
This is a repository copy of Body-Part Enabled Wildlife Detection and Tracking in Video 
Sequences.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/210365/

Version: Accepted Version

Proceedings Paper:
Appiah, Kofi Essuming (2024) Body-Part Enabled Wildlife Detection and Tracking in Video 
Sequences. In: Proceedings, Joint Conference on Computer Vision, Imaging and 
Computer Graphics Theory and Applications. Joint Conference on Computer Vision, 
Imaging and Computer Graphics Theory and Applications, 27-29 Feb 2024 Springer Press
, ITA , pp. 475-482. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Body-Part Enabled Wildlife Detection and Tracking in Video Sequences

Alberto Lee1, Kofi Appiah1 a and Sze Chai Kwok2 b

1Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, U.K.
2Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan

University, Duke Institute for Brain Sciences, Kunshan, 610101, Jiangsu, China
{al1414, kofi.appiah}@york.ac.uk, szechai.kwok@duke.edu

Keywords: Animal Detection, Deep Convolutional Neural Networks, Real-Time Tracking, Data Augmentation.

Abstract: Tracking wild animals through videos presents a non-intrusive and cost-effective way of gathering scientific

information key for conservation. State-of-the-art research has shown convolutional neural networks to be

highly accurate, however, the application of this field on wild animal tracking has had relatively little interest.

This is potentially due to the challenges of varying illumination, noisy backgrounds and camouflaged animals

intrinsic to the problem. The aim of this work is to explore and apply state-of-the-art research to detect and

track wild animals (specifically bears and primates, including their body parts) in video sequences in real-time.

Due to obstructors such as foliage being prevalent in wild animal environments, body part tracking presents

a solution to detecting animals when they are obstructed. Two deep convolutional neural networks (YOLOv4

and YOLOv4-Tiny) are trained to detect and track animals in their natural habitat. By using the knowledge

that an animal is composed of body parts, the score of weakly predicted bounding is boosted from the relative

distance of related body parts. For tracking, the K-Means algorithm is used to locate the average position

of each animal in frame. With the introduction of a body-part confidence boosting, the detection rate can be

increased by approximately 2% for a weakly predicted class.

1 INTRODUCTION

Animal tracking has been done previously with GPS

tracking, radio-tracking and other methods (Wald-

mann et al., 2022). These have effectively collected

positional data, mapping migration routes and feeding

areas. However, manual capturing and tagging of an-

imals are known to be difficult, time-consuming and

potentially harmful. The emergence of camera traps is

continually collecting large quantities of animal data

into datasets although large datasets can take many

months to analyse (Swanson et al., 2015). The solu-

tion to this problem lies within the field of Computer

Vision which encompasses the techniques allowing a

computer to attain a high-level understanding of digi-

tal images.

Wildlife is under threat. According to the World

Wide Fund for Nature, an estimated 10,000 species

are going extinct every year. The average rate of

species loss is a hundred times higher than in the pre-

vious century. Indicating the world is now in its 6th

mass global extinction event (ceballos et al., 2015).

a https://orcid.org/0000-0002-9480-0679
b https://orcid.org/0000-0002-7439-1193

Advancements in using vision algorithms to track

wild animals provide useful insights into a species

population (Rowcliffe et al., 2008) and nature. By

automatically detecting animals, considerable time

and resources can be saved while warning researchers

about wildlife threats. This work focuses on :

- Understanding the effectiveness of a wild animal

tracking algorithm.

- Understanding how animal body-part detection

can be utilised.

- Understanding how state-of-the-art object track-

ing methods can be effectively applied to the

medium to achieve the best possible results.

- Understanding how an animal can be tracked

throughout a video sequence.

The rest of the paper is organised as follows, sec-

tion 2 describes related work. This will be followed

by details of our proposed approach in section 3 and

how it has been implemented in section 4. The exper-

imental results and discussions will be presented in

section 5 and followed by the conclusion and future

work in section 6.



