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Abstract

Space weather phenomena have long captured the attention of the scientific community, and along with recent
technological developments, the awareness that such phenomena can interfere with human activities on Earth has
grown considerably. Coronal mass ejections (CMEs) are among the main drivers of space weather. Therefore,
developing tools to provide information on their arrival at Earth's nearby space has become increasingly important.
Liu et al. developed a tool, called CME Arrival Time Prediction Using Machine Learning Algorithms (CAT-
PUMA), to obtain fast and accurate predictions of CME transit time. This present work aims at the expansion of the
CAT-PUMA concept, employing supervised learning to obtain vital information about the arrival of CMEs at
Earth. In this study, we report the results of our work following the implementation of supervised regression and
classification models in the CAT-PUMA framework. We conducted a comparison of various machine learning
models in the context of predicting the transit time of CMEs and classifying CMEs as either Earth impacting or
non-impacting. In this way, we are able to provide information on the possibility of a CME reaching Earth relying
on CME features and solar wind parameters measured at take-off. This application thus provides quantitative
indications about the geoeffectiveness of these space weather events. While machine-learning models can
demonstrate fairly strong performance in regression and classification tasks, it is not always straightforward to
extrapolate their practical potential and real-world applicability. To address this challenge, we employed model
interpretation techniques, specifically Shap values, to gain quantitative insights into the limitations that affect these
models.

Unified Astronomy Thesaurus concepts: Solar coronal mass ejections (310); Space weather (2037)

1. Introduction

The subject of space weather is becoming increasingly
important in today’s high-tech-driven society as well as for the
scientific community. A continuously increasing number of
studies have shown the significance of the impact of space
weather on Earth (Lanzerotti 2001; Schwenn 2006; Pulkki-
nen 2007; Temmer 2021; Cliver et al. 2022). The threats posed
by space weather to our technosphere are varied, ranging from
the interference of satellite communication to the disruption of
power grids resulting in possible prolonged blackouts
(Daglis 2001; Schrijver & Siscoe 2010; Riley et al. 2018;
Pilipenko 2021).

Coronal mass ejections (CMEs) are the largest eruptive
phenomena in the solar system, consisting of gigantic bubbles
of plasma and magnetic field shot into interplanetary space at
very high speeds (Low 2001; Chen 2011; Webb &
Howard 2012; Gopalswamy 2016; Kilpua et al. 2017). CMEs
are considered to be the major drivers of space weather. This
status is attributed not only to their potential to impact the
Earth’s magnetosphere upon arrival but also because they are
recognized for triggering secondary space weather phenomena,
including solar energetic particles. (Temmer 2021; Whitman

et al. 2022). For these reasons, the scientific community is
significantly increasing its efforts to develop predictive tools
for CMEs (Camporeale 2019; Vourlidas et al. 2019).
The study of the CME arrival at Earth primarily focuses on

the prediction of the time of arrival (ToA) and speed of arrival
(SoA) of CMEs. However, it is equally critical to have the
capability to assess whether a CME is likely to reach Earth. All
these aspects are for mitigating their impact on our
technosphere.
The most common forecast methods are based on empirical,

semi-empirical models of CME geometry with simplified
physics (Cargill 2004; Vršnak et al. 2013) or are full MHD
models (e.g., ENLIL or EUHFORIA Odstrcil 2003; Pomoell &
Poedts 2018). Thanks to the major technological advances
made in the last few decades, artificial intelligence, and in
particular machine learning, have led to remarkable results in
space weather research, particularly for the prediction of CMEs
(Camporeale et al. 2018; Camporeale 2019). Liu et al. (2018)
developed a model, called CME Arrival Time Prediction Using
Machine Learning Algorithms (CAT-PUMA), which exploits
the popular supervised learning model support vector machines
(SVMs), to obtain accurate and fast predictions of the transit
time of CMEs from Sun to Earth. CAT-PUMA inputs physical
quantities of (i) CMEs at launch time (such as velocity, mass,
angular width) and information on the state of the inter-
planetary medium, and (ii) the solar wind to obtain quick
predictions of their arrival time at Earth. This model is able to
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generate accurate predictions with a mean absolute error
(MAE) of 5.9 hr on a test set composed of 37 CME events. The
use of deep learning has also proved feasible in predicting the
arrival of CMEs at Earth. Wang et al. (2019) proposed a
regression model based on a convolutional neural network
(CNN) that takes white-light observations of CMEs as its only
input. The main advantage of this model is that it is time-
effective in feature collection, allowing predictions to be made
from raw observations. Forecasts from CNN models show an
MAE of about 12.4 hr, measured by relying on a k-fold cross-
validation (CV) approach. The potential of deep learning was
further explored by, e.g., Fu et al. (2021); they proposed a deep
neural network architecture to obtain both geoeffectiveness and
transit time predictions of the CME events. Briefly, Fu et al.
used a deep residual network with attention layers to extract
feature maps directly from white-light and EUV observations.
In Fu et al. (2021), the term geoeffective refers to a CME that
reaches Earth causing geomagnetic disturbances with an
associated Disturbance Storm Time index of less than −30 nT.
This model therefore first provides information on the hazard
posed by the CME, and then provides a forecast of its arrival
time (with an MAE of 5.8 hr). However, despite the above
promising results in terms of performance, they are evaluated
only on limited test samples. In a more recent study, Alobaid
et al. (2022) conducted research where they compared various
machine-learning models for the prediction of CME transit
times. Their findings demonstrated the potential for enhanced
prediction performance by employing an ensemble of different
models. Notably, their results are noteworthy as the optimal
combination of models yielded an MAE of less than 10 hr. It is
important to emphasize that there are several factors to consider
when evaluating the performance of a machine-learning model,
and in particular, data is a key part of the learning process of
such models. Furthermore, performance tends to decrease when
test samples are larger. Vourlidas et al. (2019) compared the
most recent forecasting methods and concluded that several
observational and physical factors limit the potential of all
approaches.

