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ABSTRACT Recent developments in vehicle automation require simulations of human-robot interactions
in the road traffic context, which can be achieved by computational models of human behavior such
as game theory. Game theory provides a good insight into road user behavior by considering agents’
interdependencies. However, it is still unclear whether conventional game theory is suitable for modeling
vehicle-pedestrian interactions at unsignalized locations or if more complex models like behavioral game
theory are needed. Hence, we compared four game-theoretic models based on two different payoff
formulations and two solving algorithms, to answer this question. Unlike the most previous studies that
employed naturalistic datasets to test and validate such models, this study utilized a distributed simulation
dataset to test and compare the models. The study was conducted by connecting a CAVE-based pedestrian
simulator to a motion-based driving simulator to replicate the traffic scenarios for 32 pedestrian-driver
pairs. The findings demonstrated that there is a high variability between participant pairs’ behaviors. Our
proposed behavioral game-theoretic model outperformed other models in predicting the interaction outcome.
This translates to a decrease by 70% and 67% in the root mean squared error (RMSE) when compared to
the baseline model, for marked and unmarked crossings, respectively. The model can also predict which
interaction will take the longest time to resolve. According to our results, road users cannot be expected to
behave in line with the Nash equilibrium of conventional game theory that underscores the complexity of
human behavior with implications for the testing and development of automated vehicles.

INDEX TERMS Psychology, mathematical models, human computer interaction, behavioral sciences,
design for experiments.

I. INTRODUCTION
Road user interaction has been a topic of interest for years
from a safety perspective for human-human interaction [1]
and has become popular in recent years due to successive
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improvements in vehicle automation bringing the challenges
of human-robot interaction into the topic [2], [3], [4]. Among
different types of interactions, the interaction of pedestrians
as vulnerable road users (VRUs) with drivers and automated
vehicles (AVs) has a great impact on traffic safety and
efficiency as pedestrians constitute a great proportion of
the traffic ecosystem [5]. They are also known to exhibit
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unpredictable behaviors [6]. To this end, previous research
has strived to understand [7], [8], [9], [10] and quantitatively
model [11] how VRUs and vehicles/AVs interact with each
other with the latter becoming an essential part of the test
and development procedure for the future deployment of
AVs [12].
The subsequent sections delve into the exploration of

related work concerning the computational modeling of road
user behavior. Subsequently, the methodology employed
in this study is explained, encompassing the empirical
investigation, computational models, and model fitting.
The results section provides a comparison of the distinct
models developed within this study. The paper concludes by
discussing the findings and presenting the conclusions.

A. RELATED WORK
Existing modeling approaches to road user behavior are
often separated into two types of architecture: glass-box
and black-box models [13]. Black box models such as
deep learning models offer a generalizable approach where
the behavior of several agents can be simulated with high
accuracy [14] but the underlying mechanisms of the model
components are unknown: there is a lack of interpretability
in the connection between the inputs and outputs of the
model [15] and with human psychological theories which
makes the model interpretation difficult. On the other hand,
glass box models offer the advantage of interpretability and
transparency by providing explanations for the mechanisms
in relatively great detail. These models rely on differ-
ent modeling paradigms including agent-based modeling
[16], [17], optimal control theory [18], [19], Markovian
processes [20], [21], evidence accumulation [22], [23],
proxemics [24], discrete choice modeling [25], [26] and game
theory [27].
From the abovemodeling approaches, agent-based and dis-

crete choice models have a long and rich history in predicting
road user behavior. Agent-based models have been used for
modeling different traffic scenarios such as two-dimensional
trajectory modeling of vehicular movements at intersections
where one-dimensional simplification is not enough to
capture road user behavior and distance-based factors play
a more important role than time-based variables [28]. The
downside of these models is that road users are generally
assumed to act mostly like moving objects without consid-
ering each other’s intentions before making every decision.
Logit models are among the most commonly used models
for modeling pedestrians’ gap acceptance behavior [26], [29],
[30], [31] due to the binary nature of pedestrian crossing deci-
sions, the convenience of utilizing them, and the flexibility of
their application together with other models [32]. They have
been compared to a number of statistical methods namely
maximum likelihood method, Raff’s method, root mean
square method and probability equilibrium method, and have
been found to be the most appropriate model for estimating
the critical gaps of pedestrians [33]. Moreover, their ability

to be incorporated into other modeling approaches such as
microscopic traffic flow models [34] and artificial neural
networks [35] makes them an attractive choice. Having said
that, the discrete nature of these models provides no concept
of time such as time-varying utility functions and the ability
to fully capture traffic agents’ interdependencies. To this end,
other modeling approaches such as evidence accumulation
and game theory have become popular for road user behavior
modeling studies, over recent years.

Evidence accumulation offers a well-established depiction
of human behavior for some specific decisions [36], [37]
and suggests that evidence for a particular response is
integrated by single or multiple accumulators over time
and by a rate known as drift rate which is the rate at
which sensory information reaches a bound (a decision
boundary) [23]. This model has been used for simulating and
predicting driver gap acceptance in left-turns [38], pedestrian
crossing decisions [22], [39], and AV-human interactions
in take-over and crossing scenarios [40]. That said, while
evidence accumulationmodels provide ample detail about the
decision-making process, they do so for a very constrained set
of tasks and are typically considered single-decision models
suggesting they may not be able to account for all types
of interaction scenarios. Also, as opposed to game-theoretic
models, these models are mostly incapable of capturing road
users’ interdependencies.

Game theory extends optimal control theory to a decen-
tralized multi-agent decision problem [41] and explains the
interaction ofmultiple agents whose interests do not coincide,
and their decisions, generally, depend on the actions of all
[42]. In this model, agents keep revising their decisions and
beliefs until they become mutually consistent, that is until
(the Nash) equilibrium is reached. This is the core idea
in conventional (also known as orthodox/traditional) game
theory which relies on perfect rationality of players who
are always assumed to be self-interested and choose optimal
choices. Overall, conventional game theory has the advantage
of accounting for interdependencies, unlike agent-based,
logit, and evidence accumulation models [43]. Thus, it has
been used in several vehicle-pedestrian interaction studies
[44], [45], [46], [47], [48] However, behavioral economics
suggests that agents’ preferences, along with concern for
fairness, are highly context-dependent [49]: individuals make
decisions based on a heuristic estimate of the potential value
of losses and gains [50] and they do not usually play the
Nash equilibrium in strategic situations such as unrepeated
normal-form games [51]. This is due to different reasons,
including bounded rationality [52], [53] and positive theory
[54] which are the backbones of behavioral game theory.
Behavioral game theory utilizes experimental evidence to
create computational models of human cognitive limitations,
social utility and preferences, and learning rules aware of
‘‘how people actually behave in strategic situations’’ [55].
To date, several behavioral game-theoretic models have
been introduced and tested using economic games. For
instance, the dual accumulator (DA) model that combines the
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knowledge of evidence accumulation paradigm with game
theory is a promising approach to simulating human
decision-making [56]. The authors compared their model to
several existing behavioral game theory models, i.e., noisy
introspection [57], logit quantal response equilibrium [58],
level-k reasoning [53], and cognitive hierarchy theory [59],
employing a hold-one-out analysis. They showed that the
model makes the most accurate out-of-sample predictions
[56]. However, this model has not previously been tested
in the context of road user modeling, highlighting a gap in
the literature. Some studies have employed other behavioral
game theory models for the road traffic context, such as
the logit quantal response equilibrium in vehicle-pedestrian
interactions [60] and level-k reasoning [61], [62], [63] and
cognitive hierarchy reasoning [64] in vehicle-vehicle (includ-
ing AVs) interactions showing that the models can capture
road user behavior well. Using two different multiagent
Markov-Games, i.e., one based on the Nash equilibrium and
one based on logit quantal response equilibrium, Alsaleh
and Sayed estimated cyclist-pedestrian strategies using a
multiagent deep reinforcement learning approach and found
that the latter predicted road user trajectories with higher
accuracies [65].
All things considered, to the best of our knowledge,

no study has ever directly compared conventional game
theory to behavioral game theory in the vehicle-pedestrian
interaction domain. Hence, it is currently unclear whether
conventional game theory models are sufficient for road user
interaction and especially vehicle-pedestrian interactions,
or whether higher complexity in modeling provided by
behavioral game theory is needed. There is also a lack
of comparison between game-theoretic models and logit
models. The main contribution of this study is a comparison
of these two types of game theory models also with logit
models (representing the popular modeling approach in this
area). This was done by using a dataset from a controlled
distributed simulator study. Unlike naturalistic studies which
are the common validation tools for the models of road user
behavior [66], controlled studies provide a safe environment
where one can directly control the interactions between
agents, varying the conditions of interest to study their causal
(rather than correlational) impact on behaviors and outcomes.
Also, this technique enables multiple observations for each
participant, allowing a better understanding of interindividual
differences.

