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A B S T R A C T 

Pores and sunspots are ideal environments for the propagation of guided magnetohydrodynamic (MHD) waves. Ho we ver, 

modelling such photospheric wav e guides with varying background quantities such as plasma density and magnetic field has thus 

far been very limited. Such modelling is required to correctly interpret MHD waves observed in pores and sunspots with resolved 

inhomogeneities such as light bridges and umbral dots. This study will investigate the propagation characteristics and the spatial 

structure of slow body MHD modes in a magnetic flux tube with a circular cross-section with inhomogeneous equilibrium density 

distribution under solar photospheric conditions in the short wavelength limit. For simplicity, the equilibrium density profile is 

taken to have a circular density enhancement or depletion. The advantage of this is that the strength, size, and position of the 

density inhomogeneity can be easily changed. Calculating the eigenfrequencies and eigenfunctions of the slow body modes is 

addressed numerically with use of the Fourier–Chebyshev Spectral method. The radial and azimuthal variation of eigenfunctions 

is obtained by solving a Helmholtz-type partial differential equation with Dirichlet boundary conditions. The inhomogeneous 

equilibrium density profile results in modified eigenvalues and eigenvectors. It was found that a localized density inhomogeneity 

leads to a decrease in the eigenvalues and the spatial structure of modes ceases to be a global harmonic oscillation, as the modes 

migrate towards regions of lower density. Comparing the homogeneous case and the cases corresponding to depleted density 

enhancement, the dimensionless phase speed undergoes a significant drop in its value (at least 40 per cent). 

Key w ords: w aves – Sun: oscillations – Sun: photosphere – sunspots. 

1  I N T RO D U C T I O N  

High-resolution observations in the last few decades confirm that 

the solar atmosphere is filled with magnetohydrodynamic (MHD) 

waves (Mathioudakis, Jess & Erd ́elyi 2013 ; Jess et al. 2015 ; Li et al. 

2020 ; Banerjee et al. 2021 ; Jess et al. 2023 , to name but a few). 

Waves are natural manifestations of disturbances in the solar plasma 

when deviations in the equilibrium state of the plasma are paired 

with various restoring forces that tend to restore the equilibrium 

state. MHD wa ves ha ve been extensively studied in connection to 

plasma heating or acceleration (see e.g. Erd ́elyi & Ballai 2007 ; De 

Moortel & Browning 2015 ; Van Doorsselaere et al. 2020 ; Li et al. 

2022 and references therein), and as a diagnostic tool using magneto- 

seismological techniques that aim to determine the plasma and field 

parameters that cannot be measured directly or indirectly (for a few 

re vie ws see, e.g. Nakariakov et al. 1999 ; Ballester 2005 ; Verth 2007 ; 

Ballai 2007 ; Oliver 2009 ; De Moortel & Nakariakov 2012 ). 

In general, seismological techniques involve a close comparison 

of theoretical models (dispersion relations, evolutionary equations) 

with determined wave parameters from observations (amplitude, 

⋆ E-mail: fahasiri1@sheffield.ac.uk 

decay time/length, wavelength, propagation speed, etc.). Often MHD 

waves are observed to follow the direction of the magnetic field (these 

waves are labelled as guided waves), meaning that waves can also 

be used as tracers of the magnetic field. While observations have 

their own limitations driven by the existing temporal and spatial 

resolution, these helped to understand various physical phenomena 

and to build up connectivity relationships between several important 

features in the solar atmosphere. At the same time, most of the 

existing theoretical models operate with a high degree of idealization. 

Waves propagating along the magnetic field are confined to magnetic 

structures that are modelled as straight and homogeneous structures 

with their cross-section being a regular shape (mostly circular). In 

reality, observ ations sho w that magnetic wav e guides are far from 

having a regular cross-section and being homogeneous either in 

the radial or longitudinal direction. Inhomogeneities in the plasma 

and magnetic field are known to strongly influence the properties 

of waves, leading to the modifications in the spectral properties of 

w aves, w av e amplification, mode conv ersion, etc. (e.g. De Pontieu 

et al. 2007 ; Morton et al. 2011 ; Aldhafeeri et al. 2021 , 2022 ; Skirvin 

et al. 2022 ; Stangalini et al. 2022 to name but a few). 

Pores and sunspots are probably the most studied magnetic 

features in the lower solar atmosphere and they are the location 

of emerging large-scale kG magnetic field whose transverse shape 

© 2024 The Author(s). 
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and area change o v er time (F org ́acs-Dajka, Dobos & Ballai 2021 ). 

Pores are located often along the dividing lines between larger 

sunspots and smaller magnetic elements. A particular manifestation 

of inhomogeneities in pores and the umbral region of sunspots 

are regions of limited extent called umbral dots (UDs) and light- 

bridges (LBs) that are luminous regions that separate the umbra 

of a sunspot and indicate sunspot decay or fragmentation, (Garcia 

de La Rosa 1987 ). They are believed to play an important role in 

the energy balance in sunspots and pores (Solanki 2003 ). LBs can 

be thought of as large-scale magneto-convection manifestations in 

umbrae (Rimmele 2008 ). The fine structure and energy transmission 

in sunspots are now mostly, if not completely, attributed to the 

latter hypothesis. There is hardly any part of the umbra which 

does not support UDs. They account for about 11 per cent of the 

umbral area (Riethm ̈uller et al. 2008 ) and 10 –20 per cent of its 

brightness (Yadav, Louis & Mathew 2018 ). The majority of UDs 

appear to form close to the edge of the umbra and subsequently 

migrate towards the sunspots’ centre at velocities of about 700 m s −1 

(Watanabe 2014 ). UDs have a lifetime ranging from 2.5 to 10 min 

(Riethm ̈uller et al. 2008 ; Watanabe, Kitai & Ichimoto 2009 ; Louis 

et al. 2012 ). Based on their location, UDs are divided into central 

and peripheral dots. The magnetic fields of the peripheral UDs are 

weaker (and inclined) and they appear brighter than those situated 

in the centre. According to Watanabe et al. ( 2009 ), UDs appear 

when the magnetic field is weaker and inclined and disappear where 

it is the field becomes stronger and vertical. Using Hinode blue- 

continuum observations, Watanabe ( 2014 ) found that, as sunspots 

progress, UDs become less dense and more clumped together. Ji 

et al. ( 2016 ) employed New Vacuum Solar Telescope observations 

to show that the lifetime of UDs located in several sunspots were 

correlated with the strength of the accompanying magnetic fields. 

They also found that the ef fecti ve diameter, intensity, and velocity 

are affected by the fluctuation in the magnetic field. Yadav, Mathew & 

Tiwary ( 2017 ) performed a statistical comparison of the properties 

of UDs using Hinode observations of seven sunspots seen in high- 

resolution, G-band continuum filtergrams and they found that the 

average ef fecti ve diameter of UDs is 270 km. Magnetoconvection 

numerical simulations using the MURaM code by Sch ̈ussler & 

V ̈ogler ( 2006 ) have shown that UDs are the result of narrow, 

upflo wing, convecti ve plumes with adjacent do wnflo ws. The physical 

parameters of UDs using high resolutions observational data were 

studied in great detail by, e.g. Feng et al. ( 2015 ), Yadav et al. 

( 2017 ), Kilcik et al. ( 2020 ), etc. Inhomogeneities in the magnetic 

field and plasma composition can dramatically alter the propagation 

of waves and the energy carried by them (Henriques et al. 2020 ; Yuan 

et al. 2023 ). 