2 RELATED WORK

For several years, convolutional neural networks

(CNNs) have been the leading algorithm in terms of

accuracy of object classification. None of the known

CNN architectures is explicitly designed for tracking

wild animals, although due to the nature of CNNs,

they can learn to classify new images when given the

right dataset. Classification methods have been able

to achieve great accuracy on smaller datasets with

much less computational power. (Ciresan et al., 2012)

have been able to achieve human-like error rates on

labelling handwritten numbers. Objects found in re-

alistic settings pose a greater challenge due to their

high variability. Natural scenes such as forests and

animals contain much more noise and variance com-

pared to urban areas. (Wang et al., 2020) proposed

a context-aware CompositionalNets, which increases

the detection performance on strongly occluded vehi-

cle but not necessarily animals in the wild.

In (Villa et al., 2017), the performance of both

GoogLeNet and VGGnet was tested. They were

trained on the Snapshot Serengeti dataset (Swanson

et al., 2015) to classify the 26 most common species

and evaluate their accuracy. They found that these

models had an average error of 19.38% and struggled

when part of an animal’s body was showing. Meaning

there was not enough information to classify the an-

imal from detected body part. This raises a question

- could identifying individual body parts (body-part

boosting) enhance the accuracy of a model?

Natural environment animals inhabit poses some

of these technical challenges to vision algorithms:

- Varying illumination: A gradual shift of light.

- Noisy backgrounds: Due to the swaying of vege-

tation and varying weather conditions.

- Animal camouflage: Resulting pixel values can be

very similar to the background.

- Shadows: A moving object’s shadow.

It is difficult to use unsupervised methods for object

detection within these scenes as most of these meth-

ods, including optical flow and frame differencing are

very sensitive to noise. The highly dynamic and clut-

tered background of natural environments calls for

more advanced background subtraction techniques.

(Ren et al., 2013) used a combination of foreground

object segmentation graph cutting and temporal infor-

mation with a fusion of neighbouring frames to detect

objects in videos. With a focus on dynamic back-

grounds, including forest landscapes, they achieve

high precision on foreground segmentation by effec-

tively using the temporality of videos.

(Gomez et al., 2016) achieved an accuracy of

88.9% over the Serengeti dataset using very deep

CNNs. By testing six state-of-the-art networks at

the time, they displayed that deep networks outper-

formed shallow networks on the majority of animal

classes. The CNN models were pre-trained on the

ImageNet dataset and then trained over their animal-

specific database. They used the pre-trained CNNs

under the assumption that models would have already

learnt the basic features for general image classifica-

tion. It is unclear if the accuracy would be negatively

affected if the models were trained from scratch on

the Serengeti dataset. Unlike (Ren et al., 2013), it

is highlighted that they did not take advantage of the

temporal dimension of the bursts of images captured

by the camera.

3 OUR APPROACH

The overall aim is to create a real-time framework for

detecting, tracking and classifying specific wild ani-

mals, including body parts in video sequences. There

is no hard limit on what defines a real-time detection

speed. We define real-time to be a frame-rate where

an animal’s movement appears continuous, with no

visible time lags. For this definition, we aim for a

frame-rate of at least 20 FPS.

Figure 1: A figure showing the results of background sub-
traction as applied to a sample video.

3.1 Object Localization Method

The aim is to evaluate a number of techniques against

the expected outcome of this work. Thus, the algo-

rithm must give a real-time performance on our test

data and hence, algorithms like optical flow would be

too slow to consider. By testing Mixture of Gaussian

(MoG) and other algorithms on sample videos taken

from our dataset (Wang et al., 2020) using a sim-

ple background subtraction (Sobral et al., 2013) tech-

nique, a visual inspection seemed promising at first

as shown in figure 1. However, when the input data

is taken from a moving camera, the animal would be

misclassified with background differencing and will

require a more expensive technique like optical flow.