One of the main challenges in assessing the goodness of a
machine-learning model is that it is not straightforward to
compare its performance with that of other models. The reason
is that the data sets used to train the models are often tailor-
made to address a specific task, or to fit the needs of different
models. This makes it difficult to generalize the results.
Furthermore, there is relatively little data available on Earth-
impacting CMEs to obtain reliable statistics, and test samples
of dozens of CME events could be not sufficiently representa-
tive of the real-world scenario, consequently introducing bias
due to the size of the data sets.

The idea that inspired this work is to investigate further the
potential of a machine-learning approach to study the arrival of
CMEs at Earth and also explore its limitations. To do so, we
focus our attention on the model developed by Liu et al.
(2018). A data-driven model such as CAT-PUMA offers
several promising practical applications. It exploits only CME
and solar wind features at the time of CME launch to obtain
transit time predictions, without requiring large amounts of
computing power, resulting in fast forecasts. At the same time,
it bases its decisions on physical information, which makes the
model easier to interpret than deep-learning models. In this
work, we therefore pursue more than one objective.

First, there is the need to compile a comprehensive data set,
including CME events up to 2022. Second, we aim to
investigate the CAT-PUMA concept further, discussing its
potential and limitations in more detail by having more data
available for training. In addition, we develop a variant of the
model that is able to address the problem of Earth-impacting
CMEs and thus deliver predictions about their arrival at Earth.
Finally, we apply an interpretation approach to the proposed
models, in an attempt to extract as much information as
possible from this study regarding the capabilities of machine
learning in predicting the arrival of CMEs at Earth.
The structure of this paper is as follows. Section 2 describes

the data set and the preprocessing procedure. In Section 3, we
introduce the models and address briefly the different aspects of
the training process in general. Finally, in Sections 4 and 5 we
summarize, discuss, and assess the results.

2. Data Analysis

2.1. Data Set

In this section, we describe the procedure of data collection.
The procedure we employed for compiling the Earth-impacting
CMEs data set follows closely the one introduced in Liu et al.
(2018). In essence, the data mining process is divided into two
phases. First, we identify all the observed geoeffective CME
events from 1996–2022, and then we associate each event with
the features that will make up the input space of the machine-
learning models. We used four different CME lists to collect
events from the beginning of the Solar and Heliospheric
Observatory (SOHO) era:

1. The Richardson and Cane list (Richardson & Cane 2010),
2. The full halo CMEs list provided by the University of

Science and Technology of China (Shen et al. 2013),
3. The George Mason University CME/ICME list (Hess &

Zhang 2017),
4. The CME Scoreboard (by NASA).8

Among other information, these catalogs report the time of first
appearance of the CMEs in the field of view of the SOHO
LASCO Coronagraph (onset time), and the starting of the
geomagnetic storm associated with their interaction with the
magnetosphere (arrival time).
With the aim of obtaining a clean data set, it is important to

consider only those events that can be associated with a precise
onset and arrival time; therefore, all ambiguous CME events
(e.g., multiple CMEs) and those without an associated shock
are excluded. In addition, duplicated events in the four source
lists are identified and removed. Once the list of CME events
that reached Earth is obtained, the next step is to associate their
features and targets for training.
The input space is constructed using the CME features

collected in the SOHO LASCO CME catalog, which contains
estimates of physical quantities about the CMEs such as
average velocity, velocity at 20 R

e
, mass, angular width, and

the measurement position angle. The features are associated
with the collected events by matching the take-off time given
here with the one recorded in the source lists. In a similar way,
solar wind features are associated with the CMEs via
OMNIWeb Plus data.

8 The CME scoreboard can be found at https://kauai.ccmc.gsfc.nasa.gov/
CMEscoreboard
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The idea is to include solar wind plasma density (SW proton
density), flow latitude (SW plasma flow latitude angle), flow
longitude (SW plasma flow longitude angle), plasma-beta (SW
plasma-beta), plasma pressure (SW pressure), speed, and
plasma temperature (SW plasma speed and temperature), and
the solar wind magnetic field components in Geocentric Solar
Ecliptic system coordinates (Bx, By, Bz) to the input space
allowing the model to encode solar wind state information. We
also added the number of sunspots present on the solar surface
(R) at the time of take-off, to also include information on the
state of the solar cycle.

The solar wind quantities are taken on an average of 6 hr
after the take-off time, since Liu et al. (2018) found this as the
most suitable window for the forecast. Additionally, we discard
CME events characterized by an angular width below 90°.
Such CMEs are generally considered to be less likely to reach
Earth and to produce disturbances on Earth. Once the data
mining process is completed, the data set consists of 295 CME
events each described by 17 features, five of them represent the
CME physical characteristics while 12 encode solar wind state
at the time of take-off.

In the supervised training framework, it is also necessary to
provide the model with a training target. In this study, we
employ supervised learning models to address two main topics:

1. Forecast transit time: This is a regression task, so each
CME event is associated with the value of the transit time
from the Sun to Earth, calculated as the difference
between the take-off time and the arrival time. This
information is already contained in the source lists
mentioned above.

2. Forecast CME arrival at Earth: In the context of a
machine-learning approach, this is a supervised binary
classification task, where we will refer to Earth-impacting
CMEs as positive events (i.e., belonging to the positive
class), while non-Earth-impacting CMEs are negative
events (i.e., negative class).