The existence of waves and oscillations in sunspots has been 

e xtensiv ely studied since Beckers & Tallant ( 1969 )’s pioneering work 

demonstrated the oscillatory behaviour of sunspots by measuring 

observed parameters of umbral flashes. Beckers & Schultz ( 1972 ) 

detected three-minute oscillations in Doppler velocity in the umbral 

area. Subsequent studies have shown that the most significant 

oscillation periods in sunspots and pores are 5 min at photospheric 

heights and 3 min at chromospheric heights, while the periods of 

global sunspot oscillations vary from hours to days (Sekii et al. 

2007 ; Stangalini et al. 2011 ; Jess et al. 2012 ; Grant et al. 2015 ; Jess 

et al. 2015 ; Khomenko & Collados 2015 ). In addition, Stangalini 

et al. ( 2021 ) demonstrated that, in contrast to the anticipated 5 

min, the dominant oscillations of a magnetic pore observed with 

the Interferometric BIdimensional Spectropolarimeter (IBIS) have 

periods of 3 min in the photosphere. In contrast, studies involving 

numerous photospheric pores by Keys et al. ( 2018 ); Gilchrist-Millar 

et al. ( 2021 ); Grant et al. ( 2022 ) evidenced propagating waves with 

periods of 5 min. 

This paper focuses on the analysis of modifications in the spatial 

structure and propagation speed of guided slow-body MHD waves 

due to the presence of an inhomogeneous equilibrium density 

distribution. The background of our investigation is based on the fact 

that slow body modes correspond to those perturbations for which 

the total pressure becomes almost zero near the boundary of the 

wav e guide, as shown by Aldhafeeri et al. ( 2021 ), who demonstrated 

that in the case of slow body waves under photospheric conditions the 

dispersive character of waves and their properties can be confidently 

described by solving a Helmholtz equation with Dirichlet boundary 

condition, i.e. the total pressure perturbation vanishes at the boundary 

of the wav e guide. This study has also showed that slow body waves 

in the solar photosphere considering the total pressure perturbation 

or the longitudinal component of the velocity perturbation zero at 

the boundary of the wav e guide produces errors in eigenvalues that 

are less than 1 per cent from the values we would obtain by deriving 

the full dispersion relation. In our present investigations, we employ 

this result, as this approach considerably simplifies the analysis. 

The paper is structured as follows: in Section 2 we derive the 

go v erning equations for an inhomogeneous wav e guide assuming a 

constant plasma- β limit. This allows us to reduce our go v erning 

equation to a Sturm–Liouville eigenvalue problem. In Section 3 

we present the Fourier–Chebyshev Spectral (FCS) method which is 

employed to solve the governing equation, with the details presented 

in the Appendix. The changes in the spatial structures of slow 

body modes and the modifications of the phase speed of waves on 

the parameters characterizing the plasma environment and density 

inhomogeneity, i.e. its position, size, strength, and the thickness of the 

transition region between regions of different densities is discussed 

in Section 4 . Finally, our results are concluded and discussed in 

Section 5 . 

2  G OV E R N I N G  E QUAT I O N S  

The dynamics of slow body waves will be discussed within the 

framework of ideal MHD and the equations that describe the spatial 

and temporal evolution of physical quantities are given by 

D ρ

D t 
= ∇ · ( ρu ) , (1) 

ρ
D u 

D t 
= −∇p + 

1 

μ
[ ( ∇ × B ) × B ] , (2) 

D 

D t 

(

p ρ−γ
)

= 0 , (3) 

∇ × ( u × B ) = 
∂ B 

∂ t 
, ∇ · B = 0 , (4) 

where ρ is the plasma density, u is the velocity vector, p is the plasma 

pressure, B is the magnetic field, μ is the magnetic permeability 

of free space, and γ is the adiabatic index. In the abo v e equa- 

tions D / D t = ∂ / ∂ t + u · ∇ is the total material deri v ati ve. Assuming 

small perturbations in the physical variables the abo v e system of 

equations can be linearized by writing the physical quantities as 

the sum of their background (equilibrium) value ( f 0 ) and a small 

perturbation ( f ) of the form f 0 + f . In this approximation every term 

containing the product of two perturbations becomes ne gligible. F or 

the sake of simplicity, the equilibrium is considered as static. 

We consider a straight magnetic cylinder with constant radius R 

and the dynamics will be described in cylindrical coordinates ( r , θ , z). 

The constant equilibrium magnetic field, B 0 = B 0 ̂ z is directed along 

the z-axis. The equilibrium plasma density profile inhomogeneity is 
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denoted by ρ0 ( r , θ ) and the components of the velocity and magnetic 

field perturbations are u = ( u r , u θ , u z ) and b = ( b r , b θ , b z ). The 

perturbed quantities can be Fourier decomposed with respect to the 

coordinate z and time, t , by writing them proportional to e i ( kz − ωt ) , 

where k is the longitudinal wave number and ω is the angular 

frequency. With these considerations the system of MHD equations 

( 1 )–( 3 ) can be written as 

−iωρ + ρ0 

[

1 

r 

∂ 

r 
( ru r ) + 

1 

r 

∂ u θ

∂ θ
+ iku z 

]

+ u r 
∂ ρ0 

∂ r 
+ 

u θ

r 

∂ ρ0 

∂ θ
= 0 , (5) 

− iρ0 ωu r = −
∂ P T 

∂ r 
+ ik 

B 0 

μ
b r , (6) 

− iρ0 ωu θ = −
1 

r 

∂ P T 

∂ θ
+ ik 

B 0 

μ
b θ , (7) 

ωρ0 u z = kP T − k 
B 0 

μ
b z , (8) 

b r = −B 0 
k 

ω 
u r , b θ = iB 0 ku θ , 

b z = −iB 0 
1 

ωr 

∂ 

∂ r 
( ru r ) − iB 0 

1 

ωr 

∂ u θ

∂ θ
, (9) 

p = −i ρ0 
C 

2 
S 

ω 

[

1 

r 

∂ 

r 
( ru r ) + 

1 

r 

∂ u θ

∂ θ
+ i ku z 

]

, (10) 

where P T = p + B 0 b z / μ is the total (kinetic and magnetic) pressure 

perturbation, C S = 
√ 

γp 0 /ρ0 ( r, θ ) is the adiabatic sound speed and 

p 0 is the constant kinetic equilibrium plasma pressure. The abo v e 

equations can be reduced to a system of equations given only in terms 

of the components of the velocity and total pressure perturbations, 

as 

ρ0 

ω 

(

ω 
2 − k 2 V 

2 
A 

)

u r = −i 
∂ P T 

∂ r 
, (11) 

ρ0 

ω 

(

ω 
2 − k 2 V 

2 
A 

)

u θ = −i 
1 

r 

∂ P T 

∂ θ
, (12) 

ωρ0 u z = k P T + i 
k B 

2 
0 

μrω 

∂ 

∂ r 
( ru r ) + i 

k B 
2 
0 

μrω 

∂ u θ

∂ θ
. (13) 

In addition, from the definition of the total pressure perturbation, we 

have that 

P T = −i ρ0 
C 

2 
S + V 

2 
A 

ω 

[

1 

r 

∂ 

∂ r 
( ru r ) + 

1 

r 

∂ u θ

∂ θ

]

+ ρ0 
kC 

2 
S 

ω 
u z , (14) 

where V A ( r, θ ) = B 0 / 
√ 

μρ0 ( r, θ ) is the Alfv ́en speed. Using the 

expressions that connect velocity components with the total pressure 

perturbation given by equations ( 11 )–( 14 ), we can derive a single 

equation for the total pressure perturbation as 

∂ 

∂ r 

[ 

r 

ρ0 

(

ω 2 − k 2 V 
2 

A 

)

∂ P T 

∂ r 

] 

+ 
1 

r 

∂ 

∂ θ

[ 

1 

ρ0 

(

ω 2 − k 2 V 
2 

A 

)

∂ P T 

∂ θ

] 

−
m 

2 
0 r 

ρ0 ( ω 2 − k 2 v 2 A ) 
P T = 0 , (15) 

where the quantity m 
2 
0 is the magnetoacoustic parameter and it is 

defined as (Edwin & Roberts 1983 ) 

m 
2 
0 = −

(

ω 
2 − k 2 C 

2 
S 

) (

ω 
2 − k 2 V 

2 
A 

)

(

C 
2 
S + V 

2 
A 

) (

ω 2 − k 2 C 
2 
T 

) , (16) 

with C T = C S V A / 
√ 

C 
2 
S + V 

2 
A being the tube speed. We should men- 

tion here, that although the form of m 
2 
0 agrees with its counterpart in 

homogeneous plasma, here all phase speeds are functions of r and θ . 

