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Abstract

Vertex Cover is a fundamental optimization problem, and is among Karp’s 21 NP-complete

problems. The problem aims to compute, for a given graph G, a minimum-size set S of vertices of G

such that G−S contains no edge. Vertex Cover admits a simple polynomial-time 2-approximation

algorithm, which is the best approximation ratio one can achieve in polynomial time, assuming

Unique Game Conjecture. However, on many restrictive graph classes, it is possible to obtain

better-than-2 approximation in polynomial time (or even PTASes) for Vertex Cover. In the

club of geometric intersection graphs, examples of such graph classes include unit-disk graphs, disk

graphs, pseudo-disk graphs, rectangle graphs, etc.

In this paper, we study Vertex Cover on the broadest class of geometric intersection graphs

in the plane, known as string graphs, which are intersection graphs of any connected geometric

objects in the plane. Our main result is a polynomial-time 1.9999-approximation algorithm for

Vertex Cover on string graphs, breaking the natural 2 barrier. Prior to this work, no better-than-2

approximation (in polynomial time) was known even for special cases of string graphs, such as

intersection graphs of segments.

Our algorithm is simple, robust (in the sense that it does not require the geometric realization

of the input string graph to be given), and also works for the weighted version of Vertex Cover.

Due to a connection between approximation for Independent Set and approximation for Vertex

Cover observed by Har-Peled, our result can be viewed as a first step towards obtaining constant-

approximation algorithms for Independent Set on string graphs.
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1 Introduction

Vertex Cover is a fundamental optimization problem, and is among Karp’s 21 NP-complete

problems [19]. In this problem, we are given as input a graph G, and the task is to compute

a minimum size set S ⊆ V (G) of vertices of G such that G−S contains no edge. Here, G−S

denotes the graph obtained from G by removing all vertices in S.

It is well-known that Vertex Cover admits a simple polynomial-time 2-approximation

algorithm, which iteratively adds the two endpoints of an edge to the solution and removes

them from the graph. This is already the best approximation one can achieve (in polynomial

time) on general graphs, assuming the Unique Game Conjecture [21]. However, on many
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XX:2 Vertex Cover on String Graphs

restricted graph classes, it is possible to beat this lower bound and obtain better approximation

algorithms for the problem. For instance, Vertex Cover is known to be polynomial-time

solvable on bipartite graphs [18]. Also, it admits better-than-2 approximation on dense

graphs [20] or sparse graphs (more precisely, degenerate graphs). The latter includes many

well-known graph classes, such as planar graphs, bounded-genus graphs, H-minor-free graphs,

bounded-degree graphs, etc. On many of these graph classes, Vertex Cover even admits

polynomial-time approximation schemes (PTASes) [3, 5, 8, 10, 7, 13, 14, 16].

Another type of graphs on which one can possibly achieve better-than-2 approximation

for Vertex Cover are geometric intersection graphs. A geometric intersection graph is

defined by a set of geometric objects in the plane (or higher dimensional Euclidean spaces),

where the objects correspond to vertices and two vertices are connected by an edge if

their corresponding objects intersect. Vertex Cover has been studied on many classes

of geometric intersection graphs. Known results (for approximation) include PTASes on

intersection graphs of unit disks [10], disk [26] (or more generally, fat objects in a fixed

dimension [9]), pseudo-disks [5, 15], and a (1.5 + ε)-approximation on intersection graphs of

(axis-parallel) rectangles [4].

However, on some more intricate classes of geometric intersection graphs, it is still unclear

whether Vertex Cover admits better-than-2 approximation in polynomial time. The

simplest example is intersection graphs of plane segments. More generally, one can consider

intersection graphs of arbitrary convex objects, or even arbitrary connected objects in the

plane. The latter is known as string graphs, which form the most general class of geometric

intersection graphs in the plane. In this paper, we study Vertex Cover on string graphs.

Our main result is a polynomial-time 1.9999-approximation algorithm for the problem,

breaking the natural 2 barrier. In fact, we prove the following more general theorem.