To train classification models in a machine-learning context
we need both positive and negative events. The Earth-
impacting CMEs serve as positive examples. To compose the
list of negative events, i.e., CMEs that did not reach Earth,
there is no standard method. The LASCO catalog contains
thousands of observed events and only a small percentage end
up impacting the Earth’s magnetosphere. One way to build the
negative class could be to consider events not included in the
list of Earth-impacting CMEs as negative events.

However, this approach is too simplistic and would lead to a
strong imbalance between the two classes, making classifica-
tion very difficult. Naturally, the number of negative events is
much higher than the number of positive ones, which is also
reflected in our data set. To get around this problem, we apply
filters to limit class imbalance and obtain a cleaner data set.
First, we discard all events that show notes indicating them as
poor events. This helps to keep the data set representative of the
problem. Second, consistent with what we did for the positive
events, we discard all events with an angular width inferior to
90°. The final version of the data set thus contains 295 labeled
Earth-impacting CMEs and 3453 non-Earth-impacting CMEs.

2.2. Missing Values Problem

Before proceeding with the analysis, it is necessary to pay
some extra attention to the handling of missing values. Indeed,

among all the events that make up our data set, some have
missing values in certain features. Not all supervised learning
models can handle data with missing values, so it is essential to
determine a way to impute them. In a machine-learning
context, the handling of missing values is widely discussed,
and there is more than one way to tackle the problem of
missing data (Saar-Tsechansky & Provost 2007; García et al.
2015).
We, initially, preferred to eliminate all events with missing

values from the data set, to avoid the introduction of biased
data. This choice further reduced the number of Earth-
impacting CMEs. Subsequently, to improve the size of the
data, we decided to conduct a parallel analysis by generating a
second version of the data set, including the previously
discarded events appropriately imputed. We opted for unsu-
pervised learning techniques, such as clustering, to replace
missing values with values similar to neighboring feature space
points. This procedure is applied by exploiting a well-known
clustering algorithm, the k-nearest neighbors (KNN), using the
sci-kit learn KNNImputer library.
The KNN is a supervised learning classifier that employs

proximity to produce classifications or predictions about the
grouping of a single data point. Although it may be applied to
classification or regression issues, it is commonly employed as
a classification method since it relies on the idea that
comparable points lie close in the feature space (Bishop &
Nasrabadi 2007; Kuhn & Johnson 2013, p.159–161, p. 124–7).
The underlying concept of utilizing KNN for missing values
imputation is that an input instance may be roughly estimated
by the values of the points that are nearest to it, leveraging non-
missing features. We thus obtained two versions of the data set:

1. Data set v1: This data set consists of 209 Earth-impacting
CMEs and 2968 non-Earth-impacting CMEs.

2. Data set v2: The second data set (that we call the
augmented version) consists of 295 Earth-impacting
CMEs and 3453 non-Earth-impacting CMEs.

There are 17 features characterizing CME events in our data
set, which makes the input space highly dimensional; however,
they generally have different importance concerning the target
to be predicted. In the next section, we take a closer look at the
feature space.

2.3. Feature Selection

Before proceeding with the training of the models, it is
crucial to analyze the feature space closely. Feature selection is
essential because the input space is quite high-dimensional, and
irrelevant features could adversely affect the performance of
the models. The relevance of features is inspected using a
function of the sci-kit learn Python package SelectKBest,
which is equipped with several feature selection tools. We
leverage the ANOVA (analysis of variance) F-Score and the
so-called mutual information score between the features and the
target in both cases, i.e., regression (f_regression,mutual_info_
regression) and classification (f_classif, mutual_info_classif),
respectively.
The F-score function ranks the features according to the

linear separability of the class distributions in terms of
variance, returning the ANOVA F-value for the features. The
mutual information function, on the other hand, calculates the
mutual information between the input variables and the target
variable, thus capturing the nonlinear relationships between the
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features and the target. Figures 1 and 2 show the F-score and
mutual information ranking of the features, for the regression
and classification cases, respectively. The bar plots in the figure
show two different scenarios.

Figure 1 illustrates that the features with the highest degree
of correlation with CME transit time are those related to CME
velocity: CME average velocity (LASCO v) and final velocity,
followed by the width and mass of the CMEs. Some features
related to solar wind are also relevant, although to a lesser
extent. Mutual information values are relatively low, indicating
weak nonlinear relationships between the data and the target.

The classification data set shows similar results (Figure 2),
but in this case, there are only four relevant features, all relating

to the state of the CME at launch. We therefore adopt a
consistent approach in both cases for feature selection that is in
line with that used for CAT-PUMA, i.e., eliminate features
with a normalized F-score value below 0.01. Feature selection
allows the input space to be resized; the input space for the
regression now consists of eight features, namely, both CME
speed features, CME width, and mass, SW Bz, SW plasma
temperature, SW plasma speed, SW pressure, and sunspot
number R. On the other hand, the feature space for the
classification only consists of CME average speed, CME final
speed, and CME width and mass. The ranking of the features
for the augmented version of the data set is very similar, the
only difference being that the SW alpha/proton ratio takes the

Figure 1. Bar plots of F-score (right), and mutual information score (left) of the features related to the Regression target, i.e., CME transit time.

Figure 2. Bar plots of F-score (right), and mutual information score (left) of the features related to the classification label.
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place of the Bz in the input space. Once feature selection is
complete, the data set is ready for the model training phase,
which will be described in detail in the next section.