CNNs allow for accurate object detection if given

enough relevant training data. While many CNNs

do not run in real-time (Girshick, 2015), the recent

YOLO-v4 algorithm does and the architecture will be

used for classification in this work. Complex back-

grounds are less of a problem with CNNs compared

to other methods. Thus, allowing them to adapt to

many different backgrounds. The YOLO algorithm

will also not struggle with a moving camera as it

runs on each frame compared to background differ-

encing algorithms. YOLOv4-Tiny, a small variant of

YOLOv4 (Bochkovskiy et al., 2020), which signifi-

cantly enhances the processing speed will be used for

localisation in this work.

3.2 Dataset Selection

There are limited publicly available labelled animal

video datasets and hence, in this work datasets from

multiple sources have been utilised. All video data

collected with animals have been divided into train-

ing data and validation data, just to ensure our models

generalise well after training. The test data has been

generated from the Kwok-Lab dataset (Wang et al.,

2020). The Kwok-Lab dataset consists of 2000 video

clips, each about 4− 6 seconds long taken from var-

ious sources from television programs; thus approxi-

mately 200,000 images with various animals. While

both papers do not have relevance in the field of com-

puter vision, the dataset has been used in this work.

Figure 2: Sample images of chimps used for testing.

The dataset is separated into two halves. One half

contains clips showing one or more primate, specif-

ically different monkey species as shown in figure 2.

The other half is of other types of mammals like bears

(as shown in figure 3), and phyla such as reptiles,

fish, birds and insects. Majority of the images from

the video data have been used as validation dataset to

analyse how well our approach fulfils its objectives.

Performance analysis has been conducted both visu-

ally and quantitatively. To gather quantitative perfor-

mance data, two videos from the Kwok-Lab dataset

are annotated with ground truths. Each video contains

at least a bear or a primate.

Figure 3: Sample images of bears used for testing.

By visual inspection, it has been established that

the Snapshot Serengeti database (Swanson et al.,

2015) contains many of the same animals as the

Kwok-Lab dataset. The Snapshot Serengeti database

is also widely used for training CNNs to detect ani-

mals (Villa et al., 2017); a good starting point when

looking for a suitable architecture for transfer learn-

ing. Because the Snapshot Serengeti database isn’t

easily accessible, we have also used a more accessible

dataset from Kaggle with about 30 different species.

We have tested our approach on species common to

all the datasets and conducted tests on bears and pri-

mates as they both have special characteristics suit-

able for our proposed system:

• they have a more natural backgrounds in their

videos

• they both share similar (but not identical) anatom-

ical features

• a good number of CNN models exit which have

been pre-trained on the COCO dataset (Lin et al.,

2014) with images of bears but none of primates.

The choice of bears and primates makes it easier to

separate the body parts into the four distinct classes

needed to train our model; head, arm, body (or torso)

and full (the entire animal).

4 IMPLEMENTATION DETAILS

We trained a Mask R-CNN (He et al., 2017) on

a small manually annotated dataset of primates and

bears where each body part is segmented using poly-

gons, a pipeline for the training is as shown in fig-

ure 4. The open-source annotation program LabelMe

(Wada, 2016), was used in the manual annotation and

a sample output is as shown in figure 5. The trained



Figure 4: The semi-automated data generation pipeline to
train the body-part network.

algorithm (Mask R-CNN (He et al., 2017)) automati-

cally segments classes of interest on new data, similar

to the manual labelling of these classes. This semi-

automation yields a method for rapid labelled dataset

creation and offers a course background subtraction

of each body part; an enhancement to the mask R-

CNN model. With just over 50 manually annotated

images for each specie the mask R-CNN model (Ab-

dulla, 2017) was suitably trained to detect the body

parts after data augmentation.

The Mask R-CNN (He et al., 2017) model pre-

sented in (Abdulla, 2017) is pre-trained on the COCO

dataset so we trained a selected number of classes

(eight in this case) on the last network layer with a

high learning rate of 0.001, freezing all other lay-

ers so previously learned features are not destroyed.