▶ Theorem 1. There is a randomized algorithm that, given a string graph G with a weight

function w : V (G)→ R≥0, computes in expected polynomial time a vertex cover S of G such

that
∑

v∈S w(v) ≤ 1.9999 · opt, where opt is the minimum total weight of a vertex cover of G.

Our algorithm of Theorem 1 has the following nice features.

Simplicity. Our algorithm is simple, while it non-trivially combines several well-known

techniques in graph algorithms and approximation algorithms, such as linear kernelization

for Vertex Cover, local-ratio argument, Klein-Plotkin-Rao decomposition, and the

polynomial-time exact algorithm for Vertex Cover on bipartite graphs. The entire

algorithm can be presented in about 3 pages (see Section 2).

Robustness. An algorithm that deals with geometric intersection graphs is robust

if it does not require the geometric realization of the input graph to be given. Our

algorithm is robust. In contrast, the PTAS on intersection graphs of fat objects [9] and

the (1.5 + ε)-approximation algorithm on rectangle intersection graphs [4] are not robust.

Note that robustness is especially important when solving problems on string graphs,

because the geometric realization of a string graph can have exponential complexity in

the size of the graph, by the well-known result of Kratochvíl and Matousek [23].

Generality. As stated in Theorem 1, our algorithm also applies to Weighted Vertex

Cover on string graphs, in which the input graph G is given with a weight function

w : V (G)→ R≥0 and the goal is to find a vertex cover of G with minimum total weight.

In contrast, the PTASes on (pseudo-)disk graphs [5, 15, 26] only work for the unweighted

case. Furthermore, our algorithm can be applied to even broader classes of graphs. In fact,

our algorithm only uses the properties of string graphs when applying Klein-Plotkin-Rao

decomposition [22]. By the work of Lee [24], this decomposition applies to not only string
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graphs but also any graphs excluding a fixed graph as an induced minor. Thus, we have

the following more general result.

▶ Theorem 2. For every fixed graph H, there exists a positive number cH > 0 satisfying

the following. There is a randomized algorithm that, given a graph G excluding H as an

induced minor with a weight function w : V (G) → R≥0, computes in expected polynomial

time a vertex cover S of G such that
∑

v∈S w(v) ≤ (2− cH) · opt, where opt is the minimum

total weight of a vertex cover of G.

Aside from the intrinsic interest in the approximability of Vertex Cover, Theorem 1 can

be viewed as a stepping stone towards understanding the approximability of Independent

Set on string graphs. Independent Set is the dual problem of Vertex Cover, which

aims to find a maximum set of vertices in a graph that are pairwise non-adjacent. In terms

of exact algorithms, Independent Set is exactly equivalent to Vertex Cover, while in

terms of approximation, they behave rather differently. It was known [17] that Independent

Set cannot be approximated within a factor of n1−ε for any constant ε > 0 in polynomial

time, assuming P ̸= NP (in contrast to the simple 2-approximation for Vertex Cover).

However, it can have constant-approximation algorithms or even PTASes on many restrictive

graph classes [3, 5, 7, 13, 14, 16].

The approximabiliy of Independent Set on string graphs is an outstanding open

problem that has been attacked from multiple angles since the work of Fox and Pach [11]. It

was known that Independent Set is NP-hard even on planar graphs and does not admit

an EPTAS even on unit-disk graphs. However, the current hardness results do not rule

out the possibility that Independent Set on string graphs admits a PTAS. Nevertheless,

the best (polynomial-time) approximation for the problem remains the nε one of Fox and

Pach [11]. Better approximation algorithms have been found for a number of important

special cases including PTASes for intersection graphs of (pseudo-)disks [5] and the recent

constant-approximation algorithms for intersection graphs of rectangles [12, 27]. If one relaxes

the running time to quasipolynomial, i.e., nlogO(1) n, then one can achieve 1 + ε approximation

for intersection graphs of any polygons [1]; such an algorithm is usually called a QPTAS.

