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Key Points:11

• We present two reconstructions of Jupiter’s magnetic field using physics informed12

neural networks: PINN33, based on the first 33 orbits and PINN50, based on the13

first 50 orbits.14

• Compared with spherical harmonic based methods, our reconstructions give a more15

stable downwards continuation and result in clearer images at depth of Jupiter’s16

internal magnetic field17

• Our models infer a dynamo at a fractional radius of 0.8.18
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Abstract19

Magnetic sounding using data collected from the Juno mission can be used to provide20

constraints on Jupiter’s interior. However, inwards continuation of reconstructions as-21

suming zero electrical conductivity and a representation in spherical harmonics are lim-22

ited by the enhancement of noise at small scales. In this paper we describe new recon-23

structions of Jupiter’s internal magnetic field based on physics-informed neural networks24

and either the first 33 (PINN33) or the first 50 (PINN50) of Juno’s orbits. The method25

can resolve local structures, and allows for weak ambient electrical currents. Compared26

with other methods, our reconstructions of Jupiter’s magnetic field both on and above27

the surface are similar, and we achieve a similar fit to the Juno data. However, our mod-28

els are not hampered by noise at depth, and so offer a much clearer picture of the inte-29

rior structure. We estimate that the dynamo boundary is at a fractional radius of 0.8.30

At this depth, the magnetic field is arranged into longitudinal bands, and the great blue31

spot appears to be rooted in neighbouring structures of oppositely signed flux.32

Plain Language Summary33

A major goal of the Juno mission is to better constrain the interior structure of Jupiter.34

One method of doing this is to reconstruct Jupiter’s magnetic field using measurements35

from Juno, which can then be used to probe the interior. One particular internal region36

of interest is the dynamo, within which the planetary magnetic field is generated. Stan-37

dard assumptions of zero electrical conductivity and global solutions allow the reconstruc-38

tions to be inwards extrapolated, however this method of imaging is limited by ampli-39

fied noise. Here, we present reconstructions based on recent advances in machine learn-40

ing, in which the physical assumptions are relaxed and we allow for local structures. Our41

method shows a much clearer image of Jupiter’s interior than has been possible before.42

1 Introduction43

The Juno mission, launched in 2011 (Bolton et al., 2010), has revolutionised our44

understanding of Jupiter’s interior through the collection of both gravity and magnetic45

measurements in orbit since 2016. These new data have not only allowed new constraints46

on the density structure and zonal flow in the outermost parts of the planet (Kaspi et47

al., 2018), but have permitted new reconstructions of the magnetic field to unprecedented48

resolution (e.g. Connerney et al., 2017, 2022). These magnetic maps highlight local fea-49

tures such as the Great Blue Spot, sited within a largescale hemispheric field (Moore et50

al., 2018) which shows evidence of secular variation (Ridley & Holme, 2016; Moore et51

al., 2019; Sharan et al., 2022; Bloxham et al., 2022; Connerney et al., 2022).52

In order to infer the structure of Jupiter’s internally generated magnetic field, global53

reconstructions are needed that fit a physical model of the magnetic field to the sparse54

magnetic dataset collected on orbital trajectories. The physical model commonly adopted55

is that the measured values come from a region free from electrical currents, and com-56

prise signals dominated by the internally generated field with more minor contributions57

from an external magnetic field and unmodelled instrumentation noise. Typical stud-58

ies then proceed by subtracting an approximation to the external field assuming a mag-59

netodisk structure, with estimates of the parameters (Connerney et al., 1981, 2022), al-60

though the difficulty in adopting an accurate representation is compounded by its un-61

known likely time-dependence (Ridley & Holme, 2016; Moore et al., 2019). The remain-62

ing signal is then fit in a least-squares sense to an analytic description of an internally-63

generated magnetic field B using a potential V , with B = −∇V , which by construc-64

tion exactly satisfies J = 0 where J is the ambient electrical current. The potential65

is then typically represented in terms of a truncated spherical harmonic expansion (Con-66

nerney, 1981), similar to comparable studies for Earth’s magnetic field (e.g. Alken et al.,67