An additional fine-tuning step is used, this is possi-

ble because mask R-CNN is built of the R-CNN ar-

chitecture meaning it’s a single-state pipeline. After 5

epochs all layers are unfrozen and trained with a small

learning rate. We use a learning rate of 1/10th of the

prior learning rate. This small learning rate allows

the model to fine-tune to our custom classes without

strongly influencing the pre-trained layers. The model

is fine-tuned for 5 more epochs. Ten percent (10%) of

the manually annotated data is used for validation.

The trained model can segment body parts with

reasonable accuracy. By accurately segmenting sec-

tions of the class we can simulate obstruction of body

parts that may be caused by the foliage of forest land-

scapes. To enhance the extraction of body parts from

each image and also avoid the inclusion of pixels out-

side the object (animal in this case), a custom back-

ground removal function is used. The function takes

the trained model and a list of images as inputs, it

runs over each image, predicting a list of masks. All

alphas of pixels outside the masks are set to zero and

the image is then cropped down to the limits of the

masks. Each image is saved with the name of each

predicted class and its associated bounding box. We

then split the dataset into a training and test set, keep-

ing a ratio of 80 : 20. The extracted image classes had

to be cleaned manually by removing indiscernible and

wrong class predictions that would negatively affect

model training as shown in figure 6. Finally, a series

of background images are collected from FreeImages

consisting of varied forest and urban landscapes. We

chose to include urban backgrounds as some videos

from the Kwok-Lab dataset contained urban areas. A

custom data creation function is used to augment the

cropped masks onto these backgrounds, taking the

mask images and backgrounds as inputs to generate

the new image as shown in figure 7.

4.1 Animal Tracking

There are many ways to represent an animal’s move-

ment, for example the use of directional arrows or ex-

plicit text descriptions. We use directional arrows as

this specifies the direction of movement and allows

for a full 360 degrees movement. First, to find the

course position of each animal we represent each pre-

dicted bounding box as a single position by locating

the middle coordinate. We then use K −Means clus-

tering on these coordinates; where the number of clus-

ters equal to the number of detected whole animals

(bear or primate in this case), so a series of cluster-

centres are generated. The cluster-centres are used to

track each animal as it moves through the video, how-

ever, these clusters are sporadic and hence not used as

the location for the directional arrows. Instead, we use

a series of “moving-points” that gradually follow the

clusters. Each moving-point (mp) consists of a coordi-

nate and a directional unit vector. The moving-points,

function under two rules. Rule one is to create a new

mp when a cluster has no mp within a specified radius

of r. The new point is assigned the position of the

cluster. The second rule is that for any mp, if there

are no clusters within r then the mp is deleted. These

rules allow the moving-points to adapt to all animals

in a frame, dealing with the cases where animals enter

and leave the scene. To prevent sporadic movement

each mp moves towards clusters within radius r with

a predefined weight as in Equation 1.

mpt−1 = (clustercentre −mpt)∗weight (1)

A space of previous points is kept allowing the al-

gorithm to keep a history of the movement. For each

cluster, a series of local-points are located by search-

ing the movement history and keeping points that are

located within a radius of the cluster. A look-back

value is set, LB, that forces the local-points to ignore

the most recent LB movement history entries. This al-

lows for a larger gap in time between the cluster and

where previous clusters have been located. Thus caus-

ing the moving-points to smoothly follow the clusters

reducing sporadic and local movements. The mean of



Figure 5: Sample output of the segmented parts of a bear and primate using LabelMe.

Figure 6: An image of a primate misclassified as a bear.