Our main research question is as follows:

- Are traditional models such as logit and conventional
game theory (the Nash equilibrium) enough to predict
vehicle-pedestrian interaction outcomes at unsignal-
ized locations or are more complex models such as
behavioral game theory needed?

II. METHODOLOGY
This section describes all the methods used in the study,
beginning with a description of the controlled distributed

simulation study, followed by a definition of each computa-
tional model, and details of the model fitting.

A. EMPIRICAL STUDY
A distributed simulator study was conducted to inves-
tigate road user interactions in a safe and controlled
environment, providing a large dataset of vehicle-pedestrian
interactive behaviors to test and validate the computational
models of this study. The full details of the study can
be found in [67]. Here, we provide a summary of the
study.

The study was conducted by connecting the University of
Leeds Driving Simulator (UoLDS) to the HIKER (Highly
Immersive Kinematic Experimental Research) pedestrian lab.
UoLDS is a high-fidelity motion-based driving simulator
with an eight degree-of-freedom motion platform carrying
a Jaguar car housed in a 4 m-diameter spherical projection
dome, with a 300◦ field-of-view projection system. HIKER is
a 9 × 4 m CAVE simulator consisting of eight 4k projectors
that are used to project virtual scenes at 120 Hz to the floor
and walls. Fourteen body markers were attached to different
parts of the pedestrian’s body, represented as pink spheres
to the driver (Figure 1-a). The pedestrian could also see the
vehicle as shown in Figure 1-b.

In this experiment, 64 participant pairs (PPs) (32 drivers;
Age: M = 31.53, R = 21−50, SD = 1.72); paired with
32 pedestrians; Age: M = 25.09, R = 19−34, SD = 0.87)
interacted with each other under different traffic scenarios.
The study was approved by the University of Leeds Ethics
Committee (Reference No AREA 21-022). The scenarios
were defined based on different crossing types (i.e., zebra
and non-zebra crossings; see Figure 1-c) and five different
vehicle time-to-arrival conditions (TTAs, i.e., the temporal
distance of the vehicle to the center of the crossing, 3−7 s)
resulting in 10 conditions that were repeated two times in
each experimental block. There were two blocks resulting in
40 randomized trials per PP.

Upon arrival, both participants were asked to sit in their
respective briefing areas in two separate rooms and read
and sign the consent form. The instruction to the pedestrian
was to stand at a marker on the HIKER’s floor (the first
blue cross in Figure 1-c) where they could see that cars
are going both ways but they could not tell when the
subject vehicle was approaching due to a visual obstruction
(a bus stop; Figure 1-c). After hearing an auditory tone,
they were asked to step to a second marker which was
the curb of the virtual road where the driver could see
them. This marked the beginning of the interaction. The
participants (driver and pedestrian) could decidewhether they
wanted to wait for the other to pass first or they themselves
passed. Both participants were told: ‘‘Please assume that
you are late for an important meeting, such that you want
to avoid any unnecessary delays, but of course, you also
want to stay safe.’’ Drivers were told to maintain the speed
limit (30 mph) as they would in their normal driving and
were also reminded that pedestrians have priority at zebra
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FIGURE 1. (a) The driver’s view of the pedestrian: the driver is stopping, and the pedestrian is shown by pink spheres,
(b) the pedestrian’s view of the vehicle in the pedestrian lab: the pedestrian is crossing the zebra and the subject vehicle
is to their right and (c) top view of the zebra (left) and non-zebra crossing (right) in Unity including the designated
standpoints (blue markers).

crossings. Upon completion of the experiment, participants
were asked to fill out post-experiment questionnaires for
demographic information and personality traits (not reported
here, see [67]).

B. COMPUTATIONAL MODELS OF VEHICLE-PEDESTRIAN
INTERACTION
1) LOGIT MODEL (LOGIT)
A logistic model was tested assuming the utilities to be
the linear function of TTA and pedestrians’ total waiting
time which is in line with the literature [26]. Two different
intercepts were considered for each crossing:

U = β0z/nz + β1TTA + β2WT (1)

as the probability of the pedestrian passing first or waiting
can be denoted by P(U) and P (1 − U) , respectively, the
probability of pedestrian passing first can be defined using
the Logit function [26]:

P(U) =
1

1 + e−U (2)

where U is the utility of waiting/passing for the pedestrian,
β0z and βnz are intercepts for the unmarked and marked
crossings, respectively and β1 and β2 are coefficients for TTA
and waiting time of pedestrians, respectively.

2) ORIGINAL CONVENTIONAL GAME-THEORETIC (OCGT)
MODEL
A conventional game theory model by Wu et al. which con-
siders the two-agent game of vehicle-pedestrian was chosen
and slightly modified [48]. This model was chosen due to a
well-balanced integration of road user safety and efficiency
metrics, the ease of working with its payoff formulation and
the fact that it is one of the few game-theoretic models in the
literature with an explicitly stated payoff formulation. The
model was established as the baseline for comparison against
other models utilizing more complex payoff formulations and
solving algorithms.

Table 1 shows the parameters of the study including the
Wu et al. model’s parameters [48]. Table 2 shows theWu et al.
model’s payoff formulation. The model’s payoffs are defined
as a summation of utilities relating to (i) the perceived risk of
being involved in a conflict with another road user modeled as
k = 1/TTA, and (ii) the time spent as a result of one waiting
for another, which is equal to the time that the passer takes to
pass the crossing (ti). The presence of these utility values in
all outcomes with a negative sign when they have a negative
influence on a road user, or a positive sign otherwise, is the
main assumption of the formulation. Additionally, a weight
coefficient was considered for the total waiting time of the
pedestrians with the following assumption: pedestrians who
havewaited for a longer time, aremore inclined to be cautious
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TABLE 1. Parameters of the study.

TABLE 2. Wu et al. [48] Payoff matrix. (The vehicle is the row player and
the pedestrian is the column player.)

and less likely to engage in risk-taking by accepting smaller
gaps [31]. This was assumed in the opposite direction in the
original paper [48] as the authors’ definition of waiting time
was different from our study.

Table 2 suggests that there is no unique Nash equilibrium,
and the game has two dominant strategies {(pedestrian pass,
vehicle wait), (pedestrian wait, vehicle pass)} which can be
obtained using the mixed strategy algorithm by equating the
expected utilities of each player [68].

Ppp,Pvw= (
2atv

2k + (1 + c)atv
, 1 −

2atp
2k + (1 + c) atp

) (3)

where Ppp and Pvw are the probability of pedestrian
passing first and vehicle waiting, respectively [48]. Another
dominant strategy (Ppw,Pvp) can be obtained as one minus
the probabilities in (3). In this study, we present all the
results based on the pedestrian’s probability of passing
first.

3) ALTERNATIVE CONVENTIONAL GAME-THEORETIC
(ACGT) MODEL
An alternative payoff formulation was proposed, based on
Wu et al.’s original payoff. The formulation was provided
to correct some of the assumptions of the original payoff
which we suspected did not correctly capture road users’
perceived utilities of the different outcomes. For instance,
road users’ utility functions were modified to help the model
distinguish between marked and unmarked crossings as
shown in Table 3. According to traffic regulations in the U.K.,
similar to many western European countries, drivers should
give way to pedestrians waiting to pass as well as those at a
zebra crossing (see Rule H2 in. The Official Highway Code,
2023 [69]). Thus, while based on the regulations pedestrians
have priority at a zebra crossing, the driver (vehicle) was also
assumed to have priority at non-zebra locations, as there was
no refuge for this crossing type and the crossing behavior
could be considered as an instance of jaywalking [70] in the
experiment.