3. Methods

In this work, we aim to study the application of the CAT-
PUMA concept in two different machine-learning tasks to
characterize the arrival of CMEs at Earth.

First, we are interested in obtaining an update on the
regression model developed by Liu et al. (2018) that can output
predictions on the CME transit time. A regression problem
consists of the task of finding a map between a set of
D-dimensional input vectors x into one or more continuous
target variables y (Camporeale 2019). In our case, the aim is to
find a function that is able to associate a CME event (encoded
as a vector whose components are the features obtained in the
mining process) with the appropriate transit time.

The second objective is to obtain a model that can predict the
arrival of a CME at Earth. In a machine-learning context, this
translates into a binary classification task. Classifiers answer
the question: What class does an event belong to?

There are a variety of methods for solving both regression
and classification problems that differ mainly in the assump-
tions one makes regarding the nonlinear function for mapping
inputs to outputs. The CAT-PUMA model uses a well-known
machine-learning algorithm, SVMs. In a nutshell, the SVM
tool solves the regression linearly in a higher dimensional space
than the one in which the problem is defined, using a kernel
trick method.

Alongside SVMs, in this work, we also wish to study the
problem with algorithms that combine the predictive capabil-
ities of multiple models, often referred to as ensemble models.
By the term ensemble model, we can refer to various
techniques that exploit the combination of simple models
(often called weak learners) to generate a more sophisticated
model with better performance and generalization capability.

Bootstrap aggregating technique (bagging) makes use of the
same training algorithm for every predictor, where each one is
trained on a different random subset (chosen by sampling with
replacement) of the training set. In bagging, the models that
make up the ensemble operate in parallel, i.e., once all learners
are trained, each on a slightly different version of the training
set, the ensemble can make a prediction for a new instance by
simply aggregating the predictions of all learners. In the case of
a regression problem, the final output is typically the mean of
all the outputs. This technique helps to reduce variance and
minimize overfitting.

Another efficient way of constructing an ensemble is to
combine models sequentially. Each weak learner is trained to
correct the prediction errors made by the previous one. This
technique is called boosting.

We then implemented two well-known and widely used
ensemble model algorithms, the random forest and the extreme
gradient boosting (XGBoost), which leverage the bagging and
boosting techniques, respectively. Both of these algorithms use
decision trees as weak learners. Decision trees are versatile
machine-learning algorithms that can perform both classifica-
tion and regression tasks and even multi-output tasks. Decision
trees break down complex decision-making processes into a list
of more straightforward decisions.

Much like a real tree, a decision tree consists of a root node
(the first node in the decision tree), decision nodes (splitting

points), and leaf nodes (endpoints with no further splitting).
These models are constructed by partitioning the data set
recursively into heterogeneous subsets on the basis of a
function that takes into account the information carried by each
attribute (a more detailed description of such machine-learning
methods can be found in Bishop & Nasrabadi 2007; Yadav
et al. 2020).
We used the models mentioned above, SVMs, random

forest, and XGBoost, for regression and classification to
explore their capabilities and better understand their limitations.
The training process of a machine-learning model involves
several steps, and for clarity, we will break down the discussion
into different sections.

3.1. Training

The training process is crucial in the design of a machine-
learning model and involves three types of variables.
First, it is crucial to collect good input data, i.e., a collection

of instances characterized by the features necessary for the
machine-learning problem under study. Input data are not
directly part of the training, but they are crucial for configuring
the model to make predictions on similar data.
Second, there are the parameters that the model uses to

adjust the predictions to the data. These are typically called
model parameters.
When we speak of training a supervised learning model, we

typically refer to an optimization process that aims to minimize
a cost function that quantifies the model’s ability to generate
predictions close to actual values. A model’s parameters are the
core of the model and are set during training. The last type of
variables are those that configure the architecture of the model
and govern the training process itself, called hyperparameters.
The hyperparameters are usually fixed during the training
process, unlike the model parameters, which are modified to
adjust to the data. Choosing the optimal set of hyperparameters
for the machine-learning problem under study (be it regression
or classification) is essential to maximize the model’s
performance.

3.1.1. Validation

There are several methods to establish the capability of a
machine-learning model to accomplish a given task. The
simplest method is to divide the available data into two
subgroups, the training set with which to train the model and
the test set to measure its performance. In this way, the test set
represents a sample of events that the model has never seen and
thus a test bed for assessing learning ability. The train/test
splitting is typically done randomly, to limit bias.
CAT-PUMA does use such a validation method, however,

with an extra addition. Once the SVM model has been
optimized, it selects the train/test split that returns the best
performance score among 106 random splits. This choice
follows the idea of selecting the split that ensures the highest
representations of the training data in the test set. We will refer
to this method as best-split validation (BSV). However, BSV
may be affected by bias due to limited data availability. In fact,
the resulting best split could lead to an overly optimistic
evaluation. Therefore, we chose to flank this evaluation method
with a more conservative and less optimistic one widely used in
machine learning, i.e., the k-fold cross-validation method
(k-fold CV; Refaeilzadeh et al. 2009; Yadav & Shukla 2016).
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Instead of performing a single train/test split, the k-fold CV
consists of dividing the data set into k subsets and keeping one
out of the training as a validation set. The model is trained on
the remaining k− 1, and the validation set is used to evaluate
performance. The procedure is then repeated by iterative
changing the validation set. More in detail, the k-fold CV
method involves the following steps:

1. A value is selected for the set of hyperparameters.
2. The training set is divided into k subsets, k− 1 of which

are used to train a model, and the remaining one (the
validation set) is used to evaluate performance. The
performance score average is stored.