Figure 7: A pipeline for generating our custom dataset.

all unit vectors uv from each local-point to the current

cluster is calculated as µuv. For each mp within a pre-

defined radius of the cluster, the unit vector of each

mp is calculated as the weighted sum of itself and µuv,

which is then normalised as a unit vector. Finally, to

visualise the movement direction, for each mp, an ar-

row of set size is drawn in the direction of the respec-

tive unit vector and is centred on the respective coor-

dinate. This method produces a minor computational

overhead that decreases detection speed by 1−2 FPS.

To make use of the body-parts, we use the fact

that an animal’s body parts are always close to each

other, hence for each predicted body-part, its confi-

dence score can be increased if other body parts are

nearby. Using this theory, each predicted-box (p), is

checked and if the score is lower than a set thresh-

old it is selected for confidence boosting (body-part

boosting). This targets only boxes with low scores,

preventing the problem that if all boxes were boosted,

the relative scores would cancel each other out. Next,

for each box of the same class or related animal part

classes (s), and the Intersection over Union (IoU) be-

tween s and p is calculated. In which the overlap be-

tween the predicted and ground truth bounding boxes

is known as the IoU . Given that the IoU is greater

than a set threshold, the score of p is incremented by a

set value, where the threshold represents whether each

class is close enough to be considered part of the same

animal. This is conducted as an extra pre-processing

step so certain boxes are held more favourably for

Non-Maximum Suppression (NMS).

5 RESULTS & DISCUSSION

In testing we vary the input resolution, architecture,

training data, body-part confidence boost and Non-

Maximal Suppression (NMS) method. A larger in-

put resolution can help the model detect small objects.

However, it also increases the amount of GPU mem-

ory required, causing the model to fail if memory is

limited. The input resolution also impacts how fast

the model can run and hence we test lower resolu-

tions to analyse the trade-off between speed and de-

tection accuracy. We test input resolutions of 416, 320

and 160. We test the YOLOv4 algorithm against its

smaller variant (YOLOv4-tiny), because of its excep-

tional detection speeds. We assumed that augmented

training data will help improve detection accuracy. To

justify this we test the network separately with aug-

mented training data and without augmented training

data. We also test the original dataset used for training

the mask R-CNN algorithm to demonstrate the effects

of automatic bounding box creation.



We compare the effectiveness of soft-NMS as its

impact on computation is negligible and it is gives

an overall improvement on prediction accuracy. For

transfer learning, we use weights pre-trained on the

COCO dataset. We chose weights trained on this

dataset as it includes many animals (such as bears)

and the animal images contain their natural environ-

ment. The inclusion of bears in the training data al-

lows for a comparison between primates and bears to

display the benefits of transfer learning. We decided

on 60 epochs for training as this achieves satisfactory

results within a reasonable time (see figure 8). For the

final model, we trained for 100 epochs to ensure the

best results possible. As YOLOv4 uses a custom loss

function we do not change it as this would most likely

damage the performance. Larger batch sizes improve

convergence and accuracy, so a batch size of 8 is used

to fit any memory constraint GPU.

Figure 8: Total loss against epochs for YOLOv4.

By way of robustness, if the IoU is greater than

a set IoU threshold the prediction is classed as a true

positive else, it is a false positive; this measures the

precision of detection. We set the IoU threshold to

0.45 which is more conservative with less precise pre-

dictions and it is chosen with the reasoning that the

selected classes are very challenging.

It is significantly harder to detect body parts com-

pared to the entire animal. The most distinctive body

part, the head, performed better than all other body

parts for both primates and bears. We assume this

discrepancy is due to the ambiguous nature of these

classes as they lack distinctive features. With this

reasoning it is clear to see why the ‘Body’ class for

each animal was the worst-performing feature. Table

1 shows the precision of detection for primate arms

and bodies are less than the other classes. Combined

with prior reasons, comparing these classes to bear

legs and bodies we notice a significant difference in

accuracy which is likely due to the model’s use of

transfer learning. Since the model adopts weights that

have been trained on a much greater dataset of bears,

it is logical to assume the model is more useful to de-

tect all aspects of bears. For the video set, it must

be noted that there is a limited amount of environ-

mental variation due to a single environment shown

in each video. Meaning the algorithmic performance

may not always be true for all videos. The model has

a detection speed of 15.77 FPS achieved on a Tesla

V100 GPU. The mean average precision (mAP) value

of 60.1% is worse than 65.7% as reported for the orig-

inal YOLOv4 trained on the COCO dataset. As the

two values are relatively close, it demonstrates that

our implementation can improved further to match the

original 65.7% reported.