In an inhomogeneous plasma with a density varying in the radial and 

azimuthal direction the system of equations describing the evolution 

of perturbations (see e.g. equations 11–13 ) is prone to the appearance 

of singularities that can lead to the appearance of resonances. The 

phenomenon of resonant absorption has been used e xtensiv ely as 

a mechanism to explain plasma heating by waves, scattering of p - 

modes by sunspots, and damping of kink oscillations of coronal 

loops, etc. (Sakurai, Goossens & Hollweg 1991 ; Keppens, Bogdan & 

Goossens 1994 ; Ballai, Erd ́elyi & Goossens 2000 ; Ruderman & 

Roberts 2002 ). Indeed, equation ( 15 ) becomes singular at ω = ±kV A . 

Ho we ver, since we are dealing with waves in the short wavelength 

limit, where the propagation speed of slow body waves approaches 

the internal sound speed, the singularities will not appear. 

In a homogeneous plasma, where ρ0 is independent on r and 

θ , the total pressure perturbation has an azimuthal symmetry, i.e. 

proportional to e im θ , where m is the azimuthal wavenumber. As a 

consequence, the go v erning equation for the total pressure perturba- 

tion inside the cylinder simplifies to 

d 2 P T 

d r 2 
+ 

1 

r 

d P T 

d r 
−

(

m 
2 
0 + 

m 
2 

r 2 

)

P T = 0 . (17) 

The sign of m 
2 
0 plays an important role, as for a combination of the 

characteristic speeds for which m 
2 
0 > 0, the flux tube supports the 

propagation of surface wa ves, i.e. wa ves that ha ve their maximum 

amplitude at the boundary of the wav e guide and show an e v anescent 

behaviour inside the structure. For m 
2 
0 = −n 2 0 < 0, waves propagat- 

ing along the flux tube will be body waves that have an oscillatory 

behaviour inside the flux tube and attain their minimum value at the 

boundary (Edwin & Roberts 1983 ). 

According to the study by Edwin & Roberts ( 1983 ) the dispersion 

relation of MHD waves is obtained by matching the solutions 

obtained inside the magnetic flux tube (see equation 17 ) with the 

e v anescent solutions obtained outside the flux tube. This matching 

implies the continuity of the total pressure and the radial component 

of the velocity perturbations at the boundary of the tube. The disper- 

sion relations help in categorizing the possible waves propagating in 

a magnetic flux tube. Waves can oscillate such that the boundaries 

oscillate in phase (these modes are called the kink modes), but also 

waves for which the boundaries oscillate in anti-phase (also called 

sausage modes). Finally, cylindrical magnetic waveguides support 

the propagation of higher-order modes (called fluting modes) that 

disturb the symmetry axis of the wav e guide in a more complicated 

way. Among all possible modes predicted by the theory developed by 

Edwin & Roberts ( 1983 ), the slow body modes analysed in our study 

are confined to the region between the tube speed, C T , and the sound 

speed inside the tube, C S . It is worth noting that the phase speed 

of slow body waves increases with increasing the wavenumber k or 

decreasing wavelength. In the thick flux tube approximation under 

photospheric conditions, the phase speed of slow body modes tends 

towards the internal sound speed, C S . 

Let us return to the inhomogeneous flux tube case. Since we 

are interested in body waves, from now on we will use n 2 0 as our 

magnetoacoustic parameter. In our analysis we will restrict ourselves 

to the thick flux tube limit, i.e. we consider that the wavelength 

of waves is much smaller than the radius of the tube ( kR ≫ 1). 

Furthermore, we assume that in this limit the behaviour of slow body 

modes is similar to the one in a homogeneous wav e guide, therefore 

the phase speed of waves can be written as ω 
2 /k 2 ≈ C 

2 
S (1 − ν), where 

ν is a small dimensionless positive quantity and ν = 1 − ω 
2 /k 2 C 

2 
S . 

Let us rewrite equation ( 15 ) for slow body modes into dimen- 

sionless form by introducing the new variable ˜ r = r/R. From now 

on, for simplicity, will drop the tilde . As a result, the dimensionless 
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go v erning equation for the total pressure perturbation ( 15 ) becomes 

∂ 

∂ r 

[

r 

ρ0 ( C 
2 
S − V 

2 
A ) 

∂ P T 

∂ r 

]

+ 
1 

r 

∂ 

∂ θ

[

1 

ρ0 ( C 
2 
S − V 

2 
A ) 

∂ P T 

∂ θ

]

+ 
n 2 0 rR 

2 

ρ0 ( C 
2 
S − V 

2 
A ) 

P T = 0 . (18) 

By taking into account that the equilibrium plasma pressure is a 

constant quantity (in the presence of a homogeneous equilibrium 

magnetic field, this would correspond to the constant plasma- β limit), 

the coefficient function present in the terms of the abo v e equation can 

be written as 

1 

ρ0 ( C 
2 
S − V 

2 
A ) 

= 
1 

ρ0 

(

γp 0 /ρ0 − B 
2 
0 /μρ0 

)

= 
1 

(

γp 0 − B 
2 
0 /μ0 

)

= 
1 

B 
2 
0 /μ0 

1 

( γβ/ 2 − 1 ) 
. (19) 

Here the plasma- β is constant and V 
2 

A /C 
2 
S = 2 /γβ. As a result, the 

go v erning equation for the total pressure perturbation becomes 

∂ 

∂ r 

(

r 
∂ P T 

∂ r 

)

+ 
1 

r 

∂ 
2 P T 

∂ θ2 
− ( k R ) 2 

×
(

1 −
ω 

2 

k 2 C 
2 
S ( r, θ ) 

)(

1 −
2 

γβ

)

rP T = 0 . (20) 

The only term that contains information about the inhomogeneous 

character of the plasma is via the sound speed, C S ( r , θ ), that appears 

in the third term of the abo v e equation. 

Before proceeding with our analysis we need to mention that our 

investigation is strictly applicable to slow body waves in the short 

wavelength limit, i.e. when the wavelength of waves is shorter than 

the radius of the circular wav e guide. This limit is more likely to 

be applicable to larger sunspots and not to pores that can appear in 

different sizes. Indeed, the study by Gilchrist-Millar et al. ( 2021 ) 

showed that magnetoacoustic modes in small pores propagate with 

speeds of about 10 km s −1 , so the applicability of short wavelength 

in this case is questionable. 