The following modifications were made to the original
payoff formulations:

I) The utility of risk perception is not considered when
a road user is waiting for the other to pass first, thus
removing k from their utilities in these instances.

II) When road users with no right of way want to pass
first, they get a higher negative score for risk perception
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TABLE 3. Alternative payoff formulation.

(knRp, knRv where Rp = 1 and Rv = 0 if pedestrians
have right of way (i.e., at zebra crossings), and vice
versa).

III) When a road user waits for the other to pass first,
they do not only lose the approaching vehicle’s TTA
but also the pedestrians’ estimated crossing duration
[−a(tv + tp)].

IV) When a road user waits for the other to pass but
none of them passes immediately, they will lose their
own passing time with a multiplier (m) which can
make it worse than waiting for the other to pass
first.

V) When a vehicle waits for a pedestrian, the pedestrian
gains the vehicle’s TTA (tv) instead of their crossing
duration (tp).

Similar to the original model, the above formulation was
solved using the mixed-strategy Nash equilibrium and
(4) and (5) show pedestrians’ and vehicles’ probabilities of
passing first and waiting for zebra and non-zebra crossings,
respectively.

Pppz,Pvwz= (
a(tv+mtv)−kn
a(ctv−tp+mtv)

,1−
a(tv+mtp)+k

2k+a(ctp+mtp−tp)
) (4)

Pppnz,Pvwnz= (
a(tv+mtv)+k

2k+a(ctv−tp+mtv)
,1−

a(tv+mtp)−kn
a(ctp+mtp−tp)

) (5)

4) BEHAVIORAL GAME-THEORETIC MODELS
Both original and alternative payoff formulations were
solved using a model from the behavioral game theory
category creating OBGT [original (solved by) behavioral
game theory] and ABGT [alternative (solved by) behavioral
game theory] models, respectively. The DA model from
the behavioral game theory category was chosen [56] and
utilized as an alternative game solution to the mixed-strategy
Nash equilibrium. According to the model, agents gener-
ate preferences by considering the conveniently available
strategies with assumptions about opponents’ preferred
strategies using evidence and stochastic sampling, i.e.,
the process of a finite number of accumulation steps in
payoffs inspired by existing cognitive models of preferential
choice [56].
The following equations show the model formulation:

V̂D,cD(t)=γ V̂D,cD (t − 1)+ω
∑

w
PP,wP (t − 1) vD,cD,cP (6)

V̂P,wP (t)=γ V̂P,wP (t − 1)+ω
∑

c
PD,cD (t − 1) vP,wP,wD (7)

PD,cD (t) =
eλ V̂D,cD (t)∑
c e

λ V̂D,cD (t)
(8)

PP,wP (t) =
eλ V̂P,wP (t)∑
w e

λ V̂P,wP (t)
(9)

where V̂D,cD (t) and V̂P,wP (t) are the values of action
c = cross for driver and action w = wait for pedestrian,
respectively. PD,cD (t) and PP,wP (t) are the estimated action
probabilities for c and w, respectively and finally vD,cD,cP
(value for driver of action c if pedestrian plays c) and
vP,wP,wD (value for pedestrian of action w if driver plays
w) are the payoffs as defined in the two-agent game under
study. By increasing λ , agents are more likely to choose
the option with the highest value whereas the lower values
of this parameter represent agents with a greater degree of
‘‘randomness’’ in their decisions.

The model was slightly modified and named the general-
ized DA model. To this end, a distinction mechanism was
added to the model which explains how rapidly activations
and beliefs are updated by an agent, and how long it
takes to perform such an update. This was done by setting
the parameters (ω and γ in (6) and (7)) that define the
rate of change during an update of the agents’ activations
(preferences) and beliefs as follows: ω = 1 − γ whereas in
the original DA model, it was assumed that ω = γ = 1.
Both ω and λ parameters are called ‘‘DA parameters’’ in
this paper. Also, while in the original model, the first agent
(driver) samples one of the other second agent’s (pedestrian’s)
actions wwith probabilities Pw at each time step, and updates
their own value based on that sample, a weighted average
across all possible actionsw is taken in the generalizedmodel.
This is also true for the other agents’ possible actions.

The model has a concept of decision-making over time.
This time is known as model convergence time. The criterion
for the convergence was to consider a threshold of 0.001 for
the change in the two consecutive probabilities of actions for
both agents.

Figure 2 illustrates how road users decide whether to pass
first or wait for each other using the DA model under the
following conditions: a) tv = 6 s, t = 30 s and at a zebra
crossing and b) tv = 5 s, t = 45 s and at a non-zebra
crossing. As can be seen from the figure, the model assumes
that both the driver’s and pedestrian’s values of actions are
the same at the first time step (Figure 2-a) as time goes
by, the value of passing first for the driver becomes lower
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FIGURE 2. An illustration of how the DA model works providing the estimated value and probability of pass/wait of both agents when the pedestrian
passed first (a) and when they wait for the driver to pass first (b). The vertical dashed lines show the time that model converged according to the defined
threshold.

while it increases for the pedestrian. This happens because
both agents’ information about the priority rules and available
safety margin is being updated over time. As a matter of this
deliberation process, the probability of passing first for the
pedestrian increases and converges to a constant value. The
opposite of this situation happens to the driver. Figure 2-b
shows the alternative, although with a slight difference, just
after the first time step and at the beginning the values of both
actions for the driver (pass, yield) tend to decrease and as a
result, the probability of yielding to the pedestrian becomes
higher. However, quite soon the probabilities of actions swap
places and the driver decides to pass first probably when
observing the pedestrian is less assertive in crossing the road.
This happens because the pedestrian feels less safe at an
unmarked crossing although the safety margin seems to be
enough for them to pass first.

5) MODEL FIT
All the models were fitted to the experiment dataset
using maximum likelihood estimation method by computing
likelihood and log-likelihood functions as follows:

Lij =


p(Xij,θ ) If the pedestrian i crossed

in trial j
1 − p(Xij,θ ) Otherwise

(10)

LL(θ ) =

∑n

i=1

∑m

j=1
logLij (11)

where n = 32 is the number of PPs and p is the
model-predicted probability of the pedestrian crossing first
in trial j of participant i, where Xij specifies the experimental
condition on that trial, given model parameters θ .
Both DA models (i.e., ABGT and OBGT) were fitted with

three different assumptions about the parameters:
a) Using both DA parameters (i.e., ω, λ ) and the game-

theoretic model’s payoff parameters as free parameters,
separate per participant pair.

b) Fixing DA parameters, i.e. choosing two constant
values for λ representing high = 1 and low randomness =

18 and a predefined value (i.e., 0.9) for ω [56], and using
payoff parameters as free parameters, separate per participant
pair.

c) Having DA parameters shared across all participants
and letting the payoff parameters be free per participant pair;
in this method, alternating minimization [71] was used to
account for varying payoff (free) parameters with shared
DA model parameters across the PPs with the following
form:

maxθPO,θDALL(θPO, θDA) (12)

where LL(θPO, θDA) is the total negative log-likelihood
function, θPO is the vector of payoff parameters and θDA is
the DA model parameters. This method solves the problem
by fixing θPO and minimizing in θDA, and then fixing θDA
and minimizing in θPO.

This method helps the function converge to a global
minimizer, which in our case is the total (sum of) negative
log-likelihood across all PPs.

All models were fitted to both crossing locations at the
same time and thus the parameters were shared between the
two crossing types. The above procedure was used for all
models using Powell’s method implemented in Scipy [72].
Table 6 shows the parameter ranges of all game-theoretic

models used in the study. The parameter space was chosen
in a way that guaranteed the best fit for each model after
several rounds of manual testing regarding the optimization
algorithm. The parameter bound criterion for all models
was to conform with the theoretical reasoning, for example,
by limiting the lower bounds of multipliers (c, m & n) to
1 or keeping a and δ between 0 and 1. The main criterion
for choosing the bounds for the conventional game-theoretic
models was to discard any parametrization that yields
probabilities outside the range of 0−1. Also, for all models,
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the bounds were set in a way that expanding them makes the
algorithm choose values resulting in a worse fit.

