagation fracture toughness by 29%, possibly due to diminished 27 

contributions from fibre bridging.  28 

The investigation of the reaction kinetics and mechanism between acrylic resin and PPE, and 29 

how this relates to phase separation and morphology is recommended as future work.   30 
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