2021).68
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Such reconstructions allow not only spatial interpolation between the Juno mea-69

surements, but also extrapolation into regions unconstrained by measurements. Down-70

wards continuation radially inwards under Jupiter’s surface, assuming the same electrically-71

insulating physics, is of particular interest because it allows inference of the dynamo ra-72

dius, typical values for which are 0.8 – 0.83RJ , where RJ is Jupiter’s equatorial radius73

(71,492km) (Connerney et al., 2022; Sharan et al., 2022). However, this downwards con-74

tinuation is numerically unstable because errors in small-scales, caused by leakage from75

unmodelled signals, become amplified more rapidly with decreasing radius than errors76

in large-scales, eventually producing a signal swamped with noise.77

In this paper, we propose a novel representation of Jupiter’s internal magnetic field78

based on physics informed neural networks (PINNs). Compared to standard approaches,79

our models give a similar reconstruction on and above Jupiter’s surface but appear to80

be more stable under downwards continuation. In the following sections, we first describe81

the data before outlining our PINN approach. We present some reconstructions and es-82

timates of the dynamo radius, which we compare with those from existing methods, and83

end with a brief discussion.84

2 Data85

Our work is based the vector magnetic field measured by Juno within the first 5086

perijoves during the period 2016 to 2023, which contains the prime mission of 33 orbits.87

From these data we excluded the second perijove (PJ2) due to a spacecraft safe mode88

entry Connerney et al. (2018). The original observations were down-sampled to 30 s sam-89

pling rate (this being the approximate rotation time of the spacecraft) using a mean-value90

filter. In order to maximise the internal signal content of the data, we used only mea-91

surements recorded at planetocentric spherical radius r ≤ 4.0RJ (where RJ = 71, 49292

km, the equatorial radius). In total, there were 28011 3-component measurements of the93

magnetic field, of periapsis 1.02 RJ and taking magnitudes in the range of approximately94

0.065− 16 Gauss. Figure 1 shows an overview of the data used in this work.95

3 Method96

Physics informed neural networks, or PINNs, offer a technique for representing spa-97

tially dependent quantities by a neural network that are constrained not only by data98

but also physical laws (Raissi et al., 2019). There are two key differences between a PINN99

representation and existing reconstructions based on a spherical-harmonic potential. First,100

existing methods fit data in a weak sense (by least squares) to physics imposed in a strong101

form (by assuming an internal potential field representation). This is quite different in102

a PINN, where both data and physics are fit in a weak form, which makes them partic-103

ularly effective in problems when the data and physics are imperfectly known (Karni-104

adakis et al., 2021), as for Jupiter. Instead of assuming that J = 0 and seeking a fit105

to an internally-generated magnetic solution, instead we minimising the root-mean-squared106

electrical current J which allows, for example, weak nonzero electric currents if the data107

require them. Another key distinction is that we don’t (and indeed cannot) separate in-108

ternal and external fields as we fit the PINN to the fundamental physical law, rather than109

to an analytic solution which assumes the location of source.110

A second important difference is in the spatial representation. A spherical harmonic111

representation, an analytic solution to Laplace’s equation, is defined by a set of Gauss112

coefficients, whose globally resolved wavelength is approximately 2π/(N+1/2), where113

N is the maximum degree N (Backus et al., 1996). In contrast, a neural network is a114

meshless method that can define both local and global solutions. It is defined by a set115

of weights and biases that describe the internal coefficients of connected neurons, arranged116

in a structure that is governed by various hyperparameters: the number of neurons per117

layer, the number of layers, and the activation function.118
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Figure 1. Juno data used in this work. Left: Juno’s global coverage after 50 orbits, showing

Juno’s trajectory within radius 2.5 RJ ; the colours show the 33 prime mission orbits (red lines)

and extended mission (blue lines). Upper right: time span and magnitude range per orbit of Juno

magnetic data. Lower right: orbital position (radius within 4.0 RJ) projected onto a background

contour map of the magnitude of magnetic field at r = RJ reconstructed using model PINN50e.
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We work in a planetocentric Cartesian coordinate system, and write the magnetic119

field in terms of a vector-potential: B = ∇×A, which satisfies the fundamental rela-120

tion ∇ ·B = 0. The three independent components of A, (Ax, Ay, Az), are expressed121

as individual feed-forward neural networks (FNNs) with 6 hidden layers, 40 neurons per122

layer and swish activation functions. We rescale the input r = (x, y, z) coordinates to123