All the models were compared using information loss
criteria, i.e., the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC), as well as error
indicators, including theMeanAbsolute Error (MAE) and the
Root Mean Squared Error (RMSE). The following equations
show the formulations for these metrics:

AIC = 2k − 2ln(LL(θPO, θDA)) (13)

where k is the number of estimated parameters in the model.

BIC = kln(n) − 2ln(LL(θPO, θDA)) (14)

where: n is the sample size.

MAE =
1
n

∑n

i=1
|actual − predicted | (15)

where: |actual - predicted| is the absolute difference between
the actual and predicted probabilities and n is the number of
data points.

RMSE =

√
1
n

∑n

i=1
(actual − predicted)2 (16)

III. RESULTS
In this section, first, the observed behaviors of participant
pairs at both crossings are presented followed by the
modeling results for the individual and aggregated data.

A. OBSERVED BEHAVIOR AT BOTH CROSSINGS
Figures 3 and 4 show the crossing behavior as well as the
probability of pedestrian crossing first as a function of time
gap, for all 32 PPs, for all models. Looking at the panels
in Figure 3, it can be seen that while different PPs behaved
differently for TTAs equal to two and three seconds, all of
them passed the crossing first at higher time gaps. Also,
28% (nine out of 32) of the pedestrians crossed first in
all trials, irrespective of the available safety margin (TTA).
Looking at the observed data in Figure 4, one can see the
crossing behavior at non-zebra was quite different compared
to the zebra crossing among the pedestrians: First, very few
pedestrians passed before the driver, at the 2-second TTA (i.e.,
11, 12, and 29). Second, the crossing probability increased
for the 3-second time gaps but was still low. This was due
to the crossing behavior of PP 3, 11, 12, 20, 23, 24, and 29.
Third, data of some pedestrians, i.e., 17, 20, and 22 showed
fluctuations (rises and dips) as TTA increased. Finally, three
out of 32 pedestrians (i.e., PPs 4, 25, and 28) did not pass at
all, suggesting they were risk-averse.

B. MODEL PERFORMANCE FOR BOTH CROSSINGS
Figure 3 shows that the two conventional game-theoretic
models, i.e., ACGT and OCGT performed comparatively
weakly in almost all cases. This can be confirmed by looking
at Table 4 which shows the model comparison for both
crossing types including information loss criteria (AIC, BIC)

and error indices (MAE, RMSE). However, when Wu et al.’s
payoff formulation was solved with the DA model (OBGT),
a clear improvement can be seen in all cases, according to the
plots in Figure 3 and Table 4. Also, the logit model did a better
job of capturing pedestrians’ crossing behavior than ACGT,
OBGT, and OCGT models but was outperformed by our
proposed model (ABGT) in almost all cases. The exceptional
performance of the ABGT model is evident in the plots of
PPs 2, 13, 14, 15, 20, 24, 25, 27, and 31.

Figure 4 and Table 4 show that similar to the zebra
crossing, overall, the Wu et al. model combined with the
DA model, i.e., OBGT, performed better than the baseline
model (OCGT) but the differences were subtle for the non-
zebra crossing. Also, the logit model performed second-best
with a weaker performance compared to the zebra crossing.
Unlike zebra crossing, the differences between the ACGT and
ABGT are much more obvious. Although the two models
utilize the exact same payoff formulations, the ABGT model
outperformed all other models in almost all cases while it
is clear that the ACGT model was not capable of exhibiting
the observed pattern of probabilities. For ABGT, the model’s
capability to capture the more complex crossing behaviors of
pedestrians No 3, 6, 8, 13, 14, 18, 19, 27 and 30 is specifically
noticeable compared to other models. In addition, this model
achieved a 70% reduction in RMSE for marked crossings and
a 67% reduction for unmarked crossings when compared to
the baseline (OCGT) model. However, It is worth noting that
comparing models with varying numbers of free parameters
should encompass both elements of model parsimony such
as AIC, BIC, etc., and error indices. One cannot assert that
a model is superior solely based on its predictive accuracy.
Overall, Table 4 shows that when moving from conven-
tional to behavioral game-theoretic models, the improve-
ments in all criteria, including negative log-likelihood
are observable which firmly confirms the observations of
Figure 3 and 4.

C. OVERALL RESULTS FOR BOTH CROSSING TYPES
Figure 5 shows the average of all 32 pedestrians’ crossing
probabilities over time gaps for both crossing types. In line
with the individual data, the overall fine performance of the
ABGT model and the better performance of the Wu et al.
combined with the DA model (OBGT) compared to the
original model (OCGT) is evident for both crossing types.

D. ABGT MODEL DECISION TIME
As explained in Figure 2, the dual accumulation process
in the DA model corresponds to a deliberation process
that unfolds over time such that we can define a model
convergence/decision time. Thus, we conducted a correlation
test to understand if there is a relationship between the
ABGT model’s decision time (DT) and pedestrians’ crossing
initiation time (CIT) in the experiment (i.e., from the time the
auditory tone was triggered to the time the pedestrian started
crossing the road, minus one second). Table 5 shows that
there is a weak, yet significant correlation (r(821) = .213,
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FIGURE 3. Pedestrian’s probability of crossing first over time gap at zebra crossings for all models.
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FIGURE 4. Pedestrian’s probability of crossing first over time gap at non-zebra crossings for all models.
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TABLE 4. Model comparison.

FIGURE 5. Average probability of pedestrian crossing first over time gap for all models.

p = .000), between the ABGT model’s DT and CIT, which
can be also confirmed by Figure 6. From the figure, it can be
seen that most of the initiation times are concentrated in the
1−2 second range. The figure also shows that the model had
a hard time predicting DT within this range. By increasing
CIT, more instances of successful estimations are observable.
Three different points were chosen to show how the model
predicted the interaction outcome over time which can be
seen by the respective insets. Figure 6 shows that in points C:
[1.5,290] and B: [5,490] the model performed well. Point C
belongs to PP 29 with the following experimental conditions:
non-zebra, TTA of 6 s, both female and the waiting time of
80 s and point B is for PP 8 at zebra, with a TTA of 5 s, with
a male driver and female pedestrian, and a waiting time of
78 s. Hence, probably the most obvious difference between
these two points is the crossing type that led to different CITs
and DTs. Finally, in point A: [1.2, 895], it can be seen that
the pedestrian’s probability of passing and waiting swapped
places after a few time stepswhichmade themodel predict the
interaction outcome incorrectly, and over a longer time. This

TABLE 5. Correlation between ABGT’s DT and CIT.

point refers to PP 1 at non-zebra, with a TTA of 4 s, with a
female driver and male pedestrian, and a waiting time of 64 s.
Although both the TTA and crossing type made the model
predict lower values and subsequently lower probabilities
of passing first for the pedestrian over time, the pedestrian
passed first suggesting that there might be other influencing
factors such as gender and personality traits that were not
considered for calculating the probabilities.

E. ABGT MODEL PARAMETERIZATION RESULTS
Figure 7 shows the pairwise distribution of the best-fitted
model, i.e., ABGT parameterization as a function of the
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TABLE 6. Parameter ranges for all GAME-THEORETIC models.

FIGURE 6. The relationship between the ABGT model’s DT and CIT in the experiment.

average probability of pedestrian crossing first in each PP.
Thus, each point in the figure is representative of a PP.
From the figure, it can be seen that there is a positive
correlation between the values of a and the average crossing
probability suggesting that higher values of this parameter
resulted in higher average probabilities. Also, a moderate
negative correlation can be seen between a and c suggesting
that fixing one parameter (e.g., a) and leaving the other
one to vary freely could improve the model fit results.
However, it is quite debatable what would be the exact
value of the fixed parameter as there is no theoretical
reasoning for choosing a specific value for either of these
parameters. One can try different values and see which
value would yield the best results. Finally, several instances
of hitting bounds can be seen but as we explained above,

broadening the bounds did not result in a better model
fit.