Intersection graphs of polygons form the same class as string graphs. However, the QPTAS

of [1] is not robust, and thus its running time depends on the total complexity of all polygons

representing the vertices of the input graph. As aforementioned, there are (string) graphs

which require realizations with exponential complexity. Therefore, in the worst case, the

algorithm of [1] runs in time exponential in the size of the graph, even if the given realization

is assumed to have minimum complexity.

Interestingly, based on the linear kernelization for Vertex Cover, Har-Peled [15]

established a close relation between Independent Set and Vertex Cover in terms of

approximation: a (1− c)-approximation algorithm for (weighted) Independent Set on a

graph class with running time T (n) implies a (1 + c)-approximation algorithm for (weighted)

Vertex Cover on the same graph class with running time T (n) + nO(1). In particular, a

constant-factor approximation for Independent Set, i.e., (1− c)-approximation for some

constant c < 1, implies a better-than-2 approximation for Vertex Cover. Therefore, our

result in Theorem 1 can be viewed as a first step towards designing constant-approximation

algorithms for Independent Set on string graphs.

Notations. We write [n] = ¶1, . . . , n♢ for a natural number n. For a graph G, we use V (G)

to denote the set of vertices of G. A path in G is a sequence π = (v0, v1, . . . , vr) of vertices of

G such that (vi−1, vi) is an edge in G for all i ∈ [r], where r is called the length of π, denoted

SoCG 2024
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by ♣π♣. A cycle in G is a path (v0, v1, . . . , vr) in G where v0 = vr. An odd cycle in G refers to

a cycle γ in G such that ♣γ♣ is an odd number. A graph is bipartite iff it does not contain any

odd cycle. For two vertices s, t ∈ V (G), the notation distG(s, t) denotes the shortest-path

distance between s and t in G, that is, the minimum length of a path (v0, v1, . . . , vr) in G

satisfying v0 = s and vr = t.

2 The algorithm

For ease of exposition, we first present our algorithm for unweighted case, i.e., prove Theorem 1

in the special case where the weight function w : V (G)→ R≥0 is defined as w(v) = 1 for all

v ∈ V (G). Generalizing it to the weighted case is straightforward and we defer the discussion

to Section 3. For a graph H, we denote by opt(H) the size of a minimum vertex cover of H.

Step 1: Linear kernelization. In the first step, we apply the well-known linear kernelization

for Vertex Cover [28], which reduces the problem to the case where the size of a minimum

vertex cover is linear in the size of the graph.

▶ Theorem 3 ([28]). One can reduce in polynomial time a Vertex Cover instance ⟨G⟩

to another Vertex Cover instance ⟨H⟩ where H is an induced subgraph G and opt(H) ≥

♣V (H)♣/2. Furthermore, the reduction is approximation-preserving: a ρ-approximation

solution for ⟨H⟩ can be converted in polynomial time to a ρ-approximation solution for ⟨G⟩.

Let G be the input string graph and n = ♣V (G)♣. Observe that an induced subgraph of a

string graph is still a string graph. Therefore, by Theorem 3, we can now assume without

loss of generality that opt(G) ≥ n
2 . It suffices to solve the problem under this assumption.

Step 2: Removing short odd cycles. In the next step, we make use of the following simple

but useful observation, which helps remove all short odd cycles in G.

▶ Observation 4. Let ℓ ≥ 1 be an integer. If γ is a simple cycle in G of length 2ℓ− 1, then

any vertex cover of G contains at least ℓ vertices on γ.

Proof. Suppose γ = (v0, v1, . . . , v2ℓ−1) where v0 = v2ℓ−1, and Vγ = ¶v1, . . . , v2ℓ−1♢ is the

vertex set of γ. Consider a vertex cover S ⊆ V (G) of G. Let ϕ : V (G) → ¶0, 1♢ be the

indicator function for membership in S, i.e., ϕ(v) = 1 if v ∈ S and ϕ(v) = 0 if v /∈ S. As S is

a vertex cover of G, it covers every edge of γ. Thus, ϕ(vi−1) + ϕ(vi) ≥ 1 for each i ∈ [2ℓ− 1].