5.1 Impact of Architectures

From testing the YOLOv4 variant, YOLOv4-Tiny

with the baseline model, we noticed FPS improve-

ments of 20.92 (+5.15). An increase was expected

however, the reported Frames per second (FPS) im-

provement reported in (Bochkovskiy et al., 2020) is

approximately eight times that of YOLOv4. The dif-

ference in hardware might have contributed to this

discrepancy. It was assumed that the performance

would be affected as YOLOv4-Tiny is less power-

ful, yet the decrease in precision was very minimal

as shown in figure 9. For the video dataset, it signifi-

cantly outperformed the baseline for some classes like

primate, bear head and bear leg as in figure 10.

Figure 9: Test set architectural difference.

We argue that where this architecture performs

worse than the baseline the discrepancy is less im-

portant as it only performs worse on areas that al-

ready have high precision. The model should predict

all classes with reasonable accuracy rather than a few

with high accuracy. The video set is not representative

of all scenarios and the improvement in FPS cannot be

understated.



Table 1: Results of the baseline model, where P. is Primate and B. is Bear.

P. Head P. Arm P. Body Primate B. Head B. Arm B. Body Bear

Test Set(AP%) 69.337 27.686 5.625 77.619 75.545 59.339 73.347 92.137

Video Set(AP %) 79.543 12.944 0.735 48.501 63.285 22.260 95.238 98.158

Figure 10: Video set architectural difference.

5.2 Best Model

This model uses the YOLOv4-Tiny algorithm (fi-

nal solution), an input size of 320, augmented auto-

generated training data and Soft-NMS. Due to the

inconclusive results on the influence of architecture,

we test the same model as described but using the

YOLOv4 algorithm (baseline) for comparison. Each

network was trained for 100 epochs or until it began

to over-fit.

Figure 11: Performance of YOLOv4 against our best im-
plementation using the test set.

The comparison between different architec-

tures shows very similar results. The solution

with YOLOv4 achieves a slightly higher mAP of

62.87% (+4.68%) on the test set. Yet the solution

with YOLOv4-Tiny achieves a significantly higher

detection speed of 23.25 (+10.24) FPS. With a speed

that satisfies the constraint of real-time, this solution

is the best model for any resource constraint hard-

ware. A comparison against the baseline shows an im-

provement using the YOLOv4-Tiny architecture rela-

tive to previous tests as shown in figures 11 and 12.

These tests have optimised the baseline to best fit the

Figure 12: Performance of YOLOv4 against our best im-
plementation using the video set.

goals of this work. The best model was evaluated us-

ing a series of videos similar to those shown in fig-

ures 13 and 14. In general, the detected classes appear

correct with the head, body and full animal being the

most representative of the truth. While the arm and

leg classes are often correctly detected, the nature of

the animal walking causes the bounding boxes to con-

stantly change shape and position. The model strug-

gles when two animals are very close together, pre-

dicting both animals as one, or when there is a large

amount of obstructing foliage.

Figure 13: A sample output from our proposed model with
labelled parts of a chimp.