2.1 Transverse density profile 

The inhomogeneous equilibrium plasma density distribution will be 

represented as a local density enhancement or depression of circular 

shape that depends on the variables r and θ in the form 

ρ0 ( r, θ ) = ρ2 χ ( r, θ ) , (21) 

where χ ( r , θ ) is the dimensionless quantity 

χ ( r, θ ) = 

{

1 + 
( σ − 1 ) 

2 

[

1 − tanh 

(

ψ( r, θ ) − τ

ξ

)]}

. 

Here, σ = ρ1 / ρ2 is the ratio of densities between the maximum value 

inside the inhomogeneous density region ( ρ1 ) and the homogeneous 

density in the annulus between the density enhancement/depletion 

and the circular wav e guide ( ρ2 ). The function ψ( r , θ ) is defined as 

ψ( r, θ ) = 

√ 

( ar cos ( θ ) − ǫ1 ) 2 + ( br sin ( θ ) − ǫ2 ) 2 , 

where ǫ1 and ǫ2 , describe the location of the centre of the density 

enhancement/depletion, τ is the ratio of the radii of the density 

inhomogeneity and the circular magnetic flux tube with 0 < τ < 1, 

ξ is the width of the annulus where the change of density occurs, i.e. 

gradual transition of density between two regions and a and b are 

Figure 1. A schematic representation of the local equilibrium plasma density 

profile inhomogeneity inside the cylindrical waveguide in the case of a density 

enhancement (left column) and density depletion (right column). The top row 

shows the 3D configuration of density, while the bottom row represents a 

horizontal cut in the density distribution. The plots show (for illustration) an 

eccentric distribution of density with ǫ1 �= 0 and ǫ2 = 0. 

two quantities that describe the dimensionless length of the major 

and minor axis of an ellipse. The case a = b = 1 corresponds to 

the circular density inhomogeneity and a �= b refers to a case where 

the density inhomogeneity has an elliptical shape. When ǫ1 = ǫ2 = 

0 we have a concentric density loading, while for any other pair 

of values, we have an eccentric case. Fig. 1 shows a representative 

distribution of the inhomogeneous equilibrium plasma density profile 

in the case of a density enhancement (panel a) and density depletion 

(panel b). The spatial structure of various slow body modes and the 

variation of the dimensionless eigenvalues for slow body modes, 

V ph = ω/ kC S with respect to the parameters of the inhomogeneous 

equilibrium plasma density distribution will be studied numerically 

employing a suitable numerical algorithm for such a problem. The 

reco v ered dimensionless eigenvalues of our problem could also be 

interpreted as a quantitative measure of the change in the frequency. 

Given the particular equilibrium plasma model mentioned abo v e, the 

inhomogeneous character of the plasma appears through the last term 

of equation ( 20 ), which can be written with the help of equation ( 21 ) 

as 

ω 
2 

k 2 C 
2 
S ( r, θ ) 

= 
ω 

2 ρ0 ( r, θ ) 

k 2 γp 0 
= 

ω 
2 ρ2 

k 2 γp 0 

ρ0 ( r, θ ) 

ρ2 
= 

ω 
2 

k 2 ˜ C 
2 
S 

χ, (22) 

where ˜ C 
2 
S denotes the constant sound speed in the homogeneous 

annulus of density ρ2 . As before, for simplicity, will drop the tilde 

symbol. As a result, the go v erning equation for the total pressure 

becomes 

∂ 

∂ r 

(

r 
∂ P T 

∂ r 

)

+ 
1 

r 

∂ 
2 P T 

∂ θ2 
− ( k R ) 2 

×
(

1 −
ω 

2 

k 2 C 
2 
S 

χ

)(

1 −
2 

γβ

)

rP T = 0 . (23) 

The quantity ω/ kC S = V ph is the dimensionless phase speed of waves. 

The abo v e equation is a Sturm–Liouville eigenvalue equation and the 
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Table 1. Values of the physical parameters used for the numerical modelling and analysis. Unless specified 

otherwise, for each case we consider kR = 4 and β = 3 × 10 −3 . 

σ τ ξ ǫ1 ǫ2 

C1: Uniform density 1 

C2: Non-uniform density enhancement 

C2.1: – concentric 2.5 0.3 9.1 × 10 −2 0 0 

C2.2: – right eccentric 2.5 0.3 9.1 × 10 −2 0.25 0 

C2.3: – upper right eccentric 2.5 0,3 9.1 × 10 −2 0.25 0.25 

C3: Non-uniform density depletion 

C3.1: – concentric 0.5 0.7 9.1 × 10 −2 0 0 

C3.2: – right eccentric 0.5 0.7 9.1 × 10 −2 0.25 0 

C3.3: – upper right eccentric 0.5 0.7 9.1 × 10 −2 0.25 0.25 

C4: Variation of V ph 

C4.1: 2 ≤ kR ≤ 10 2.5; 0.5 0.3; 0.7 9.1 × 10 −2 0; 0.35 0; 0.35 

C4.2: 3 × 10 −6 ≤ β ≤ 3 × 10 −3 2.5; 0.5 0.3; 0.7 9.1 × 10 −2 0; 0.35 0; 0.35 

C4.3.1: 2 ≤ σ ≤ 10 0.3; 0.7 9.1 × 10 −2 0; 0.35 0; 0.35 

C4.3.2: 0.45 ≤ σ ≤ 0.9 0.3; 0.7 9.1 × 10 −2 0; 0.35 0; 0.35 

C4.4: 0.3 ≤ τ ≤ 0.7 2.5; 0.5 9.1 × 10 −2 0; 0.35 0; 0.35 

C4.5: 1.8 × 10 −5 ≤ ξ ≤ 0.1 2.5; 0.5 0.3; 0.7 0; 0.35 0; 0.35 

C4.6: 0.1 ≤ ǫ1 ≤ 0.5 2.5; 0.5 0.3; 0.7 9.1 × 10 −2 0; 0.35 

eigenvalues as well as the corresponding eigenfunctions can be de- 

termined using a numerical approach for particular inhomogeneous 

density distribution assuming that P T ( r , θ ) = 0 at the boundary of 

the tube corresponding to r = 1. 

3  DESC R IPTION  O F  T H E  N U M E R I C A L  

M E T H O D  

Given the particulars of the problem, the most suitable method 

to deal with such an equation is the FCS collocation method 

o v er the Dirichlet boundary condition P T ( r = 1, θ ) = 0. Spectral 

collocation methods appear to offer the greatest accuracy for the 

least computational expense for this class of problems. In order to 

implement the numerical algorithm, equation ( 23 ) can be written as 

∂ 

∂ r 

(

r 
∂ P T 

∂ r 

)

+ 
1 

r 

∂ 
2 P T 

∂ θ2 
+ κ2 

0 rP T − κ2 
0 χV 

2 
ph rP T = 0 , (24) 

where κ2 
0 = −( k R ) 2 (1 − 2 /γβ). To implement the FCS and obtain 

the eigenvalues and the corresponding eigenfunctions of equation 

( 24 ), we will write this equation in a compact form as 

( 

∂ 
2 

∂ r 2 
+ 

1 

r 

∂ 

∂ r 
+ 

1 

r 2 

∂ 
2 

∂ θ2 
+ κ2 

0 − κ2 
0 χV 

2 
ph 

) 

P T = 0 . (25) 

Our numerical model is smoothly non-uniform allows a gradual 

decrease in density of the loaded regions and a v oids abrupt change 

in density. To capture the rapid variation in density, a larger number 

of grid points are required for the non-uniform cross-sectional 

configurations of magnetic flux tube, particularly in the radial 

direction. Details on the numerical solution of the abo v e go v erning 

equation are provided in the Appendix. 