IV. DISCUSSION
In this study, we compared a number of computational
models of road user interaction, namely a logit model and
four game-theoretic models, using a controlled study. The
findings showed that our proposed model, which was based
on behavioral game theory outperformed all others for almost
all PPs’ data, for both crossing types. The second-best
performing model was the Logit model confirming the
findings of many studies that relied on this type of modeling
to predict vehicle-pedestrian interaction outcomes [26], [33],
[73]. Moreover, a huge improvement was observed by
switching from mixed-strategy Nash equilibrium to dual
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FIGURE 7. Pairwise distributions of parameters for ABGT model as a function of average crossing probability in each PP.

accumulation to solve the same payoff matrices. This was
especially noticeable for our ACGT versus ABGT models
and for the non-zebra crossing which constituted the worst
and the best models for this crossing type, respectively.
This helps us answer our main research question: In line
with behavioral economics, people do not play the Nash
equilibrium in their daily life [51], which may also be true
about road users. As stated by [74], people are usually not
aware that they are playing a game. They have some beliefs
about their surroundings, other potential players and their
available strategies, and the possible outcomes of each chosen
strategy. Hence, they use heuristics and the rule of thumb to
take action. Road users’ divergence from Nash equilibrium
has been reported in cyclist-pedestrian interactions [65] and
is observed here for vehicle-pedestrian interactions. [65]
suggested that this might be due to the possible Nash equi-

librium’s inability to consider suboptimal road user behavior.
While one could argue that the performance difference
between ACGT and ABGT models can be attenuated by
formulating a different payoff matrix, we tend to believe that
it is less possible to propose a model based on a different
payoff formulation and solve it by mixed-strategy algorithms,
which works better than the ABGT model. This is due to
the inherent limitation of the mixed-strategy algorithm with
respect to only considering the opposing player’s utilities.
Overall, the results of this study can be beneficial for the
testing and development of AVs when there is a need for
studying a large number of vehicle-pedestrian interactions
in a safe and controlled manner with subsequent computer
simulations and mathematical modeling.

Unlike other models used in the study, the behavioral
game-theoretic models provide a concept of time and suggest
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that the initial conditions (i.e., kinematics and crossing type)
are processed over time. The time it takes for the model
to process those initial conditions correlates with the actual
time it takes for the PPs to reach a point where one of the
agents can go ahead and pass first (Figure 6). That said, the
agents may be adjusting their behavior at multiple points in
time during the interaction. Hence, the key simplification
in the model is that the interaction is modeled as a single
decision-making process making it a simple model capable of
predicting interaction outcomes, which could be quite useful
in some types of applications. Also, the DA model relaxes
this single decision simplification a little more, as there can
be many steps of deliberation in the DA process, even though
those steps of deliberation in the model are not connected to
how the external world is developing over time.

Moreover, checking the participant features and traffic
conditions of the three selected points in Figure 6 revealed
that there was a difference in traffic conditions between
the points where the model performed well (i.e., B and
C in Figure 6); longer CIT and DT were observed at a
zebra crossing (B) compared to a non-zebra crossing (C).
We have previously shown that pedestrians had considerably
longer CITs at zebra crossings in the experiment [67].
Also, investigating the third point, i.e., A, where the model
performed poorly suggested that other factors such as
personality traits could play a role in the pedestrian’s CIT
(see [67]). Therefore, the observed discrepancy between the
model’s DT prediction and the pedestrians’ CIT could be
due to the lack of consideration of such variables. A more
complete account of this negotiation process could include
these variables (e.g., personality traits) in future studies.

We used a novel approach in model fitting employing
a distributed simulation dataset to test and validate the
models. The controlled nature of the study allowed us
to understand and pinpoint each and every PP behavior,
individually as well as evaluate each model’s performance
with respect to the individual data, something that is not
possible in naturalistic studies. It also helped us formulate
the alternative payoff matrix having the confidence that
there are no unknown correlations between the studied
variables. Previously, we showed that distributed simulation
can generate pedestrians’ gap acceptance behaviors, using
a desktop driving simulator connected to the HIKER lab
[75]. This paper tried to a take step forward in this direction
by replicating game-theoretic interactions using two high
fidelity simulators tomaximize the validity of the experiment.
That said, naturalistic data still provide some advantages over
simulator data which should not be overlooked: studying road
user behavior over a longer period to understand, for example,
driving patterns [76], giving a truthful representation of road
users’ 2D movement on the road for vehicle-vehicle [28]
and vehicle-pedestrian interactions [77] and the capability of
tracking a large number of road user parameters, especially
those related to driving performance [78] are some of the

aspects that still make the naturalistic data a necessary tool
for a successful traffic microsimulation.

Another strength of this modeling approach is that the
inputs of the proposed model (the agents’ kinematics) are
usually easy to record and extract and unlike many models,
it does not demand metrics such as vehicle’s deceleration,
dimensions, etc. which are usually more difficult to achieve
when using naturalistic video data. Moreover, while the mod-
eling framework of this study is both computationally less
expensive and intensive than most machine-learned models,
we do not consider it quite a substitute for these black box
models, rather, we think the combination of these two would
generate an even more powerful computational framework
which balances interpretability and generalizability.

Several improvements can be made to this study. First
and considering the empirical study, we did not account for
the interaction approach phase while research showed that
the interaction commences as soon as road users see each
other even before the time pedestrians reached the curb [79].
Second, making the utility functions time-varying would
yield a more complete picture of the whole interaction from
the approach phase to the time that both agents passed the
crossing. Third, from both the experimental and modeling
perspective, there is a need to further develop a method-
ology to consider situations where multiple pedestrians are
interacting with multiple vehicles. This could be done by
using head-mounted displays where several pedestrians wear
these devices connected over a network. Fourth, our ABGT
model currently uses some of the features of behavioral
game theory while there are more aspects associated with
this theory that distinguishes itself from its conventional
counterpart concerning collective behavior, which have not
been investigated in a road traffic setting. These include
theories of strategic complementarity [52], theories of team
reasoning [80], and theories of social projection [81], [82].
To this end, extending the framework to a multi-agent
problem is one of the most important future research
directions. Finally, due to the nature of the experimental
work, the behavior of a limited number of people was
studied and the models’ performance including the proposed
ABGT model was judged accordingly. Future studies should
test and validate the framework using large naturalistic
datasets to both confirm and improve its performance and
generalizability.

V. CONCLUSION
In this study, we compared several computational models
of road user interaction using data from an experimental
setting. The results showed that drivers and pedestrians do not
play the Nash equilibrium when interacting at unsignalized
crossings and more complex behavioral modeling paradigms
like behavioral game theory are needed to fully capture
the pedestrians crossing decisions at these locations. The
ABGT model was successful in replicating these interactions
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by taking into account how agents negotiate their available
strategies and gains and losses over time which sometimes
results in choosing a suboptimal decision as opposed to the
assumed rationality of players in conventional game theory.
For instance, this model resulted in a reduction by 70%
and 67% in the RMSE compared to the OCGT model, for
marked and unmarked crossings, respectively. These findings
are especially a pivotal point for the virtual testing and
development of AVs where they need to take over human
driver tasks to a great extent taking the unpredictability
of VRUs into account. That said, achieving this goal still
requires significant progress, as discussed in the future
research directions in the discussion.

REFERENCES
[1] T. Bjørnskau and F. Sagberg, ‘‘Handling skills or improved road

user interaction?’’ in Traffic and Transport Psychology: Theory and
Application. Amsterdam, The Netherlands: Elsevier, 2005, p. 129.

[2] P. Koopman and M. Wagner, ‘‘Toward a framework for highly automated
vehicle safety validation,’’ SAE Tech. Paper 2018-01-1071, 2018, doi:
10.4271/2018-01-1071.

[3] G. Markkula, R. Madigan, D. Nathanael, E. Portouli, Y. M. Lee,
A. Dietrich, J. Billington, A. Schieben, and N. Merat, ‘‘Defining interac-
tions: A conceptual framework for understanding interactive behaviour in
human and automated road traffic,’’ Theor. Issues Ergonom. Sci., vol. 21,
no. 6, pp. 728–752, Nov. 2020, doi: 10.1080/1463922X.2020.1736686.

[4] A. Turnwald and D. Wollherr, ‘‘Human-like motion planning based on
game theoretic decision making,’’ Int. J. Social Robot., vol. 11, no. 1,
pp. 151–170, Jan. 2019, doi: 10.1007/s12369-018-0487-2.