[−1, 1]3, but leave the data unscaled as it is handled by an appropriate dynamic weight-124

ing.125

We denote the set of tunable parameters (weights and biases) of the networks by126

Θ, and the representation of A and B as AΘ(r) and BΘ(r). A physics-informed model127

is trained by minimizing the following loss function:128

L(Θ) = wdLd(Θ) + wpLp(Θ), (1)129

where130

Ld(Θ) =
1

Nd

Nd
∑

i

|BΘ(rid)−B(rid)|
2, Lp(Θ) =

1

Np

Np
∑

i

| (∇×BΘ) (rip)|
2, (2)131

are the data misfit and physics loss terms with weights wd and wp, Np, r
i
p are the num-132

ber and location of the collocation points used to constrain the physics loss, and Nd are133

the number of Juno data used, each of which has location rid and vector value B(rid).134

The contribution to the data loss from each measurement is assumed equal, as is the con-135

tribution to the physics loss from each of the collocation points. The quantities derived136

from AΘ, namely BΘ(r) and ∇×BΘ = ∇(∇·AΘ)−∇2AΘ are computed using au-137

tomatic differentiation (AD) (Baydin et al., 2018). All neural network models are built138

with the machine learning framework TensorFlow (Abadi et al., 2016), and trained with139

the built-in Adam optimizer (Kingma & Ba, 2015) over 12,000 epochs with batch size140

10,000. An empirical learning-rate annealing strategy, with an initial learning rate of 0.002,141

and an exponential decay with a decay rate of 0.8 and a decay step of 1, 000 iterations142

are adopted. From a limited number of tests of various network sizes, this network was143

just large enough to fit well all the data and physics constraints. We do not use any ex-144

plicit spatial regularisation in our method.145

Despite success across a range of applications, the original formulation of Raissi146

et al. (2019) sometimes struggles to converge on an accurate solution; here we apply two147

techniques to improve the method. First, rather than prescribe the weight parameters148

wd and wp, we allow them to be chosen dynamically. We fix wp = 1, but allow wd to149

change at each training epoch in order to balance the gradients of physical and data-fit150

loss with respect to the model parameters (Wang et al., 2021). Second, we adopt residual-151

based sampling for the physics loss term. While uniformly sampled collocation points152

for the physics term offers a simple approach, recent studies have shown promising im-153

provements in training accuracy by applying nonuniform adaptive sampling strategies154

(Lu et al., 2021; Nabian et al., 2021; Wu et al., 2023). Here we apply a simplified ver-155

sion of the residual-based adaptive distribution (RAD) method described in Wu et al.156

(2023). For the first 3000 epochs we use a uniformly sampled set of points in a fixed re-157

gion, but at epoch 3000 (and every 600 epochs thereafter) we create a pdf, based on sam-158

ples of the physics loss, which we use to resample the collaboration points, effectively in-159

creasing the local weighting in regions with a high physics loss.160

We create four PINN models, based on either the first 33 (PINN33i, PINN33e) or161

50 Juno orbits (PINN50i, PINN50e), assuming for each that the magnetic field is static.162

We deliberately distinguish between models internal to Jupiter (denoted by the charac-163

ter:i) which downwards continue into r ≤ RJ the data observed in r > RJ , and those164

external to Jupiter (denoted by the character:e) which interpolate data within the same165

region in which Juno measurements are made r > RJ . Models PINN50e, PINN33e were166

made first, using 300,000 collocation points within the region 1 ≤ r/RJ ≤ 4. Models167
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PINN50i and PINN33i were then constructed, using 40,000 collocation points within the168

region 0.8 ≤ r/RJ ≤ 1; the data loss term was replaced by a term describing match-169

ing in each component to either PINN50e or PINN33e on r = RJ at 80,000 randomly170

located points. Although mildly oblate, Jupiter is assumed spherical for simplicity.171