4  RE SULTS  

In this section, we will analyse the dependence of the phase speed 

of slow body modes and the spatial structure of the total pressure 

perturbation on the magnetic flux tube density inhomogeneity under 

solar photospheric conditions. 

Figure 2. The density distribution (upper left panel) and the spatial structure 

of SSFB, SKFB, and SF2FB modes under photospheric conditions in a 

circular magnetic flux tube with uniform density ( σ = 1). The colour bars 

display the magnitude of the total pressure perturbation amplitude divided 

by its maximum value. The red and blue shaded regions represent crests 

(maxima) and valleys (minima) of amplitude variation of total pressure 

perturbation. 

4.1 The spatial structure of slow body modes in the presence of 

a uniform density 

The propagation of the MHD waves in a homogeneous cylindrical 

wav e guide with uniform equilibrium density corresponds to case C1 

(see Table 1 ), i.e. to the particular value of σ = 1 in equation ( 21 ) and 

previously this scenario was studied in detail by Edwin & Roberts 

( 1983 ). Fig. 2 shows the homogeneous distribution of normalized 

equilibrium density (left upper panel) and the spatial structure of the 

total pressure perturbation in the case of slow sausage fundamental 

body (SSFB, right upper panel), slow kink fundamental body (SKFB, 

left lower panel) and slow fluting fundamental body mode of order 

2 (SF2FB, right lower panel). These results clearly show that in 

the homogeneous limit, slow body modes of different azimuthal 

order have global harmonic character. The colour bar displays the 

magnitude of the dimensionless amplitude of the total pressure 

perturbation, P T , with the red and blue shaded regions representing 

crests (maxima) and valleys (minima) of the amplitude. 
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Figure 3. The same modes as in Fig. 2 , but here we show the results in the 

presence of a concentric density enhancement. All characteristic values of 

parameters used in these numerical solutions correspond to the case C2.1 in 

Table ( 1 ). 

4.2 The spatial structure of slow body modes in the presence of 

a non-uniform density 

The changes in the spatial structure of slow body waves as well 

as the modification of the dimensionless phase speed in terms 

of the parameters of local equilibrium plasma density given by 

equation ( 21 ) will be discussed when the inhomogeneous density 

is represented as a local density enhancement ( σ > 1) and density 

depletion ( σ < 1). The modifications in the oscillatory patterns of 

waves are analysed for three particular positions of the equilibrium 

density loading, e.g. concentric (case C2.1), right eccentric (case 

C2.2), and upper right eccentric (case C2.3). The description of 

parameters related to these three cases is described in Table 1 . 

4.2.1 Slow body modes in the presence of concentric and eccentric 

density enhancements 

Due to the changes in the values of the radial distribution of 

equilibrium density, it is expected that the dimensionless phase speed 

and the spatial structure of slow body waves will be modified. Let 

us first discuss the case C2.1. Fig. 3 shows the radial distribution of 

the equilibrium density and the spatial distribution of the normalized 

value of the total pressure perturbation of SSFB, SKFB, and SF2FB 

modes. In the presence of concentric inhomogeneity the correspond- 

ing eigenmodes migrate towards the boundary of the wav e guide, i.e. 

in the direction of lower density. By comparing Figs 2 and 3 it is 

evident that obtained MHD modes become more localized but, at the 

same time, maintain their symmetry with respect to the centre of the 

flux tube. The regions where no oscillations are possible correspond 

to the combination of physical parameters that will make the value of 

n 2 0 in equation ( 18 ) change sign, so the go v erning equation does not 

describe the eigenfunction of a body mode. Surf ace w aves cannot 

be cast in our description, as we had to impose a Dirichlet-type 

boundary condition, that cannot be applied to surface waves. These 

regions simply show that here we have no slow body modes. 

The enhanced eccentric equilibrium density distribution corre- 

sponds to a density loading whose position is shifted away from 

the origin (case C2.2) and the position of its centre is controlled by 

the two parameters, ǫ1 and ǫ2 . In reality, the position of the inho- 

mogeneous density loading can be arbitrary, ho we ver, in this study 

we discuss only cases that correspond to the shifted inhomogeneous 

density along the horizontal axis (Fig. 4 , parameters given by case 

Figure 4. The same MHD modes as in Fig. 3 , but here we show the results 

for an eccentric density loading, situated along the horizontal direction. The 

parameters used for this visualization are given as case C2.2 in Table 1 . 

Figure 5. The same MHD modes as in Fig. 3 , but here we show the results for 

an eccentric density loading, situated along the first bisector. The parameters 

used for this visualization are given as case C2.3 in Table 1 . 

C2.2), and a position where both quantities describing the location 

of the density load are non-zero (Fig. 5 , parameters given by case 

C2.3 in Table 1 ). 

Fig. 4 shows the radial distribution of the equilibrium density and 

the spatial structure of the normalized total pressure perturbation 

for the same slow body modes as before. Due to the considered 

density loading, the spatial extent of the eigenfunction shrinks and 

the global nature of these modes ceases. Comparing Figs 2 and 4 , 

it is evident that the oscillations are shifted, again, towards regions 

of lower density, so they become more localized. When the density 

inhomogeneity is shifted along an arbitrary direction (along the first 

bisector as in Fig. 5 , the modification in the spatial structure of modes 

remains qualitatively the same. 

4.2.2 Slow body modes in the presence of concentric and eccentric 

equilibrium density depletions 

In the case of a depleted density inhomogeneity, the maximum value 

of density of the inhomogeneous region is less than the density of 

the homogeneous part of the wav e guide, i.e. σ < 1. The values 

of parameters used for our numerical investigations are given in 

Table 1 (case C3). Fig. 6 (case C3.1) shows the spatial structure of 

the normalized total pressure perturbation corresponding to the same 
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Figure 6. The same as in Fig. 3 but for the case of depleted concentric 

equilibrium density inhomogeneity. The parameters used for this visualization 

are given as case C3.1 in Table 1 . 

Figure 7. The same as in Fig. 6 , but here the depleted density region is 

situated in an eccentric position along the horizontal axis. The parameters 

used for this visualization are given as case 3.2 in Table 1 . 

Figure 8. The same as in Fig. 6 but here the depleted density inhomogeneity 

is placed along the first bisector. The parameters used for this visualization 

are given as case 3.3 in Table 1 . 

body modes as before in the case of concentric loading, while Figs 7 

(case C3.2) and 8 (case C3.3) show the spatial structure of the total 

pressure for an eccentric loading, when the density inhomogeneity 

is placed along the horizontal axis and in a position along the first 

bisector. 

The results obtained for this case confirm the previous findings, 

namely that in the case of an inhomogeneous distribution of the 

equilibrium plasma density, the modes tend to lose their global char- 

acter, instead they become localized in the region that corresponds 

to the lowest density. However, in contrast to the case C2 of density 

enhancement, in this case, the modes tend to be attached to the 

region of equilibrium density inhomogeneity. Moreover, unlike the 

distorted shape of modes found in case C2, the slow body modes 

in the depleted density case maintain their symmetric character. As 

before, the spatial structure of slow body modes does not change if 

the density loading is placed along the horizontal or vertical axes. 

The migration of the location of modes in the presence of density 

inhomogeneity obtained for the density enhancement and depletion 

reveals one important consequence for observations. A localized 

wave observation in a sunspot could be a way to identify the 

location of a density inhomogeneity in the umbral re gion, ev en if 

this inhomogeneity cannot be seen in observations. 