[5] World Health Organization. (2013). Pedestrian Safety: A Road Safety
Manual for Decision-Makers and Practitioners. [Online]. Available:
https://apps.who.int/iris/rest/bitstreams/279316/retrieve

[6] B. C. de Lavalette, C. Tijus, S. Poitrenaud, C. Leproux, J. Bergeron,
and J.-P. Thouez, ‘‘Pedestrian crossing decision-making: A situational and
behavioral approach,’’ Saf. Sci., vol. 47, no. 9, pp. 1248–1253, Nov. 2009,
doi: 10.1016/j.ssci.2009.03.016.

[7] H. Amado, S. Ferreira, J. P. Tavares, P. Ribeiro, and E. Freitas,
‘‘Pedestrian–vehicle interaction at unsignalized crosswalks: A system-
atic review,’’ Sustainability, vol. 12, no. 7, p. 2805, Apr. 2020, doi:
10.3390/su12072805.

[8] R. E. Amini, C. Katrakazas, and C. Antoniou, ‘‘Negotiation and
decision-making for a pedestrian roadway crossing: A literature review,’’
Sustainability, vol. 11, no. 23, p. 6713, Nov. 2019.

[9] T. T. M. Tran, C. Parker, and M. Tomitsch, ‘‘A review of virtual reality
studies on autonomous vehicle–pedestrian interaction,’’ IEEE Trans.
Human-Mach. Syst., vol. 51, no. 6, pp. 641–652, Dec. 2021.

[10] W. Wang, L. Wang, C. Zhang, C. Liu, and L. Sun, ‘‘Social interactions for
autonomous driving: A review and perspectives,’’ Found. Trends Robot.,
vol. 10, nos. 3–4, pp. 198–376, 2022.

[11] F. Camara, N. Bellotto, S. Cosar, F.Weber, D. Nathanael,M.Althoff, J.Wu,
J. Ruenz, A. Dietrich, G. Markkula, A. Schieben, F. Tango, N. Merat, and
C. Fox, ‘‘Pedestrian models for autonomous driving—Part II: High-level
models of human behavior,’’ IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 9, pp. 5453–5472, Sep. 2021.

[12] G. Markkula and M. R. Dogar, ‘‘Models of human behavior for human–
robot interaction and automated driving: How accurate do the models of
human behavior need to be?’’ IEEE Robot. Autom. Mag., early access,
Aug. 8, 2022, doi: 10.1109/MRA.2022.3182892.

[13] A. Rai, ‘‘Explainable AI: From black box to glass box,’’ J. Acad. Marketing
Sci., vol. 48, no. 1, pp. 137–141, Jan. 2020.

[14] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouzakitis,
‘‘Deep learning-based vehicle behavior prediction for autonomous driving
applications: A review,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1,
pp. 33–47, Jan. 2022.

[15] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
‘‘Explaining explanations: An overview of interpretability of machine
learning,’’ in Proc. IEEE 5th Int. Conf. Data Sci. Adv. Anal. (DSAA),
Oct. 2018, pp. 80–89.

[16] E. Bonabeau, ‘‘Agent-based modeling: Methods and techniques for
simulating human systems,’’ Proc. Nat. Acad. Sci. USA, vol. 99,
no. Suppl. 3, pp. 7280–7287, May 2002.

[17] M. Prédhumeau, L. Mancheva, J. Dugdale, and A. Spalanzani, ‘‘Agent-
based modeling for predicting pedestrian trajectories around an
autonomous vehicle,’’ J. Artif. Intell. Res., vol. 73, pp. 1385–1433,
Apr. 2022.

[18] V.-A. Le and A. A. Malikopoulos, ‘‘A cooperative optimal control
framework for connected and automated vehicles in mixed traffic using
social value orientation,’’ in Proc. IEEE 61st Conf. Decis. Control (CDC),
Dec. 2022, pp. 6272–6277.

[19] I.M. Ross,APrimer on Pontryagin’s Principle inOptimal Control. Boston,
MA, USA: Collegiate Publishers, 2015.

[20] R. Bellman, ‘‘A Markovian decision process,’’ Indiana Univ. Math. J.,
vol. 6, no. 4, pp. 679–684, 1957.

[21] Y.-C. Hsu, S. Gopalswamy, S. Saripalli, and D. A. Shell, ‘‘An MDP
model of vehicle-pedestrian interaction at an unsignalized intersection,’’
in Proc. IEEE 88th Veh. Technol. Conf. (VTC-Fall), Aug. 2018,
pp. 1–6.

[22] J. Pekkanen, O. T. Giles, Y. M. Lee, R. Madigan, T. Daimon, N. Merat,
and G. Markkula, ‘‘Variable-drift diffusion models of pedestrian road-
crossing decisions,’’ Comput. Brain Behav., vol. 5, no. 1, pp. 60–80,
Mar. 2022.

[23] R. Ratcliff, P. L. Smith, S. D. Brown, and G. McKoon, ‘‘Diffusion decision
model: Current issues and history,’’ Trends Cogn. Sci., vol. 20, no. 4,
pp. 260–281, Apr. 2016.

[24] J. Domeyer, A. Dinparastdjadid, J. D. Lee, G. Douglas, A. Alsaid,
and M. Price, ‘‘Proxemics and kinesics in automated vehicle–pedestrian
communication: Representing ethnographic observations,’’ Transp. Res.
Rec., vol. 2673, no. 10, pp. 70–81, Oct. 2019.

[25] D. A. Hensher and L. W. Johnson, Applied Discrete-Choice Modelling.
Evanston, IL, USA: Routledge, 2018.

[26] J. Zhao, J. O. Malenje, Y. Tang, and Y. Han, ‘‘Gap acceptance probability
model for pedestrians at unsignalized mid-block crosswalks based on
logistic regression,’’ Accident Anal. Prevention, vol. 129, pp. 76–83,
Aug. 2019.

[27] R. Elvik, ‘‘A review of game-theoretic models of road user behaviour,’’
Accid. Anal. Prev., vol. 62, pp. 388–396, Jan. 2014.

[28] J. Zhao, V. L. Knoop, and M. Wang, ‘‘Two-dimensional vehicular
movement modelling at intersections based on optimal control,’’ Transp.
Res. B, Methodol., vol. 138, pp. 1–22, Aug. 2020.

[29] D. B. Raghuram Kadali and D. P. Vedagiri, ‘‘Role of number of
traffic lanes on pedestrian gap acceptance and risk taking behaviour at
uncontrolled crosswalk locations,’’ J. Transp. Health, vol. 19, Dec. 2020,
Art. no. 100950.

[30] D. Sun, S. Ukkusuri, R. F. Benekohal, and S. T. Waller, ‘‘Modeling of
motorist-pedestrian interaction at uncontrolled mid-block crosswalks,’’
in Proc. TRB Annu. Meeting CD-ROM, Washington, DC, USA, 2003,
pp. 1–34.

[31] G. Yannis, E. Papadimitriou, and A. Theofilatos, ‘‘Pedestrian gap
acceptance for mid-block street crossing,’’ Transp. Planning Technol.,
vol. 36, no. 5, pp. 450–462, Jul. 2013.

[32] E. Papadimitriou, G. Yannis, and J. Golias, ‘‘A critical assessment of
pedestrian behaviour models,’’ Transp. Res. F, Traffic Psychol. Behaviour,
vol. 12, no. 3, pp. 242–255, May 2009.

[33] V. S. Vinayaraj, S. Arkatkar, G. Joshi, and M. Parida, ‘‘Examining
pedestrian critical gap analysis at un-signalized midblock crosswalk
sections in India,’’ Transp. Res. Proc., vol. 48, pp. 2230–2250, 2020.

[34] J. Zhao, J. O. Malenje, J. Wu, and R. Ma, ‘‘Modeling the interaction
between vehicle yielding and pedestrian crossing behavior at unsignalized
midblock crosswalks,’’ Transp. Res. F, Traffic Psychol. Behaviour, vol. 73,
pp. 222–235, Aug. 2020.