3. The previous step is repeated using all k subsets as
validation sets. This allows the model to be trained with
the same hyperparameters set and then evaluate the
performance on k different subsets.

4. A new value for the set of hyperparameters is selected
and the process is repeated from step 1.

This method provides the advantage of training the model on k
different training sets and evaluating its performance on as
many test sets, resulting in more robust results.

3.1.2. Hyperparameter Tuning

The tuning process consists of exploring the space of
hyperparameters in search of those that return the best
performance. Nevertheless, there are several ways to explore
the space of hyperparameters, such as grid search or random
search (Bergstra & Bengio 2012).

Here, optimization was carried out using a sequential model-
based optimization approach, in particular the tree-structured
Parzen estimator. This approach was implemented using the
Optuna optimization library (Akiba et al. 2019), and allows the
hyperparameter space to be inspected based on the process
history, thus focusing the search on the areas where
performance is at its highest (more information on this
approach can be found in Bergstra et al. 2011). This method
helps to significantly shorten the optimization process by
minimizing the time spent sampling suboptimal areas of the
hyperparameter space.

The tuning process is carried out by means of a fivefold CV
for both regression and classification tasks. In particular for the
latter, in order to keep the training consistent with the
unbalanced data, the fivefold CV is performed in a stratified
manner, so that the validation and training subsets reflect the
proportions of the overall data set.

4. Results

In this section, we describe the results obtained for the
present work. We set out to train three different machine-
learning models and use them for two distinct tasks: regression
and classification.

1. The regression models provide an answer to the question:
How long do CMEs take to reach Earth?

2. The classification models generate predictions as to
whether a CME will reach Earth or not.

We studied various models systematically for both problems
in this analysis. Each model is optimized to address the relevant
machine-learning problem at hand and then we analyze the
performance by comparing different evaluation metrics. For

clarity, we will first focus on the regression problem, followed
by addressing the classification problem.

4.1. Regression

The training follows the same steps for all three models:

1. After the feature selection procedure (described in
Section 2.3) we extract eight relevant features for
predicting the transit time; four CME features and four
SW state features.

2. Each model, SVM, random forest, and XGBoost are
optimized by means of k-fold CV, with k= 5
(Section 3.1.1).

3. Once the optimized models are obtained, we evaluate
their performance through CV and BSV (Section 3.1.1),
using the R2 score as a reference metric.

This procedure is applied to both versions of the data set; the
first consists of 209 Earth-impacting CMEs, while the second
version contains 295 CMEs, 86 properly imputed as described
in Section 2.2.
Figure 3 summarizes the results obtained using different

validation methods. We report the average value (blue) and the

Figure 3. Performance scores for regression models. Performance comparison
by means of CV mean, CV max, and best-split scores for data set v1 (top) and
data set v2 (bottom), respectively.
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maximum value (green) obtained by a fivefold CV, and also the
BSV score (red).

CV is a more conservative method than BSV, as mentioned
in Section 3.1.1, which puts the spotlight on the best train/test
split. This is evident in the figure; the best-split score is the
highest for any model-data set combination.

Furthermore, it is essential to point out that for ensemble
techniques, BSV is less effective, returning a lower value than
SVM. The reason is probably to be found in the architecture of
the models. Ensemble models can better generalize predictions
and not fit too closely to the specific training set used for
training. This makes it more difficult to find a training and test
pair that performs dramatically better than a random split.

Nevertheless, the ensemble models also achieve fairly high
performance, with a BSV score ranging from 0.73–0.76.

The results show a significant difference between the
performance according to the BSV score and the CV score.
The CV mean scores are similar for all models but are still
considerably low compared to the CV max values. To
understand it better, this means that of the five different
random train/test splits for CV, the most optimistic one returns
a considerably higher R2 score than the average. This is true for
both versions of the data set, underlining the difficulty in
characterizing a model capable of generalizing the regression
problem well. We obtain the best performance from the SVM;
the BS validation technique achieves an R2 score of 0.80, and
the related MAE is 7.6± 5.2 hr. Although the MAE is higher
than in the original version of CAT-PUMA, this result is still
reasonably good, considering that the test set includes more
events. However, for CV the MAE remains above 10 hr.

It is important to stress the concept; although one can obtain
a very high-performing model through BSV, it does not
necessarily maintain such high performance on new samples.

4.2. Classification

Next, let us devote the study to the point of whether
machine-learning models are capable of predicting whether a
CME will reach Earth.

The feature selection process (Section 2.3) reveals that
within a classification framework, only four features exhibit the
highest correlation with the target variable. These features are
LASCO width, final speed, average velocity, and the CME’s
mass at the time of launch. Again, we opted to test different
models on two versions of the data set. Data set v1 includes
2968 CME events, of which 209 are positive (i.e., Earth-
impacting CMEs). The augmented version, on the other hand,
consists of 3543 CME events, of which 295 are Earth-
impacting. For the classification problem, we adopted a more
standard validation method. Before training, we divided the
data set into training (80% of the total) and test (20% of the
total); we optimized and trained the models on the training set
and then evaluated the performance on the test.

Given the highly unbalanced nature of the problem, it is even
more challenging to determine whether and how well a
classifier succeeds in solving the problem under analysis. For
this reason, we decided to compare several performance
evaluation metrics to extrapolate a wider spectrum of
information about models’ capabilities.