It follows that

2 · ♣S ∩ Vγ ♣ =

2ℓ−1
∑

i=1

(ϕ(vi−1) + ϕ(vi)) ≥ 2ℓ− 1,

which implies ♣S ∩ Vγ ♣ ≥ ℓ− 1
2 . Since ♣S ∩ Vγ ♣ is an integer, we have ♣S ∩ Vγ ♣ ≥ ℓ. ◀

Let ℓ+ ≥ 1 be a constant to be determined later. For convenience, we call an odd cycle

short if its length is at most 2ℓ+−1. We compute a maximal packing Γ of short odd cycles in

G, i.e., a maximal set of vertex-disjoint short odd cycles in G. Denote by V (Γ ) the set of all

vertices on the cycles in Γ . Note that Γ can be computed by repeatedly finding a short odd

cycle in G and removing the vertices on the cycle from G. Finding a short odd cycle takes

nO(ℓ+) time by brute-force, and the time complexity can be improved to nO(1) by exploiting

the fixed-parameter tractable algorithm for k-Cycle [2]. After computing Γ , we simply

add all vertices in V (Γ ) to our solution, and remove them from G. This is safe because by
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Observation 4, strictly more than half of the vertices in each cycle in Γ should be included

in the solution and thus including all vertices results in a multiplicative error smaller than

2. We shall discuss this formally when analyzing the algorithm. Let G′ = G− V (Γ ) be the

resulting graph.

Step 3: Klein-Plotkin-Rao decomposition. Next, it suffices to compute a vertex cover of

G′. Set n′ = ♣V (G′)♣ We shall use a powerful decomposition theorem, which was initially

obtained for minor-free graphs by Klein, Plotkin, and Rao [22], and can be extended to string

graphs using a result of Lee [24]. It basically states that one can remove a small fraction of

vertices from a string graph such that any two vertices in the same connected component of

the resulting graph are close to each other in the original graph.

▶ Theorem 5 ([22, 24]). There exists a randomized algorithm that, for a given string graph

H and an integer ∆ ≥ 1, computes in expected polynomial time a subset S ⊆ V (H) of

O(♣V (H)♣/∆) vertices such that for any two vertices u and v lying in the same connected

component of H − S, distH(u, v) ≤ ∆.

While the above theorem (and its weighted version in Theorem 9) is not stated explicitly

in [24], it is a direct consequence of the work. For completeness, we discuss in Appendix A how

it follows from [24]. We apply this theorem with H = G′ and ∆ = ℓ+ − 1, and let S ⊆ V (G′)

be the subset obtained. We then include S in our solution. Note that ♣S♣ = O(n′/∆) by

Theorem 5, i.e., ♣S♣ = O(n′/ℓ+). If ℓ+ is sufficiently large, then the size of S is very small

compared to n′. As opt(G) ≥ n
2 ≥

n′

2 by our assumption, ♣S♣ is only a small fraction of opt(G)

and hence including S in the solution can only increase the multiplicative error slightly.

x

γ1

v0 (v7)

v1

v2

v3

v4

v5

π7

π1

π2
π3

π4

v6

π5

π6

γ2
γ3

γ4

γ5

γ6

γ7

e1

e2

e3

e4

e5

e6

e7

Figure 1 Illustrating the paths π1, . . . , πr and the cycles γ1, . . . , γr.

Step 4: Solving the bipartite case. The remaining task is to compute a (good) vertex

cover of G′ − S. The key observation here is that G′ − S is already bipartite!

▶ Observation 6. G′ − S is bipartite.

Proof. It suffices to show that G′ − S does not contain odd cycles. Recall that (i) G′ does

not contain odd cycles of at most length 2ℓ+ − 1 and (ii) distG′(u, v) ≤ ∆ = ℓ+ − 1 for any

two vertices u and v lying in the same connected component of G′ − S.

SoCG 2024
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Suppose G′−S contains a cycle γ = (v0, v1, . . . , vr) where v0 = vr and r is an odd number.