[35] B. R. Kadali, P. Vedagiri, and N. Rathi, ‘‘Models for pedestrian gap
acceptance behaviour analysis at unprotected mid-block crosswalks under
mixed traffic conditions,’’ Transp. Res. F, Traffic Psychol. Behaviour,
vol. 32, pp. 114–126, Jul. 2015.

[36] G. Markkula, Z. Uludağ, R. M. Wilkie, and J. Billington, ‘‘Accumulation
of continuously time-varying sensory evidence constrains neural and
behavioral responses in human collision threat detection,’’ PLoS Comput.
Biol., vol. 17, no. 7, Jul. 2021, Art. no. e1009096.

[37] B. A. Purcell and T. J. Palmeri, ‘‘Relating accumulator model param-
eters and neural dynamics,’’ J. Math. Psychol., vol. 76, pp. 156–171,
Feb. 2017.

VOLUME 11, 2023 110721

http://dx.doi.org/10.4271/2018-01-1071
http://dx.doi.org/10.1080/1463922X.2020.1736686
http://dx.doi.org/10.1007/s12369-018-0487-2
http://dx.doi.org/10.1016/j.ssci.2009.03.016
http://dx.doi.org/10.3390/su12072805
http://dx.doi.org/10.1109/MRA.2022.3182892


A. H. Kalantari et al.: Driver-Pedestrian Interactions at Unsignalized Crossings

[38] A. Zgonnikov, D. Abbink, and G. Markkula, ‘‘Should I stay or should I
go? Cognitive modeling of left-turn gap acceptance decisions in human
drivers,’’ Human Factors, Dec. 2022, Art. no. 001872082211445.

[39] O. Giles, G. Markkula, J. Pekkanen, N. Yokota, N. Matsunaga, N. Merat,
and T. Daimon, ‘‘At the zebra crossing: Modelling complex decision
processes with variable-drift diffusion models,’’ in Proc. 41st Annu.
Meeting Cogn. Sci. Soc., 2019, pp. 366–372.

[40] G. Markkula, R. Romano, R. Madigan, C. W. Fox, O. T. Giles, and
N. Merat, ‘‘Models of human decision-making as tools for estimating and
optimizing impacts of vehicle automation,’’ Transp. Res. Rec., vol. 2672,
no. 37, pp. 153–163, Dec. 2018.

[41] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory.
Philadelphia, PA, USA: SIAM, 1998.

[42] D. Novikov, V. Korepanov, and A. Chkhartishvili, ‘‘Reflexion in mathe-
matical models of decision-making,’’ Int. J. Parallel, Emergent Distrib.
Syst., vol. 33, no. 3, pp. 319–335, May 2018.

[43] N. J. Evans and E.-J. Wagenmakers, ‘‘Evidence accumulation models:
Current limitations and future directions,’’ Quant. Methods Psychol.,
vol. 16, no. 2, pp. 73–90, Apr. 2020.

[44] F. Camara, P. Dickinson, and C. Fox, ‘‘Evaluating pedestrian interaction
preferences with a game theoretic autonomous vehicle in virtual reality,’’
Transp. Res. F, Traffic Psychol. Behaviour, vol. 78, pp. 410–423,
Apr. 2021.

[45] C. W. Fox, F. Camara, G. Markkula, R. A. Romano, R. Madigan, and
N. Merat, ‘‘When should the chicken cross the road? Game theory
for autonomous vehicle–human interactions,’’ in Proc. 4th Int. Conf.
Vehicle Technol. Intell. Transp. Syst. Setúbal, Portugal: SciTePress, 2018,
pp. 431–439.

[46] F. T. Johora and J. P. Müller, ‘‘Zone-specific interaction modeling of
pedestrians and cars in shared spaces,’’ Transp. Res. Proc., vol. 47,
pp. 251–258, Jan. 2020.

[47] H. Li, H. Hu, Z. Zhang, and Y. Zhang, ‘‘The role of yielding cameras in
pedestrian-vehicle interactions at un-signalized crosswalks: An application
of game theoretical model,’’ Transp. Res. F, Traffic Psychol. Behaviour,
vol. 92, pp. 27–43, Jan. 2023.

[48] W. Wu, R. Chen, H. Jia, Y. Li, and Z. Liang, ‘‘Game theory
modeling for vehicle–pedestrian interactions and simulation based on
cellular automata,’’ Int. J. Mod. Phys. C, vol. 30, no. 4, Apr. 2019,
Art. no. 1950025.

[49] C. F. Camerer, ‘‘Behavioural game theory,’’ in Behavioural and Experi-
mental Economics. London, Springer, 2010, pp. 42–50.

[50] D. Kahneman and A. Tversky, ‘‘Prospect theory: An analysis of decision
under risk,’’ in Handbook of the Fundamentals of Financial Decision
Making: Part I. Singapore: World Scientific, 2013, pp. 99–127.

[51] J. R. Wright and K. Leyton-Brown, ‘‘Predicting human behavior in
unrepeated, simultaneous-move games,’’ Games Econ. Behav., vol. 106,
pp. 16–37, Nov. 2017.

[52] C. F. Camerer and E. Fehr, ‘‘When does ‘Economic Man’ dominate social
behavior?’’ Science, vol. 311, no. 5757, pp. 47–52, Jan. 2006.

[53] D. O. Stahl and P. W. Wilson, ‘‘On players’ models of other players:
Theory and experimental evidence,’’ Games Econ. Behav., vol. 10, no. 1,
pp. 218–254, Jul. 1995.

[54] A. M. Colman, ‘‘Cooperation, psychological game theory, and limitations
of rationality in social interaction,’’ Behav. Brain Sci., vol. 26, no. 2,
pp. 139–153, Apr. 2003.

[55] C. F. Camerer, ‘‘Behavioural studies of strategic thinking in games,’’
Trends Cogn. Sci., vol. 7, no. 5, pp. 225–231, May 2003.

[56] R. Golman, S. Bhatia, and P. B. Kane, ‘‘The dual accumulator model of
strategic deliberation and decision making,’’ Psychol. Rev., vol. 127, no. 4,
pp. 477–504, Jul. 2020.

[57] J. K. Goeree and C. A. Holt, ‘‘A model of noisy introspection,’’ Games
Econ. Behav., vol. 46, no. 2, pp. 365–382, Feb. 2004.

[58] R. D. McKelvey and T. R. Palfrey, ‘‘Quantal response equilibria for normal
form games,’’ Games Econ. Behav., vol. 10, no. 1, pp. 6–38, Jul. 1995.

[59] C. F. Camerer, T.-H. Ho, and J.-K. Chong, ‘‘A cognitive hierarchy model
of games,’’ Quart. J. Econ., vol. 119, no. 3, pp. 861–898, Aug. 2004.

[60] Y. Zhang and J. D. Fricker, ‘‘Incorporating conflict risks in pedestrian-
motorist interactions: A game theoretical approach,’’ Accident Anal.
Prevention, vol. 159, Sep. 2021, Art. no. 106254.

[61] B. M. Albaba and Y. Yildiz, ‘‘Driver modeling through deep reinforcement
learning and behavioral game theory,’’ IEEE Trans. Control Syst. Technol.,
vol. 30, no. 2, pp. 885–892, Mar. 2022.

[62] D. W. Oyler, Y. Yildiz, A. R. Girard, N. I. Li, and I. V. Kolmanovsky,
‘‘A game theoretical model of traffic with multiple interacting drivers for
use in autonomous vehicle development,’’ in Proc. Amer. Control Conf.
(ACC), Jul. 2016, pp. 1705–1710.

[63] S. Zhang, Y. Zhi, R. He, and J. Li, ‘‘Research on traffic vehicle behavior
prediction method based on game theory and HMM,’’ IEEE Access, vol. 8,
pp. 30210–30222, 2020.

[64] S. Li, N. Li, A. Girard, and I. Kolmanovsky, ‘‘Decision making in
dynamic and interactive environments based on cognitive hierarchy theory,
Bayesian inference, and predictive control,’’ in Proc. IEEE 58th Conf.
Decis. Control (CDC), Dec. 2019, pp. 2181–2187.