Table 1 summarizes the results, comparing the values of
some relevant metrics to assess the goodness of the classifica-
tion. There is much information to extrapolate from the results
obtained. First, it is important to emphasize that the

performance of the different models is comparable and the
score values are generally better for the augmented data set
version (data set v2).
Accuracy is higher than 70% in all scenarios. However, the

accuracy value is not an optimal indicator of the model’s
goodness because it is affected by the unbalance of the classes.
The balanced accuracy value gives a more realistic interpreta-
tion of the classifiers’ ability to assign the correct class to each
instance, never exceeding a value of 65%.
In general, the models show an excellent ability to recognize

events in the majority class while lacking precision for the
minority class, resulting in a high false alarm ratio. Precision is
generally very low, reaching a maximum value of 30% for
random forests. Nevertheless, the recall is generally fairly high,
indicating the ability of the models to obtain reliable forecasts
for non-Earth-impacting CMEs.
It is now essential to go into detail on this topic because there

is usually a tendency to confuse model performance, which
inevitably depends heavily on the type of validation chosen,
with the actual capabilities of the model.
For the sake of clarity, we provide the confusion matrix for

the random forest in Figure 4.
The precision score encodes the following information;

among 155 events predicted as Earth impacting, only 46 are

Figure 4. Confusion matrix for the test set for the random forest model, trained
on the augmented data set version (data set v2). Matrix entries are TP (bottom
right), TN (top left), FP (top left), and FN (bottom left).

Table 1

Table Presenting the Metric Scores for All the Models Employed in the Work
for Both Versions of the Data Set (Data Sets v1 and v2)

Metric SVM Random Forest XGBoost

Accuracy 0.76|0.77 0.82|0.84 0.73|0.78

Precision 0.19|0.24 0.24|0.30 0.18|0.24

Recall 0.71|0.85 0.67|0.78 0.79|0.81

Balanced accuracy 0.58|0.61 0.60|0.64 0.58|0.61

False alarm ratio 0.81|0.76 0.76|0.70 0.81|0.76

Data set v1|data set v2

Note. Bold text highlights the best performance scores.
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correctly classified. Low precision directly implies a high false
alarm ratio. Despite this, the model still shows potential for
operational application because of the high Recall. In fact, of
686 events labeled as Earth impacting, only 13 are predicted
incorrectly.

4.3. Interpretation of Results

One of the main challenges leveled at prediction tools based
on machine-learning algorithms is that it is difficult to judge
their actual capabilities and limitations because there is often no
way of getting a sense of the process that drives the models to
produce a specific prediction.

In addition, hard-to-interpret models such as deep neural
networks and gradient-boosting machines are increasingly
efficient and now outperform in most cases linear models that
are typically easier to interpret. The main consequence of the
lack of interpretation is the distrust in the model.

The subject of model interpretation has been widely
discussed in recent years and various methods have emerged
to try to better understand the results obtained by artificial
intelligence. Local explanation methods aim to assess the
influence of input variables/features on a specific prediction/
output.

In this paper, we employ one of these tools, called Shapley
values (Lundberg & Lee 2017), to gain more insights into
model decisions. Shapley values are model-agnostic local
explanation markers originated in the field of game theory to
determine the payouts of players depending on their contrib-
ution to the total payout (Aas et al. 2021). In an artificial
intelligence explanation setting, this method is used to calculate
the contribution of each feature to the final output. In particular,
this technique allows us to decompose the output of a model

( ¯)xf , where x̄ is a specific feature vector, into the sum of the
contributions f of each feature:

( ¯ ) ( )xf . 1
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where c(S) is the contribution function that maps subsets of
features to the contribution they have on the prediction. Such
function is typically the expected output of the model,
conditional on the feature vector xS:

( ) [ ( )∣ ¯ ] ( )x x xc S E f . 2S= =

In essence, the Shapley values determine the difference in the
contribution that features j bring to the prediction if included in
a specific subset S, and average this over every possible
combination of possible subsets S of features in terms of the
contribution function: c (subset S including feature j)− c

(subset S without feature j).
In this work, we used the python package https://shap.

readthedocs.io/en/latest/SHAP (SHapley Additive exPlanations)

to apply the theory of Shapley values to the predictions made for
CMEs and try to obtain some more information on the feature
space of the CAT-PUMA framework. Since we tested different
machine-learning models, we opted to deal in more detail with the
cases where performance is highest, to determine whether there
are patterns that characterize the best-performing models. Let us
now start by treating the regression case and then discuss the
classification task, as it was done with the description of the
results.

4.3.1. Regression

For the regression case, we considered the SVM model
trained on the data set v1. One of the main tools offered by the
SHAP algorithm is the summary plot in Figure 5(a), which
shows for each feature the SHAP values of all instances in the
training set. This plot contains a wealth of information about
the predictions made by the model. Let us break down the
main ones.
First of all, the features on the y-axis are ordered in

ascending order (from bottom to top) according to the average
contribution they have on the predictions. This means that,
according to SHAP, the feature with the greatest influence on
the predictor output is the average speed of CMEs followed by
angular width, final speed, and sunspot number R, while the
least influential features are the SW plasma speed and pressure.

Figure 5. ((a), top) SHAP summary plot for the training set. The y-axis ranks
the features sorted from the most (top) to least (bottom) important. The x-axis
depicts the SHAP value. Each point refers to a specific instance of the training
set, pointing out the related SHAP value associated with a value of a certain
feature. The color bar displays whether the feature value is high (pink) or low
(blue). ((b), bottom) SHAP decision plot for the training set. This plot shows
the decision path for each instance in the training set. Each line shows each
feature’s contribution (y-axis) to the final output of the model (x-axis). The
color depends on the magnitude of the output and ranges from blue for lower
output values to red for higher ones.
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In addition, SHAP values are typically higher for low feature
values and lower (negative range) for high feature values; this
is true for all features, especially speed features, except for SW
Bz. In practice, very high feature values tend to push the model
predictions toward lower ToA. Trivially, if the speed of the
CME is very high, the model will tend to opt for low ToA
estimates.