4 Results and discussion172

Figure 2 shows an orbital comparison of Juno data with four models: PINN33e,173

PINN50e and two recent spherical harmonic models JRM33 (N = 18) (Connerney et174

al., 2022) and the Baseline model of Bloxham et al. (2022) with N = 32. These recent175

models have been chosen because although they are both based on the first 33 orbits,176

they differ in how the spherical harmonics are fitted: JRM33 uses an approach based on177

singular value decomposition, whereas the Baseline model uses regularisation. A sim-178

ple external dipole approximation to the external field (Connerney et al., 2022) has been179

added to the spherical harmonic models, as they only represent the internal field; the PINN180

models represent both internal and external field.181

The models based only on the prime orbits (1-33, excluding 2): PINN33e, JRM33182

and Baseline show a comparable absolute rms error. For the majority of orbits, PINN33e183

has an error less than JRM33, with a few exceptions such as orbit 32. Over the first 33184

orbits, the rms error for JRM33 is 774.1 nT, compared with 509.3 nT for Baseline and185

511.4 nT for PINN33e. Using these models for orbits 34-50 leads to increasing discrep-186

ancy with the measurements, providing additional evidence for Jupiter’s secular varia-187

tion. Model PINN50e has a slightly higher rms of 589.7 nT for orbits 1-33, but fits the188

data for orbits 34-50 much better because it has been trained in part on these data.189

The structure of JRM33, Baseline and PINN50i at radii r/RJ = 1, 0.95, 0.9, 0.85, 0.8190

are shown by contours of radial field in figure 3. On r = RJ the models are almost in-191

distinguishable in terms of physical structure, but as the radius decreases and we (pre-192

sumably) get closer to the dynamo source, the signal strength increases and the length-193

scales decrease. The instability of downwards continuation in the spherical harmonic mod-194

els is readily apparent by the prevalent fine-scaled noise, particularly in the azimuthal195

direction. By comparison, PINN50i remains relatively free of noise and the features at196

depth are much easier to identify.197

At r ≤ 0.85RJ , the field appears arranged into longitudinal bands, with a strong198

band at high latitude and a weaker band near the equator. Many of the strong patches199

of flux have adjacent oppositely signed counterparts, as can be seen in particular around200

the root of the great blue spot. The hemispheric structure is also striking, with almost201

all the magnetic structure of the field being confined north of the equator.202

A common approach to determining the dynamo radius is by determining where203

the Lowes-Mauersberger spectrum of the magnetic field (Lowes, 1974; Mauersberger, 1956)204

is flat, which describes a white-noise source. This procedure relies on the spherical har-205

monic representation of the magnetic field:206

B = −RJ ∇

N
∑

n=0

n
∑

m=0

(

RJ

r

)n+1

[gmn Pm
n (θ) cos(mφ) + hm

n Pm
n (cos θ) sin(mφ)] (3)207

where gmn and hm
n are the Gauss coefficients of degree n and order m and Pm

n are asso-208

ciated Legendre functions. The spectrum is then derived as209

Rn = (n+ 1)

(

RJ

r

)(2n+4) n
∑

m=0

(gmn )2 + (hm
n )2 (4)210

In order to find the spectrum for the PINN models, we have two options. First is ana-211

lytic continuation, where we project the field at r = RJ onto (3) and use the inherent212

–6–



manuscript submitted to Geophysical Research Letters

Figure 2. Orbital comparison of the discrepancy between various reconstructions of Jupiter’s

magnetic field: PINN33e, PINN50e, JRM33 and Baseline, with the Juno data. Taking each orbit

in turn, the error is quantified by taking the root mean squared value of the difference in mag-

nitude of the reconstructed magnetic field with the magnitude of each vector measurement. We

show the (upper) absolute value of this error, and (lower) relative value of this error compared

to the rms observed magnitude over the orbit. The dashed line delineates the prime from the

extended mission.
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Figure 3. The radial component of Jupiter’s magnetic field on various spherical radii inside