[65] R. Alsaleh and T. Sayed, ‘‘Do road users play Nash equilibrium?
A comparison between Nash and logistic stochastic equilibriums for
multiagent modeling of road user interactions in shared spaces,’’ Expert
Syst. Appl., vol. 205, Nov. 2022, Art. no. 117710.

[66] W. van Haperen, M. S. Riaz, S. Daniels, N. Saunier, T. Brijs, and G. Wets,
‘‘Observing the observation of (vulnerable) road user behaviour and
traffic safety: A scoping review,’’ Accident Anal. Prevention, vol. 123,
pp. 211–221, Feb. 2019.

[67] A. H. Kalantari, Y. Yang, J. G. de Pedro, Y. M. Lee, A. Horrobin,
A. Solernou, C. Holmes, N. Merat, and G. Markkula, ‘‘Who goes
first? A distributed simulator study of vehicle–pedestrian interaction,’’
Accident Anal. Prevention, vol. 186, Jun. 2023, Art. no. 107050, doi:
10.1016/j.aap.2023.107050.

[68] W. Spaniel,Game Theory 101: The Complete Textbook. Scotts Valley, CA,
USA: CreateSpace, 2014.

[69] Driving Standards Agency. (2023). The Official Highway Code.
[Online]. Available: https://www.highwaycodeuk.co.uk/rules-for-pedestri-
ans-crossings.html

[70] T. Wang, J. Wu, P. Zheng, and M. McDonald, ‘‘Study of pedestrians’
gap acceptance behavior when they jaywalk outside crossing facili-
ties,’’ in Proc. 13th Int. IEEE Conf. Intell. Transp. Syst., Sep. 2010,
pp. 1295–1300.

[71] I. Csiszár and G. Tusnady, ‘‘Information geometry and alternating
minimization procedures,’’ Statist. Decisions, vol. 1, no. 1, pp. 205–237,
1984.

[72] P. Virtanen et al., ‘‘SciPy 1.0: Fundamental algorithms for scien-
tific computing in Python,’’ Nature Methods, vol. 17, pp. 261–272,
Feb. 2020.

[73] Marisamynathan and V. Perumal, ‘‘Study on pedestrian crossing behavior
at signalized intersections,’’ J. Traffic Transp. Eng. English Ed., vol. 1,
no. 2, pp. 103–110, Apr. 2014.

[74] G. J. Mailath, ‘‘Do people play Nash equilibrium? Lessons from
evolutionary game theory,’’ J. Econ. Literature, vol. 36, pp. 1347–1374,
Sep. 1998.

[75] A. H. Kalantari, G. Markkula, C. Uzondu, W. Lv, J. G. de Pedro,
R. Madigan, Y. M. Lee, C. Holmes, and N. Merat, ‘‘Vehicle-pedestrian
interactions at uncontrolled locations: Leveraging distributed simu-
lation to support game-theoretic modeling,’’ in Proc. Transp. Res.
Board 101st Annu. Meeting, 2022, Paper no. TRBAM-22-01874, doi:
10.13140/RG.2.2.15469.72165.

[76] J. Balsa-Barreiro, P. M. Valero-Mora, M. Menéndez, and R. Mehmood,
‘‘Extraction of naturalistic driving patterns with geographic information
systems,’’Mobile Netw. Appl., pp. 1–17, Oct. 2020.

[77] F. Camara and C. Fox, ‘‘Space invaders: Pedestrian proxemic utility
functions and trust zones for autonomous vehicle interactions,’’ Int.
J. Social Robot., vol. 13, no. 8, pp. 1929–1949, Dec. 2021.

[78] J. Balsa-Barreiro, P. M. Valero-Mora, J. L. Berné-Valero, and
F.-A. Varela-García, ‘‘GIS mapping of driving behavior based on
naturalistic driving data,’’ ISPRS Int. J. Geo-Inf., vol. 8, no. 5, p. 226,
May 2019.

[79] A. Gorrini, L. Crociani, G. Vizzari, and S. Bandini, ‘‘Observation
results on pedestrian-vehicle interactions at non-signalized intersections
towards simulation,’’ Transp. Res. F, Traffic Psychol. Behaviour, vol. 59,
pp. 269–285, Nov. 2018.

[80] A. M. Colman, B. D. Pulford, and C. L. Lawrence, ‘‘Explaining strategic
coordination: Cognitive hierarchy theory, strong Stackelberg reasoning,
and team reasoning,’’ Decision, vol. 1, no. 1, pp. 35–58, Jan. 2014.

[81] J. I. Krueger, ‘‘Methodological individualism in experimental games:
Not so easily dismissed,’’ Acta Psychol., vol. 128, no. 2, pp. 398–401,
Jun. 2008.

[82] J. I. Krueger, T. E. Didonato, and D. Freestone, ‘‘Social projection
can solve social dilemmas,’’ Psychol. Inquiry, vol. 23, no. 1, pp. 1–27,
Jan. 2012.

110722 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.aap.2023.107050
http://dx.doi.org/10.13140/RG.2.2.15469.72165


A. H. Kalantari et al.: Driver-Pedestrian Interactions at Unsignalized Crossings

AMIR HOSSEIN KALANTARI received the B.Sc.
degree in civil engineering and the M.Sc. degree
in transport engineering, in 2015 and 2018,
respectively. He is currently pursuing the Ph.D.
degree in transport studies with the University of
Leeds, U.K. He is also a Postdoctoral Research
Fellow with TU Delft. In 2020, he was granted a
Marie Skłodowska-Curie Actions Fellowship and
joined the SHAPE-IT Project as an Early-Stage
Researcher. His research interests include traffic

psychology, road user behavior modeling, and studying the interaction of
autonomous vehicles with vulnerable road users. He has been a member of
the American Society of Civil Engineers (ASCE), since 2015.

YUE YANG received the B.Eng. degree in automa-
tion and control science from the Harbin Institute
of Technology, in 2017, and the M.Sc. degree
in human–computer interaction and design from
the KTH Royal Institute of Technology, in 2020.
She is currently pursuing the Ph.D. degree with
the Institute for Transport Studies, University of
Leeds. She is also a Marie Curie Early Stage
Researcher with the Institute for Transport Studies,
University of Leeds. Her research interests include

human–machine interface, pedestrian behavior and crossing intent, and
autonomous driving.

YEE MUN LEE received the B.Sc. degree (Hons.)
in psychology and the Ph.D. degree in driving
cognition from the University of Nottingham
Malaysia, in 2012 and 2016, respectively. She
is currently a Senior Research Fellow with the
Institute for Transport Studies, University of
Leeds. Her current research interests include
investigating the interaction between automated
vehicles and other road users, by using various
methods, especially virtual reality experimental

designs. She is also a Co-Lead of the User Sub-Project of an EU-funded
project, Hi-Drive. Finally, she is one of the SHAPE-IT project supervisors,
where she continues her research on human interaction with AVs in urban
scenarios, and also actively involved in the International Organization for
Standardization (ISO).

NATASHA MERAT received the Ph.D. degree
in psychology, in 1999. She currently leads
the Human Factors and Safety Group, Institute
for Transport Studies, University of Leeds. Her
primary research interests include investigating
the interactions between road users and novel
technologies. Specifically, she delves into the
implications of driver impairment and distraction
and she is renowned globally as an expert in
studying the human factors of highly automated

vehicles. She is also involved in six U.K. and European projects related
to automated vehicles. She is the Co-Chair of the TRB Sub-Committee on
Human Factors in Road Vehicle Automation, and a task leader of a tri-lateral
working group on human factors of automation, leading activities between
EU-U.S.-Japan. She has advisory board roles for Veoneer Inc., Highways
England, the EC’s H2020 Transport Advisory Group, and Zenzic.

GUSTAV MARKKULA received the M.Sc. degree
in engineering physics and complex adaptive
systems and the Ph.D. degree in machine and
vehicle systems from the Chalmers University of
Technology, Gothenburg, Sweden, in 2004 and
2015, respectively. He has more than a decade
of research and development experience from the
automotive industry. He is currently the Chair of
Applied Behavior Modeling with the Institute for
Transport Studies, University of Leeds, U.K. His

current research interests include the quantitative modeling of road user
behavior and interaction, and the virtual testing of vehicle safety and
automation technology.

VOLUME 11, 2023 110723