Another convenient way of obtaining information on the
model’s decision-making process is the decision plot
(Figure 5b). This visualization helps to understand the decision
path that the model takes for each instance.

In the training set, the graph shows the contribution a feature
has on the final output for each instance. The paths are
clustered by similarity, this allows similar decision patterns to
be identified. Two different macro-patterns can be distin-
guished; the first relates to most instances and mainly involves
output values higher than 50 hr, while the second refers to low
ToA predictions.

For all instances, the LASCO speed and width-related
features influence the prediction the most. All other features
have a lower impact, and at the top of the cascade, the sunspot
number R tends the push toward the final output of the model.
The instances associated with lower predictions (ToA <50 hr)
appear to be largely conditioned by the velocity value of the
CMEs at launch time; this suggests that if the initial velocity of
the CMEs is very high, the model is likely to generate lower
ToA predictions.

Furthermore, the decision pattern for low ToA predictions
appears less stable, there are a couple of cases where Bz and
LASCO mass values drive the predictions considerably toward
higher or lower output, respectively. This is interesting
because, in fact, there are relatively few examples of CMEs
associated with a very low ToA (<40 hr); this might suggest
that due to the few examples available, the model appears to
rely more on speed features to make decisions about lower
outputs. This is because the correlation between the ToA and
the speed of the CMEs is higher, and it is therefore easier to
establish a relationship with the few examples available.

Moreover, SHAP being a local technique, is valuable to
inspect decisions on individual instances. Waterfall plots of the
instances with the highest and lowest prediction error are
shown in Figure 6. Such plots can clearly and compactly
display the relative contributions of the different features in
order of importance. The least performing instance has a
recorded arrival time of 108 hr.

In Figure 6 (top), we see how almost all the features
overwhelm the output toward very high ToA values, though
fail to reach the actual value, which is still very high compared
to the average value. This effect is probably still due to a poor
representation of rare events in the training set, as we do not
have many examples of such slow CMEs in our data set. In
contrast, the best-performing CME is associated with a ToA
much closer to the mean value. Figure 6 (bottom) shows that
almost all features hold the prediction value close to the base
value. The sunspot number R has the most significant
contribution by pushing the prediction very close to the actual
value, resulting in an error of only 0.5 hr.

4.3.2. Classification

In this section, we delve into the decision-making process
leading to the predictions in the classification task; in particular,
it is interesting to exploit the SHAP values to find insights as to

why the false alarm ratio (FAR) remains so high. For this
purpose, we analyze the predictions made on the test set by the
best-performing model, the random forest trained on the v2
data set. The model outputs are values between 0 and 1, and
instances are associated with the positive or negative class by
identifying a threshold value, usually 0.5; thus, samples with an
output greater than the threshold value are associated with the
positive class (i.e., Earth-impacting CMEs). Otherwise, the
prediction is negative (i.e., not Earth impacting). The output
score also indicates how confident the model is in making
decisions. The closer the output value is to the threshold value,
the more uncertain the decision possibly is.
Figure 7(a) (top) shows the classification confidence for the

CMEs in the test set; the histogram suggests that for most of the
misclassified CMEs, the model decision was made with
confidence of less than 0.7; in contrast, correctly classified
CMEs typically have very high confidence, in most cases
greater than 0.8. This suggests that despite its high FAR, the
model is relatively confident when making a correct decision,
while it is generally less secure when it makes incorrect
predictions. This result is reassuring because it suggests that the
model learns the difference between Earth-impacting and non-
Earth-impacting CMEs. The SHAP method allows the
decision-making process of the model to be analyzed instance
by instance.
Figure 7(b) (bottom) shows the decision plot for the

misclassified test set events. The decision plot highlights some
interesting aspects. First of all, we notice two main decision
patterns; in blue are the CMEs assigned to the negative class
and in red those assigned to the positive class. There are also

Figure 6. Waterfall plot related to the best ((a), top) and worst ((b), bottom)

performing CMEs.The plot shows the relative contribution of each feature to
the model’s prediction f (x), starting from the base value E[f (x)]. The y-axis
shows the features and their value (scaled for training), while the x-axis
represents the ToA. The arrows display the SHAP value associated with each
feature, colored red if positive and blue if negative.
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some instances in which the model associates an output value
very close to the base value, i.e., close to the threshold value.
The latter shows a more uncertain decision pattern, with some
features pushing them toward higher values while others
lowering their output value; the result is an output that settles
close to the threshold value. Instances with an output greater
than the threshold value, thus assigned to the positive class,
contribute to the high FAR. For those instances, the
graph shows that the feature that most influences the decision
is the LASCO width, which pushes the prediction toward high
values. However, the other features tend to lower the output
value by pushing back the output, making the decision of the
model less secure. This is interesting because it suggests that, in
these cases, the model is principally confused by the value of
the width of the CMEs; most of the misclassified events are
halo CMEs (LASCO width= 360°). Considering the instances
incorrectly assigned to the negative class, even though their
count is quite low, the decision plot indicates that the model
typically exhibits a high level of confidence in its decisions.
This is evident as most features tend to steer the model’s output
toward values close to zero, despite the limited number of
misclassified instances in this scenario.

5. Discussion and Conclusions

Machine learning has promising applications in space
weather research. In this work, we aimed to study the CAT-
PUMA concept in more depth, by exploring the potential of
machine learning in obtaining predictions about the arrival of
CMEs on Earth.