4.3 Comparati v e study of the variation of the phase speed of 

slow body modes in the presence of an inhomogeneous density 

distribution 

The results presented in the previous section show that the spatial 

structure of slow body modes propagating in a circular wav e guide 

is influenced by a density inhomogeneity by the modifications in 

the location of these modes. Ho we ver, due to the modification in 

the azimuthal symmetry, it is natural to expect that these modes are 

affected by changes in the phase speed of waves or their frequency. 

To address this problem in this section we carry out a comparative 

study of the variation of the dimensionless phase speed of body 

waves (or their dimensionless frequency) in terms of the parameters 

related to the plasma environment in which these waves propagate 

and wave characteristics (dimensionless wavenumber, kR , plasma- 

β), but also in terms of the parameters describing the inhomogeneous 

density ( σ , τ , ξ and the values of the ǫ parameters). The details of 

the parameters used are summarized in Table 1 (case C4). The first 

two parameters ( kR and β) are parameters that influence the solution 

through equation ( 23 ). The study will be performed considering the 

homogeneous density case as a benchmark value. 

As the mathematical model described earlier refers to the short 

wavelength limit (wide flux tube), first we investigate the variation 

of the dimensionless phase speed of waves with the dimensionless 

wavenumber of body waves (for a constant tube radius the variation 

of the kR parameter is, in fact, describing the variation of the 

wavenumber, with increasing kR corresponding to a decrease in 

the wavelength of waves). Fig. 9 (left panel) shows the variation 

of dimensionless phase speed for the three slow body modes with 

respect to kR in the case of uniform density: SSFB (solid line), 

SKFB (dash line) and SF2FB (dotted line). The three waves show 

a distincti ve dispersi ve character for lower values of kR , while their 

dimensionless phase speed becomes practically independent of the 

w avelength of w aves for higher values of kR , the dimensional speed 

of each wave tending to the sound speed, C S . Since waves propagate 

faster for smaller wavelengths, these waves are known to have a 

positive dispersion. The behaviour of modes obtained here is similar 

to the variation of the phase speed determined by Edwin & Roberts 

( 1983 ). This result also pro v es our initial assumption according to 

which the Dirichlet boundary condition imposed in our case would 

not modify qualitatively or quantitatively the solution of dispersion 

relation obtained in the case of body modes (in line with the recent 
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Figure 9. The variation of the dimensionless phase speed of slow body waves with the dimensionless wavenumber kR for a uniform loading with σ = 1 (left 

panel) for the three slow body modes (SSFB, solid blue curve), SKFB (dashed blue curve), SF2FB (dotted blue curve. Middle panel: the variation of the same 

quantity in the case of an inhomogeneous density enhancement at three different positions (shown in the legend). Right panel: the variation of the same quantity 

for a depleted density inhomogeneity for the same three positions. The values of parameters used in these plots are given as case 4.1 in Table 1 . 

Figure 10. The same as in Fig. 9 , but here we investigate the variation of the dimensionless phase speed with respect to plasma- β. The values of parameters 

used in these plots are given as case 4.2 in Table 1 . 

findings by Aldhafeeri et al. ( 2022 )). For a particular wavenumber, 

it is clear that the fluting mode is the most sensitive to the variation 

in size of the wav e guide, confirming the results by Albidah et al. 

( 2022 ). 

The middle and right panels of Fig. 9 show the variation of 

dimensionless phase speed for the same slow body modes with 

respect to kR in the case of density enhancement and depletion, 

respectively. The three positions of the density inhomogeneity are 

sho wn by dif ferent colours: concentric (red) and two eccentric cases 

(green and blue). Similar to the case of uniform plasma, in the 

enhanced and depleted density distribution we observe the same 

dispersive character for smaller values of kR and the dimensionless 

phase speed becoming practically independent on the wavelength 

of waves for the higher values of kR . Comparing the values of 

the dimensionless phase speed in the three cases, it is evident 

that the density enhancement leaves practically the dimensionless 

phase speed unchanged, while the density depletion brings a more 

significant reduction in the dimensionless phase speed (of nearly 40 

per cent) compared to the homogeneous case. In the case of density 

enhancement, the concentric distribution of density leads to a much 

more differentiated behaviour of the dimensionless phase speed, 

especially in the case of sausage modes. Interestingly, in the depleted 

density distribution the modes show a larger variation with respect to 

the position of the density inhomogeneity, ho we ver, the distinction of 

waves’ phase speed with regards to the position of the inhomogeneity 

vanishes. These plots show that once a density inhomogeneity is 

taken into account, the phase speeds of particular waves become 

much closer, making them rather difficult to distinguish from one 

another. 

Another important parameter that plays a crucial role in the 

propagating characteristic of waves is the plasma- β. In the solar 

photosphere the intensive magnetic field in sunspots or pores makes 

this parameter very small. Eq ( 23 ) confirms that the eigenvalues 

determined for the studied slow waves will also depend on the 

plasma- β. Fig. 10 (left panel) shows the variation of the slow 

waves’ dimensionless phase speed with the plasma- β parameter for 

a homogeneous density ( σ = 1). Clearly, for very low plasma β, 

the value of ω/ kC S is approximately 1 for all three eigenmodes 

and corresponds to the value of the phase speed in an unbounded 

plasma. With the increase of plasma- β, the value of ω/ kC S decreases 

fairly linearly for all the three eigenmodes, ho we ver, these changes 

are rather small and the most affected mode is the fluting mode of 

order 2. The middle and right panels of Fig. 10 show the variation 

of phase speed for the same slow body modes with respect to the 

same parameter in the case of density enhancement ( σ > 1) and 

depletion ( σ < 1). The locations of density inhomogeneity (and 

the colours used to represent these) are identical to the ones used 

in Fig. 9 . Similar to the case of uniform plasma, the variation of 

the dimensionless phase speed shows the same decreasing pattern 

with the increase of plasma- β. Similar to the results shown in Fig. 9 

the density enhancement does not lead to significant changes in the 

variation of the phase speed, while these changes are more significant 

in the case of depleted density inhomogeneity. While in the case of 

density enhancement, there is a clear dependence of the phase speed 

in terms of the location of the inhomogeneity (the concentric case 

showing the lowest values), the differentiation of the same mode for 

the three different locations ceases, practically they are independent 

on the location of the density inhomogeneity. 
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Figure 11. The same as in Fig. 9 , but here we show the variation of the dimensionless phase speed with respect to the parameter σ in the case of a density 

enhancement (left panel) and density depletion (right panel). The values of parameters used in these plots are given as case C4.3.1 (left panel) and case C4.3.2 

(right panel) in Table 1 . 

Figure 12. The same as in Fig. 9 , but here we plot the variation of the dimensionless phase speed of different slow body waves in terms of the parameter τ in 

the case of density enhancement (left panel) and depletion (right panel). The values of parameters used in these plots are given as case C4.4 in Table 1 . 

Let us now discuss the variation of the dimensionless phase speed 

of slow waves of different azimuthal order in terms of the parameters 

describing the density inhomogeneity (cases C4.3.1–C4.6 in Table 1 ). 

Fig. 11 (left panel) shows the variation of ω/ kC S for the three 

slow body modes in terms of the parameter σ in the case of a 

density enhancement, with the value of σ = 1 corresponding to 

the homogeneous density. As before, the different line styles and 

colours sho w dif ferent slo w body modes and three different positions 

of density inhomogeneity. With the increase in the value of σ the 

dimensionless phase speed decreases for all three eigenmodes. This 

decrease is more pronounced near σ = 1 and becomes fairly linear 

for larger values of σ . From the figure (and all subsequent cases 

discussed in this study) it is obvious that the fundamental slow 

sausage mode has the highest propagation speed. For a particular 

value of σ the differences in the propagation speed of these three 

waves are very small. The largest modification in the phase speed 

of waves occurs in the case of concentric loading, and the changes 

of this quantity with the strength of inhomogeneity for any eccentric 

position have little variation. 