Jupiter’s surface. The plots are shown on a Mollweide projection with the central meridian at a

longitude of 180o west (System III coordinates). Left column shows the JRM33 model (N = 18)

(Connerney et al., 2022), the middle column shows the Baseline model (Bloxham et al., 2022)

(N = 32) and the right column shows the PINN model PINN50i.
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radial dependence within (4). This procedure removes any external field within the PINN213

model. Second, we can use PINN extrapolation, for which we use PINN50i to downwards214

continue, and at each radius r̃ < RJ , project onto (3) and then use (4) at r = r̃. Any215

externally produced field will still be present in the model, albeit at assumed large length-216

scales. In either case, we find the Gauss coefficients by performing a spherical harmonic217

transform of the spherically radial component Br.218

Figure 4 shows the Lowes-Mauersberger spectrum as a function of degree n for JRM33,219

Baseline and PINN50i (solid lines: analytic continuaton, black symbols, PINN extrap-220

olation). At r = RJ the spectral power for degrees 2–18 agrees well between the mod-221

els and falls off exponentially with n. The power in the dipole is higher than this sim-222

ple profile predicts. As the radius is decreased the profile flattens as the smaller scales223

become more prominent. Above degree 18, the three analytically continued models di-224

verge, with JRM33 having the most power at high degree. Of the three models, the Base-225

line model (which is the only model with explicit regularisation) has the least power at226

small-degree. For degrees higher than about 18 it is striking that the analytic and PINN227

extrapolation methods diverge, with the PINN extrapolation having smaller power at228

high-degree. These two methods, by construction, agree on r = RJ , and as the radius229

decreases the discrepancy gets larger.230

We quantity the slope of the spectrum by fitting a straight line to log10 Rn(n) for231

degrees 2–18. The lower panel of figure 4 shows the slope variation with radius for four232

models analytically inwards continued using (3). On making the assumption that the233

slope is zero at the source we infer that the dynamo radius is about r = 0.8RJ , in ap-234

proximate agreement with other studies (Connerney et al., 2022; Sharan et al., 2022).235

5 Concluding remarks236

We have presented a reconstruction of Jupiter’s magnetic field, based on data from237

Juno within the framework of a physics informed neural network. Our reconstructions238

have a similar misfit to to the data compared with other spherical harmonic methods,239

and produce a similar structure of magnetic field on Jupiter’s surface. However, by us-240

ing a meshless method, and only weakly constraining the (poorly known) physics, our241

models are not apparently hostage to the typically enhanced noise with decreasing ra-242

dius. Compared with spherical harmonic-based methods, we produce a clearer picture243

at depth of the localised interior magnetic field.244

The fact that most of the structure in Jupiter’s field appears confined to the north-245

ern hemisphere perhaps makes neural networks a particularly effective modelling tool.246

Even at modest resolution, neural networks are able to very well represent local struc-247

tures, compared to spherical harmonics which are inherently global. More broadly, the248

reduction of noise in the reconstructed field at depth may better constrain secular changes249

close to the dynamo region, which is the subject of a forthcoming study.250

Data Availability Statement251

The original Juno magnetometer data are publicly available on NASA’s Planetary252

Data System (PDS) at Planetary Plasma Interactions (PPI) node at https://pds-ppi253

.igpp.ucla.edu/search/?sc=Juno&t=Jupiter&i=FGM. The produced PINN models,254

together with input processed Juno data, spherical harmonic models, and all related Python255

code and Jupyter notebook to reproduce all the results in this work, are archived in the256

Github repository https://github.com/LeyuanWu/JunoMag PINN VP3.257
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Figure 4. Upper panel: Coloured lines show the Lowes-Mauersberger spectrum of three

analytically continued models: PINN50e, (to degree n = 35), JRM33 (using the full n = 30

resolution) and Baseline (n = 32). Black symbols show spectra obtained from PINN extrapola-

tion using PINN50i in r < RJ (cross: 0.80RJ ; triangle: 0.85RJ ; circle: 0.90RJ ; square: 0.95RJ).

Lower panel: spectral slope with radius assuming analytic continuation, fit to degrees 2–18 for

models JRM33, Baseline, PINN33e and PINN50e.
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