In addition to its potential, this work also highlights some of
its limitations. One of the most critical issues is the amount of
data available and its quality. The limited number of examples
of Earth-impacting CMEs makes it challenging to characterize
the problem.
As far as the regression problem is concerned, this limitation

results in a weak ability of the models to generalize the
predictive power; the results show that there are cases in which
the training set represents well the test set, and this leads to
fairly high performance. On the other hand, CV scores
emphasize that in general, this is not always the case.
Moreover, depending solely on BSV for model selection

carries the potential risk of creating a tool where the training
and test data are carefully selected to minimize errors. This
could result in the model’s inability to achieve predictions with
the same level of reliability when applied to new, unseen data.
Certainly, the quality of the data undoubtedly has a significant
impact on the performance of the models. The data used to
represent CMEs in the input space are frequently rough
approximations and may not provide a comprehensive
representation of the problem we aim to address.
The results from the classifiers highlight the challenge posed

by the imbalanced distribution of Earth-impacting examples,
which makes it difficult to achieve reliable predictions of
CMEs reaching Earth. Although the models exhibit strong
predictive performance for the majority class, making only a
few errors in determining when a CME will not impact Earth,
the FAR for Earth-impacting CMEs does not drop below 70%,
even in the best-case scenarios. Fu et al. (2021) highlight the
same problem, even though they achieve excellent transit time
prediction performance in a deep-learning framework, the FAR
related to the arrival of CMEs on Earth remains very
high (81%).
The problem of high FAR is also shared by other models that

do not base their forecasts on machine-learning techniques.
Vourlidas et al. (2019) compared, among other things, the
success ratio and false alarm ratio of different models using
MHD-based approaches to approximate the state of the solar
wind, such as the WSA-ENLIL+Cone model. The random
forest shows results in line with those reported in Vourlidas
et al. (2019), although performance remains lower than those
shown for data sets of comparable size to ours. Nevertheless,
there is room for improvement.
It is essential to remember that the CME events considered

for the classification task are only described by their speed,
mass, and angular width. The number of factors influencing the
interplanetary travel of CMEs to Earth is high, and it is
challenging to find a model that can take this into account
because of the limited means we have of characterizing the
state of the solar wind in interplanetary space. However, it is
clear that this is crucial for improving forecasts.
CAT-PUMA attempts to encode this information by

equipping the feature space with indicators that attempt to
encode the solar wind state at the time of CME lift-off.
However, the solar wind data are calculated at the L1 position
on a 6 hr average before the CMEs take off. This approx-
imation is probably too strong to characterize the interplanetary
medium well. Feature selection and SHAP values indicate that
such features have little influence on the decision-making
process and must probably be more accurate to better address
the classification problem. The study on the interpretability of

Figure 7. Interpretability plots for the classification task. The graphs refer to
the test set for the best-performing classifier (random forest trained on data set
v2). ((a), top) Histogram of the classification confidence distribution. Red
highlights the misclassified instances, while green highlights the correct
predictions. ((b), bottom) Decision plot for the misclassified instances. This
panel shows the decision patterns; the color bar indicates the magnitude of the
output; in blue are highlighted those instances for which the model returns
values close to zero (assigned to the negative class). Red marks the positive
class. Examples related to values close to the base value (i.e., the threshold
value) are purple.
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model decisions revealed interesting insights into the possible
factors limiting this approach.

Overall, the results obtained with the SHAP values suggest
that models typically tend to rely more on the most relevant
features (for both cases studied) to produce predictions. Models
learn to associate, for example, very fast CMEs with short
transit times, and vice versa. Thus, in the case where a CME is
recorded with very high speeds, the rest of the feature space
fails to influence the decision sufficiently to obtain longer
transit time predictions. The same is true for binary classifica-
tion. SHAP values show that decisions are largely influenced
by the angular width of CMEs, and since the data set is
characterized by geoeffective events that are mostly halo
CMEs, most of the errors are due to cases where halo CMEs do
not reach Earth. An approach to improve the models might
involve incorporating features that more effectively encapsulate
key elements of interplanetary travel, including factors like the
propagation direction and additional details about the char-
acteristics of CMEs, beyond just their angular width.
Furthermore, as demonstrated by Guastavino et al. (2023) in
their study, the integration of physical information into the
model’s architecture has been proven to enhance predictive
performance and overall robustness. The next step envisaged in
research may therefore attempt to expand the input space of
CMEs. One feasible way could be to combine derived features,
such as those used in CAT-PUMA, with models capable of
extracting information directly from white-light or EUV
images. The work conducted by Alobaid et al. (2022) has, in
a sense, initiated this journey by introducing an ensemble
model comprising machine-learning models designed for
tabular data processing and a CNN equipped to handle image
data. Their findings demonstrate that combining models and
various types of input significantly contributes to enhancing
prediction performance. Deep-learning models may have the
capability to reduce the preprocessing time required to fit the
data to the feature space of the models by using images directly
as input (Wang et al. 2019; Fu et al. 2021). Nevertheless, it is
important to note that deep-learning models may face
challenges if an insufficient amount of data is available to
effectively characterize the problem. Exploring the use of pre-
trained models could be a compelling approach to mitigate
data-related challenges. Leveraging pre-trained models allows
for harnessing the capabilities of established feature extraction
methods, enhancing the power of physical feature extraction in
the absence of extensive data. Furthermore, it could be
intriguing to employ interpretation methods to probe into the
model’s decision process and determine the most critical
regions within the coronagraph images that influence the
model’s decisions.
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