Upon adjusting the tracking algorithm hyper-

parameters, setting the radius for both moving-points

and local-points to 150; the coordinate and vector

weights set to 0.1, allowed for smooth movement and

directional adjustment. A large lookback (LB) value

will cause the arrows to be more delayed and yet

appear smooth. We settled on a LB of 30, roughly

equating to one second of video, allowing a sufficient



Figure 14: A sample output from our proposed model with
labelled parts of a bear.

amount of time for animals to show a clear movement

in direction. Movement tracking, while taking a sec-

ond to begin (due to LB), effectively shows the direc-

tion of movement for each animal in the frame. Each

arrow was always located on the animal and moved

with the animal at a relatively constant rate. The ar-

rows turn to find the direction of movement and adapt

if the animal changes direction. A caveat to this is

that the camera had to be near stationary, as a moving

camera meant the algorithm is tricked into thinking

the animal is moving in the opposite direction.

6 CONCLUSION

This paper presents solutions to many of the intrin-

sic problems associated with wild animal tracking.

There are many facets for future development that will

not only improve the accuracy and usability, but also

other potential applications. The approach is capa-

ble of detection animals at 23.35FPS, just 0.65FPS

short of a classical movie. This is noticeably smooth,

demonstrating greater speed and accuracy than un-

supervised object detection techniques like Mixture

of Gaussian’s. In general, current state-of-the-art

methods for tracking in videos proved effective, how-

ever, visual inspection showed predictions sometimes

lacked clarity, appearing sporadic and unstable. One

reason for this is that the methods do not harness the

extra temporal information supplied by the video for-

mat. An avenue of research could use the Sequential-

NMS algorithm as a post-processing method to give

higher confidence on low confidence predictions.

REFERENCES

Abdulla, W. (2017). Mask r-cnn for object detection and in-
stance segmentation on keras and tensorflow. GitHub
repository.

Bochkovskiy, A., Wang, C., and Liao, H. M. (2020).
Yolov4: Optimal speed and accuracy of object detec-
tion. CoRR, abs/2004.10934.

ceballos, G., paul r. Ehrlich, anthony d. Barnosky, andrés
garcı́a, robert m. Pringle, and todd m. Palmer (2015).
Accelerated modern human–induced species losses:
Entering the sixth mass extinction.

Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-
column deep neural networks for image classification.
Arxiv preprint arXiv:1202.2745.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages
1440–1448.

Gomez, A., Salazar, A., and Vargas, F. (2016). To-
wards automatic wild animal monitoring: Identifi-
cation of animal species in camera-trap images us-
ing very deep convolutional neural networks. arXiv
preprint arXiv:1603.06169.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017).
Mask r-cnn. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.

Ren, X., Han, T. X., and He, Z. (2013). Ensemble video
object cut in highly dynamic scenes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1947–1954.

Rowcliffe, J. M., Field, J., Turvey, S. T., and Carbone, C.
(2008). Estimating animal density using camera traps
without the need for individual recognition. Journal
of Applied Ecology.

Sobral, A. et al. (2013). Bgslibrary: An opencv c++ back-
ground subtraction library. In IX Workshop de Visao
Computacional, volume 27.

Swanson, A., Kosmala, M., Lintott, C., Simpson, R.,
Smith, A., and Packer, C. (2015). Snapshot serengeti,
high-frequency annotated camera trap images of 40
mammalian species in an african savanna. Sci Data
2:150026.

Villa, A. G., Salazar, A., and Vargas, F. (2017). Towards
automatic wild animal monitoring: Identification of
animal species in camera-trap images using very deep
convolutional neural networks. Ecological Informat-
ics, Volume 41.

Wada, K. (2016). labelme: Image polygonal annotation
with python. Github.com.

Waldmann, U., Naik, H., Máté, N., Kano, F., Couzin, I. D.,
Deussen, O., and Goldlücke, B. (2022). I-muppet: In-
teractive multi-pigeon pose estimation and tracking.
In Pattern Recognition. Springer International Pub.

Wang, L., Zuo, S., Cai, Y., Zhang, B., Wang, H., Kwok,
S. C., et al. (2020). Fallacious reversal of event-order
during recall reveals memory reconstruction in rhesus
monkeys. Behavioural Brain Research, 394:112830.