Fig. 11 (right panel) shows the variation of ω/ kC S of slow body 

modes for a depleted density loading with respect to σ . In contrast 

to the case of an enhanced density, the dimensionless phase speed of 

the investigated slow waves shows a much stronger dependence on 

the value of the density inhomogeneity, ho we v er, wav es propagate 

with the same phase speed, regardless of the position of the density 

depletion, meaning that observationally it would be impossible to 

distinguish between these waves if we restrict our mode identification 

based on the propagation speed. The propagation speeds of waves in 

this case are also independent of the type of waves, all body waves 

(regardless of their radial order) tend to propagate with the same 

phase speed. 

The variation of the dimensionless phase speed of selected slow 

body modes with respect to the parameter τ (case C4.4 in Table 1 ), 

denoting the ratio of the radii of the density inhomogeneity to the 

radius of the tube, in the case of a density enhancement and depletion, 

is shown in the two panels of Fig. 12 . The meaning of different line 

styles and colours is identical to previous cases. In the case of density 

enhancement, with the increase in the size of the inhomogeneity, 

the dimensionless phase speeds decrease very little for eccentric 

density loading, while the variation of the phase speed in the case of 

concentric loading shows the most accentuated v ariation, ho we ver, 

the distinction of the type of waves ceases. These conclusions are 

similar to the findings on the variation of the modes’ phase speed 

with the parameter σ . 

Fig. 12 (right panel) shows the variation of ω/ kC S for the same three 

slow body modes with respect to the parameter τ when the density 

inhomogeneity takes a depleted value (see case C4.4 in Table 1 ). 

With the increase of the size of the inhomogeneous region, the value 
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Figure 13. The same as in Fig. 9 , but here we display the variation of the dimensionless phase speed of slow body waves in terms of the smoothness parameter, 

ξ (see case C4.5 in Table 1 ), in the case of an equilibrium density enhancement (left panel) and depletion (right panel). The values of parameters used in these 

plots are given as case C4.5 in Table 1 . 

Figure 14. The variation of the dimensionless phase speed of slow body waves in terms of the parameter ǫ1 for two particular values of ǫ2 . The cases of density 

enhancement and depletion are shown in the right and left panels, respectively. The values of parameters used in these plots are given as case C4.6 in Table 1 . 

of ω/ kC S increases, and the variation of the dimensionless phase 

speed is practically independent of the location of the inhomogeneity. 

This result has interesting implications, as the location of the 

inhomogeneous region can be chosen, for modelling purposes, in 

a position that is most suitable for modelling. In the depleted density 

case the fundamental sausage mode displays the smallest variation 

with the ratio of radia, τ . Comparing the two panels of Fig. 12 it is 

obvious that the phase speeds corresponding to a depleted case show 

a much enhanced variation with τ . 

The variation of the dimensionless phase speed of the investigated 

slow body waves with respect to the smoothness parameter, ξ (see 

case C4.5 in Table 1 ), is shown in Fig. 13 for an inhomogeneous 

equilibrium density enhancement (left panel) and density depletion 

(right panel), respectively. In the case of a density enhancement the 

values of the phase speed decrease for all three modes with the 

increase in the value of ξ . This decrease is fairly linear except for 

sausage modes for concentric loading. As before, for a particular 

value of ξ , the sausage mode has the highest propagation speed. The 

phase speed of waves for a concentric density distribution shows the 

largest variability. On the other hand, in the case of depleted density, 

the phase speed of waves is much reduced compared to the case of 

density enhancement and the variation of the dimensionless phase 

speed for the three modes shows a great degree of independence on 

the location of the inhomogeneity. The most affected mode remains 

the fluting and sausage modes. They are practically independent 

of the change of the smoothness parameter in the case of depleted 

density. 

Finally, in Fig. 14 we investigate the variation of the dimensionless 

phase speed for the three investigated slow body modes in terms of 

the position of the centre of the density inhomogeneity. For this 

parametric analysis, we let the value of the parameter ǫ1 (see case 

C4.6 in Table 1 ) vary in a given interval and choose two particular 

values of ǫ2 : ǫ2 = 0 (red curves) and ǫ2 = 0.35 (green curves). The 

two panels of Fig. 14 represent the cases of density enhancement, 

respectively. With the increase in the value of the parameter ǫ1 , 

the dimensionless phase speed of investigated slow body modes 

corresponding to a density enhancement increases with the departure 

from the concentric case, but the difference between the phase speed 

corresponding to the two particular values of ǫ2 diminishes with the 

increase of ǫ1 . It is also clear that the increase with ǫ1 is nearly 

linear when the density inhomogeneity is not along the horizontal 

axis. F or a giv en value of ǫ1 , the fundamental sausage modes have 

the highest propagation speed. In the case of depleted density, the 

dimensionless phase speed of slow body waves shows practically no 

(or little) variation with the location of the density inhomogeneity, 

meaning that when modelling the effect of density inhomogeneity 

on the propagation characteristics of waves we can choose the most 

convenient location. 
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5  C O N C L U S I O N S  

Intense magnetic wav e guides in the solar photosphere, such as pores 

and sunspots, are ideal environments for the propagation of guided 

wav es. The theory dev eloped by Edwin & Roberts ( 1983 ) predicts 

the qualitative behaviour of different waves in such environments 

assuming an ideal case when the plasma is homogeneous, without 

background flows, and unbounded along the symmetry axis of 

the magnetic flux tube. High-resolution observations show that 

these restrictions are not realistic and the theory of guided MHD 

waves must be expanded to account for the presence of density 

inhomogeneity. 

Observ ations sho w that sunspots and pores are inhomogeneous 

both in magnetic field and density. These inhomogeneities can alter 

the frequency of waves and their propagation speed leading to a 

real challenge to identify the nature of waves and their properties. 

This study investigates the modification of the properties of waves 

(their spatial structure, phase speed or frequency, in particular) 

in the presence of a symmetric and geometrically well-defined 

inhomogeneity. 

In order to tackle the problem mathematically we employed results 

previously obtained by Aldhafeeri et al. ( 2022 ), who showed that 

in the case of slow body waves under photospheric conditions the 

dispersive character of waves and their properties can be confidently 

described by solving a Helmholtz equation with Dirichlet boundary 

condition. In addition, we assumed a situation when the wavelength 

of waves is much smaller than the radius of the tube (short wavelength 

limit). The eigenfrequency as well as the eigenfunction of waves was 

studied as a Sturm–Liouville eigenvalue problem and the go v erning 

equation with non-constant coefficients was solved numerically using 

the FCS method. 

The inhomogeneous equilibrium plasma density considered here 

was described by a series of parameters with the aim of highlighting 

what effects these parameters have on the characteristics of waves. In 

order to provide a general approach, we have considered both cases 

of an enhanced and depleted equilibrium plasma density. 

Since our model assumed a photospheric wav e guide where the 

equilibrium plasma pressure is constant, these equilibrium density 

enhancements and depletions would appear as cooler (darker) and 

hotter (brighter) regions inside a magnetic wav e guide. The advantage 

of the density profile given by equation ( 21 ) is its versatility for 

modelling purposes. The large number of parameters used to describe 

the strength, size, location, etc., of the equilibrium density helps to 

describe realistic situations. 