For convenience, we write ei = (vi−1, vi) for i ∈ [r]. Then v1, . . . , vr must lie in the connected

component C of G′ − S. Pick an arbitrary vertex x ∈ C. We have distG′(x, vi) ≤ ℓ+ − 1 for

all i ∈ [r], by property (ii) above. Now for each i ∈ [r], we fix a path πi in G′ from x to

vi of length at most ℓ+ − 1. Set π0 = πr. Then for each edge ei on γ, the paths πi−1 and

πi together with ei form a cycle γi in G′. See Figure 1 for an illustration. Observe that

the length of each γi is at most 2(ℓ+ − 1) + 1 = 2ℓ+ − 1. We claim that one of the cycles

γ1, . . . , γr is an odd cycle. Indeed,

r
∑

i=1

♣γi♣ =

r
∑

i=1

(♣πi−1♣+ ♣πi♣+ 1) = r +

r
∑

i=1

2 · ♣πi♣,

which is an odd number since r is odd. Thus, one of ♣γ1♣, . . . , ♣γi♣ is odd. However, this

contradicts property (i) above, i.e., G′ does not contain odd cycles of at most length 2ℓ+ − 1.

So we conclude that G′ − S does not contain odd cycles and is hence bipartite. ◀

Vertex Cover on bipartite graphs is polynomial-time solvable. Therefore, we can

compute a minimum vertex cover S′ ⊆ V (G′)\S of G′ − S in polynomial time. Now

V (Γ ) ∪ S ∪ S′ is a vertex cover of G, which is the output of our algorithm.

Putting everything together. We now analyze the approximation ratio of the above

algorithm. Let S∗ ⊆ V (G) be a minimum vertex cover of G. By assumption, we have

♣S∗♣ ≥ n
2 . Recall that n′ = ♣V (G′)♣. As aforementioned, we observe that

♣S∗ ∩ V (Γ )♣ ≥
ℓ+

2ℓ+ − 1
· ♣V (Γ )♣ =

ℓ+

2ℓ+ − 1
· (n− n′). (1)

To see this, suppose Γ = ¶γ1, . . . , γr♢, where γ1, . . . , γr are disjoint short odd cycles in G.

Suppose ♣γi♣ = 2ℓi−1 ≤ 2ℓ+−1 for all i ∈ [r]. By Observation 4, ♣S∗∩V (γi)♣ ≥
ℓi

2ℓi−1 · ♣γi♣ ≥
ℓ+

2ℓ+−1 · ♣γi♣. As γ1, . . . , γr are disjoint, we have ♣S∗ ∩ V (Γ )♣ =
∑r

i=1 ♣S
∗ ∩ V (γi)♣ and

♣V (Γ )♣ =
∑r

i=1 ♣γi♣. Therefore, Equation 1 holds. Furthermore, note that ♣S∗ ∩ (V (G′)\S)♣

is a vertex cover of G′ − S, which implies ♣S∗ ∩ (V (G′)\S)♣ ≥ ♣S′♣ as S′ is a minimum vertex

cover of G′ − S. It follows that

♣S∗ ∩ V (G′)♣ ≥ ♣S′♣. (2)

The last condition we need is ♣S♣ = O(n′/ℓ+), by Theorem 5. In fact, here we can be more

concrete. By a close inspect on the work [24] (proof of Theorem 4.2), the constant hidden in

the O(·) of Theorem 5 can be chosen as 4240. As we applied Theorem 5 with ∆ = 2ℓ+ − 1,

we have

♣S♣ ≤
4240 · n′

2ℓ+ − 1
. (3)

Set ℓ+ = 4241. By Equations 1, 2, and 3, we conclude the following.

▶ Observation 7. ♣V (Γ ) ∪ S ∪ S′♣ − ♣S∗♣ ≤ 0.4999 · n. In particular, ♣V (Γ ) ∪ S ∪ S′♣ ≤

1.9999 · ♣S∗♣.

Proof. We have ♣V (Γ )∪ S ∪ S′♣ = ♣V (Γ )♣+ ♣S♣+ ♣S′♣ and ♣S∗♣ = ♣S∗ ∩ V (Γ )♣+ ♣S∗ ∩ V (G′)♣.

Thus, ♣V (Γ ) ∪ S ∪ S′♣ − ♣S∗♣ = (♣V (Γ )♣ − ♣S∗ ∩ V (Γ )♣) + (♣S♣ + ♣S′♣ − ♣S∗ ∩ V (G′)♣). By

Equation 1, we have ♣V (Γ )♣ − ♣S∗ ∩ V (Γ )♣ ≤ ℓ+−1
2ℓ+−1 · (n− n′). By Equation 2 and 3, we have

♣S♣+ ♣S′♣ − ♣S∗ ∩ V (G′)♣ ≤ ♣S♣ ≤
4240 · n′

2ℓ+ − 1
.



D. Lokshtanov, F. Panolan, S. Saurabh, J. Xue, M. Zehavi XX:7

As we set ℓ+ = 4241, it then follows that

♣V (Γ ) ∪ S ∪ S′♣ − ♣S∗♣ ≤
ℓ+ − 1

2ℓ+ − 1
· (n− n′) +

4240 · n′

2ℓ+ − 1
=

4240

8481
· n ≤ 0.4999 · n.

Now recall that ♣S∗♣ ≥ n
2 , which implies ♣V (Γ ) ∪ S ∪ S′♣ − ♣S∗♣ ≤ 0.4999 · n ≤ 0.9999 · ♣S∗♣.

Finally, we can deduce that ♣V (Γ ) ∪ S ∪ S′♣ ≤ 1.9999 · ♣S∗♣. ◀

The above observation shows that our algorithm computes a 1.9999-approximation

solution. Finally, we briefly discuss the time complexity of the algorithm. The linear

kernelization can be done in O(n2 + nm) time using the method of Li and Zhu [25] based

on crown decomposition. Finding any fixed cycle in a graph can be done in O(n2.376) time

by the algorithm of Alon et al. [2]. In Step 2, we need to call this algorithm O(n) times,

which takes O(n3.376) time. This dominates the time cost of Step 3 and 4 (and also the

kernelization). Therefore, the overall time complexity of our algorithm is O(n3.376). The

bound can possibly be improved by designing a faster algorithm for finding the odd cycle

packing in Step 2 (instead of repeatedly applying the cycle-finding algorithm). But for

simplicity, we are not going to optimize the running time in this paper.

3 Extension to weighted case

Our algorithm directly generalizes to Vertex Cover with any weight function w : V (G)→

R≥0. This is because each of the four steps of the algorithm still works when the vertices

have different weights. The linear kernelization (Step 1), Klein-Plotkin-Rao decomposition

(Step 3), and the polynomial-time algorithm for Vertex Cover on bipartite graphs (Step 4)

can all be applied to the weighted case. So in what follows, we mainly discuss how to do

Step 2 in the weighted setting.

Let G = (V, E) be a string graph with a weight function w : V (G) → R≥0. The

kernelization of Theorem 3 works for the weighted case [6]. Applying the result, we can

assume that the minimum weight of a vertex cover of G is at most 1
2

∑

v∈V (G) w(v). To

do Step 2, we use the standard local-ratio argument (which extends the argument in the

unweighted case).

▶ Observation 8. One can compute in polynomial time a function w̃ : V (G)→ R≥0 such that

(i) for any vertex cover S ⊆ V (G) of G,
∑

v∈S w̃(v) ≥ ℓ+

2ℓ+−1 ·
∑

v∈V (G) w̃(v) and (ii) G[V ]

does not contain odd cycles of length at most 2ℓ+ − 1, where V = ¶v ∈ V (G) : w(v) > w̃(v)♢.

Proof. We keep doing the following three steps until G does not contain any short odd cycles

(i.e., odd cycles of length at most 2ℓ+ − 1).

1. Find a short odd cycle γ in G. Set wmin = minv∈V (γ) w(v).

2. w(v)← w(v)− wmin for all v ∈ V (γ).