First of all, we conclude that a significant change driven by 

the inhomogeneous equilibrium plasma density is the modification 

in the spatial structure of waves. A direct consequence of the 

particular density distribution is that slow body waves in cylindrical 

wav e guides lose their global character, instead, they become more 

localized and al w ays tend to appear in the regions that correspond 

to a lower density. This property might help identify locations of 

density inhomogeneity when these are not visible in intensity spectral 

lines. 

The parameters that describe the equilibrium plasma density 

modification (strength, location, size, smoothness of the transition 

to a homogeneous density) affect the modes in different ways. In 

general, the eigenfrequencies of fluting modes are more sensitive to 

the modifications of the equilibrium plasma density parameters. In 

the case of depleted density, the modifications in the phase speed 

of waves are more important (nearly 40 per cent decrease) and the 

differentiation between different modes according to the size of the 

inhomogeneity or its location very often is very small, meaning that 

for modelling purposes one can choose the most convenient location 

for equilibrium plasma density inhomogeneity. 

The analysis and the numerical recipe in this study can be 

considered as a starting point in the investigation of waves in re- 

alistic solar photospheric wav e guides, where the equilibrium plasma 

density inhomogeneity derived from observations or realistic sunspot 

simulations can be incorporated in the study of the properties of slow 

body waves. This analysis can be considered as a tool for diagnostic 

of the inhomogeneous character of sunspots or pores; ho we ver, this 

diagnostics is rather qualitative, rather than quantitative. The choice 

of a wav e guide of high symmetry is not entirely realistic; ho we ver, 

it allows us to use a fairly simple mathematical approach and the 

obtained results show the modifications of the properties of waves 

due solely to the density inhomogeneity. It is known (see e.g. Albidah 

et al. 2021 , 2022 ) that the irregular shape of the waveguides has very 

serious effects on the spatial structure of waves, especially in the 

case of higher order modes. The constant plasma- β limit considered 

here is also a rather crude approximation. Observations show (see 

e.g. Gary 2001 ; Grant et al. 2018 ) that the plasma beta changes o v er 

small spatial scales, and around the density inhomogeneities the 

plasma beta may exhibit a sharp gradient. Finally, a more realistic 

model, involving inhomogeneous magnetic field and temperature, 

will be developed and studied in the near future. 
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APP ENDIX :  D ETA ILS  O F  T H E  N U M E R I C A L  

SETUP  USED  TO  SOLV E  T H E  E I G E N VA L U E  

PROBLEM  

A spectral collocation method performs the following operations: 

collects the given discrete data on the grid points; interpolates the 

data globally; and e v aluates the deri v ati ve of the interpolant on the 

grid points (Trefethen 2023 ). The solution of the differential equation 

( 25 ) is written as the sum of orthogonal basis functions whose 

coefficient must satisfy the differential equation. The discretization 

of the domain can be carried out by using uniform or non-uniform 

grids depending upon the problem type. In general, a mathematical 

problem can be periodic or non-periodic. For periodic problems, 

equidistant or uniform grid points are of best use but for non-periodic 

problems, the accuracy of using the regular or uniform grid points 

is very poor, especially near the boundaries. Therefore, non-periodic 

functions are generally discretized o v er irre gular or non-uniform grid 

points such as Chebyshev grid points. The Chebyshev grid points 

discretize the radial direction in irregular manners bounded between 

0 and 1. In this approach, the number of grid points are denser near the 

boundaries results in better accuracy by better depicting the effect 

of change due to applied boundary conditions. Such an approach 

leads to higher accuracy and decreases the code’s run time. In the 

case of equidistant grid points, the discrete data on grid points can 

be interpolated globally using the trigonometric interpolant (Fourier 

Spectral method) and for non-uniform grid points, this can be done 

using Lagrange polynomial interpolant (Chebyshev Spectral method) 

(Trefethen 2023 ). 

In order to replace the standard Laplacian operator, ∇ 
2 , from polar 

coordinates to the matrix of Fourier–Chebyshev differentiation, it is 

important to construct the spectral interpolant and its deri v ati ve with 

generalized independent variables. This can be done by Kronecker 

products of the differentiation matrices with each of the independent 

variables. For polar coordinates, studies suggest that the Fourier 

expansion works best for angular coordinates while Chebyshev 

expansion is best suited for radial coordinates (Trefethen 2000 ). 

Accordingly, the radial coordinate r ∈ [0, 1] is expanded using 

Chebyshev expansion, while the angular coordinate θ ∈ [0, 2 π ] 

is expanded using Fourier expansion. This study follows the method 

developed by Trefethen ( 2000 ). An odd number of grid points are 

selected in the radial direction, while an even number of grid points 

are selected in the azimuthal direction. As a result, the Laplacian 

operation becomes 

L = 

(

D 1 + R 
′ 
E 1 

)

⊗ I l + 

(

D 2 + R 
′ 
E 2 

)

⊗ I r + R 
′ 2 ⊗ D 

(2) 
θ , (A1) 

where D 1 and D 2 are the matrices corresponding to the ∂ 2 / ∂ r 2 

operator, E 1 and E 2 are the matrices for (1 /r) ∂ / ∂ r and D θ stands for 

the (1 /r 2 ) ∂ 2 / ∂ θ2 operator. In the abo v e e xpression R 
′ 

is a diagonal 

matrix R 
′ = diag( r −1 

j ) , 1 ≤ j ≤ ( N r − 1) / 2, and I l and I r are the 

identity matrices given by 

I l = 

(

I 0 

0 I 

)

, I r = 

(

0 I 

I 0 

)

, (A2) 

where I is the N θ /2 × N θ /2 unit matrix. The matrices in equation ( A1 ) 

are defined on the grid for Chebyshev collocation points ( N r , odd) 

and Fourier collocation points ( N θ , even). 

After applying the abo v e concepts to the go v erning equation and 

after a few simplifications we arrive at the matrix equation that can be 

used to solve the generalized system of quadratic eigenvalue problem 

( L + κ2 
0 ) P T − κ2 

0 χV 
2 

ph P T = 0 . (A3) 

In this study, a new algorithm is developed to obtain the eigen- 

values and eigenvectors of a quadratic matrix polynomial using 

QZ factorization. This method is capable of handling a variety 

of eigenvalue problems in the most efficient way. The method is 

implemented using MATLAB. In the code, the build-in MATLAB 

function’ po l yeig( L + κ2 
0 , −κ2 

0 χ )’ (which is based on the QZ factor- 

ization) is used to obtain the generalized quadratic eigenvalues and 

eigenvectors. The code is tested against the eigenvalues obtained for 

the uniform circular cross-sectional-shaped magnetic flux tubes. In 
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the study by Sathej & Adhikari ( 2009 ) the drum head is modelled 

mathematically as a non-uniform membrane whose density smoothly 

changes between two predetermined values. They conducted a thor- 

ough analysis of the variance in the model’s eigenvalues as a function 

of the model parameters using Fourier–Chebyshev collocation. The 

eigenspectrum of their model matches the empirically determined 

eigenvalues of the tabla quite closely. Their code has also been 

benchmarked against the known eigenvalues of the uniform circular 

membrane, and they found a spectral convergence as the number of 

grid points increases. The authors also solved the equations for the 

eigenvalues and the eigenvectors and using the MATLAB function 

eigs which is based on a Cholesky decomposition algorithm. In 

order to achieve spectral convergence, a higher number of grid 

points is used. A higher number of grid points is also required for 

obtaining the rapid variation in density o v er the non-uniform circular 

cross-sectional shape of the magnetic flux tube especially in radial 

direction. 
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