3. Remove from G all vertices v ∈ V (G) with w(v) = 0.

Note that this procedure terminates in at most n iterations, because in each iteration

at least one vertex is removed from G (i.e., the vertex on γ with the minimum weight).

Suppose it has r iterations. Let γi (resp., wi) denote the short odd cycle γ (resp., the

number wmin) in the i-th iteration, for i ∈ [r]. Suppose the length of γi is 2ℓi − 1, where

ℓi ≤ ℓ+. For each vertex v ∈ V (G), set Iv = ¶i ∈ [r] : v ∈ V (γi)♢. We define the function

w̃ : V (G) → R≥0 as w̃(v) =
∑

i∈Iv
wi. Clearly, a vertex survives in the resulting graph

of the above procedure iff w̃(v) < w(v). In other words, the resulting graph is G[V ] for

V = ¶v ∈ V (G) : w(v) > w(v′)♢. Therefore, G[V ] does not contain short odd cycles and
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thus condition (ii) holds. To see condition (i), consider a vertex cover S ⊆ V (G) of G. By

Observation 4, ♣S ∩ V (γi)♣ ≥
ℓi

2ℓi−1 · ♣γi♣ ≥
ℓ+

2ℓ+−1 · ♣γi♣, for all i ∈ [r]. Thus,

∑

v∈S

w̃(v) =
∑

v∈S

∑

i∈Iv

wi =

r
∑

i=1

∑

v∈S∩V (γi)

wi ≥

r
∑

i=1



ℓ+

2ℓ+ − 1
· wi♣γi♣



.

Note that
∑r

i=1 wi♣γi♣ =
∑

v∈V (G) w̃(v). So we have
∑

v∈S w̃(v) ≥ ℓ+

2ℓ+−1 ·
∑

v∈V (G) w̃(v). ◀

Recall that in Step 2 of the unweighted case, we removed from G the vertices in the

short cycles in Γ to obtain the graph G′. Here, We have “fractional” short odd cycles

in the proof of Observation 8, and similarly we shall remove them from G to obtain G′.

Formally, let w̃ : V (G)→ R≥0 be the function in Observation 8. We define G′ = G[V ] where

V = ¶v ∈ V (G) : w(v) > w̃(v)♢ with the new weight function w′ : V (G′)→ R≥0 defined as

w′(v) = w(v)− w̃(v). By Observation 8, G′ does not contain any short odd cycles. Step 3

and Step 4 will be applied to the graph G′. For Step 3, the Klein-Plotkin-Rao decomposition

(Theorem 5) also works for the weighted case, in which the set S has a small total weight

instead of a small size. We discuss this in Appendix A.

▶ Theorem 9 ([22, 24]). There exists a randomized algorithm that, for a given string graph

H with a weight function w : V (H) → R≥0 and an integer ∆ ≥ 1, computes in expected

polynomial time a subset S ⊆ V (H) satisfying
∑

v∈S w(v) = O(
∑

v∈V (H) w(v)/∆) such that

for any two vertices u and v lying in the same connected component of H−S, distH(u, v) ≤ ∆.

We apply the above theorem on the graph H = G′ with the weight function w′, and

compute the set S ⊆ V (H). Since G′ does not contain any short cycles, using the same

argument as in the proof of Observation 6, one can show that G′ − S is bipartite. It is

well-known that the polynomial-time algorithm for Vertex Cover on bipartite graphs

also works for the weighted case. Thus, we can compute a minimum-weight vertex cover

S′ ⊆ V (G′)\S of G′−S in polynomial time. As before, our final solution is U ∪S ∪S′, where

U = V (G)\V (G1).

The analysis is almost the same as the unweighted case. We give a proof here for

completeness. For convenience, we extend the domain of w′ to V (G) by setting w′(v) = 0

for all v ∈ V (G)\V (G1) = U . For a subset V ⊆ V (G), we write W (V ) =
∑

v∈V w(v) and

W ′(V ) =
∑

v∈V w′(v). Set W = W (V (G)) and W ′ = W ′(V (G)). Let S∗ ⊆ V (G) be a

minimum-weight vertex cover of G. Observation 8 gives an analog of Equation 1, which is

W (S∗)−W ′(S∗) ≥
ℓ+

2ℓ+ − 1
· (W −W ′). (4)

As S′ is a minimum-weight vertex cover of G′−S, we have an analog of Equation 2, which is

W ′(S∗) ≥W ′(S∗ ∩ (V (G′)\S)) ≥W ′(S′). (5)

Finally, Theorem 9 gives us the analog of Equation 3, which is

W ′(S) ≤
4240 ·W ′

2ℓ+ − 1
. (6)

Now we can apply the same argument as in Observation 7. By the definition of U , we have

W ′(U) = 0 and thus W (U∪S∪S′) ≤ (W−W ′)+W ′(U∪S∪S′) = (W−W ′)+W ′(S)+W ′(S′).

Furthermore, W (S∗) = (W (S∗)−W ′(S∗)) + W ′(S∗). Therefore, we have

W (U ∪ S ∪ S′)−W (S∗) = ∆1 + ∆2,
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where ∆1 = (W −W ′) − (W (S∗) −W ′(S∗)) and ∆2 = W ′(S) + W ′(S′) −W ′(S∗). By

Equation 4, we have ∆1 ≤
ℓ+−1

2ℓ+−1 · (W −W ′). Then by Equation 5 and 6, ∆2 ≤
4240·W ′

2ℓ+−1 . Now

set ℓ+ = 4241, we directly have ∆1 + ∆2 ≤
4240
8481 ·W and thus W (U ∪ S ∪ S′) −W (S∗) ≤

4240
8481 ·W ≤ 0.4999 ·W . Recall that the linear kernelization guarantees W (S∗) ≥ W

2 . Therefore,

W (U ∪ S ∪ S′) ≤ 1.9999 ·W (S∗). This completes the proof of Theorem 1.

The proof of Theorem 2 is totally the same. Note that our algorithm only uses the

properties of a string graph when applying Klein-Plotkin-Rao decomposition (Theorems 5

and 9). Lee [24] showed that these theorems hold for any graphs excluding a fixed graph H

as an induced minor, and the constant hidden in O(·) depends on H. Thus, our algorithm

also applies to prove Theorem 2.
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A Proof of Theorem 5 and Theorem 9

Theorem 5 is a special case of Theorem 9, while the latter is a direct implication of Theorem

4.2 of Lee [24] (see the arxiv version). The statement of that theorem1 is that for every

graph H that excludes a subdivided clique K̇h as an induced minor and every integer ∆,

there exists a distribution on the vertex sets of H, such that if a set S is sampled from this

distribution, then (i) every vertex of G has probability at most O(h2/∆) to be included in S,

and (ii) with probability at least 1− o(1) it holds that for every two vertices u and v lying in

the same connected component of H − S, we have distH(u, v) ≤ ∆. This theorem holds for

string graphs in particular, since string graphs exclude a subdivided K5 as an induced minor.

1 The original statement of Lee [24] is in fact more general. The statement we give here comes from
applying the statement of Lee to the conformal graph (H, ω) where ω is a function that assigns 1 to
every vertex of H, and applying the definition of (α, ∆)-random separators with R = 2.
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Even though it is not explicitly stated, the proof of this theorem is in fact algorithmic in

the sense that there exists a randomized algorithm that given H and ∆, samples S from the

above distribution in polynomial time. Condition (i) guarantees that

E



∑

v∈S

w(v)

]

= O





∑

v∈V (H)

w(v)/∆



 .

Markov’s inequality together with condition (ii) implies that S satisfies the conclusion of

Theorem 9 with probability at least 1
2 − o(1). Since we can check in polynomial time whether

S satisfies the conclusion of Theorem 9 we can re-sample S until it does. The expected

number of re-samplings necessary is O(1).

SoCG 2024


	1 Introduction
	2 The algorithm
	3 Extension to weighted case
	A Proof of Theorem 5 and Theorem 9

