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Abstract This paper proposes a novel on-line rotor

system conditionmonitoring approach using nonlinear

data-driven modelling and model frequency analysis.

First, the dynamic process model of the vibration

transmission path between the vibration measurement

points of two fulcrum structures is established by

utilizing nonlinear data-driven modelling. Then, the

unique frequency properties are extracted from the

established model to reveal, in real time, the health

condition of the rotor system. Finally, using the

frequency properties as features, the unsupervised

learning technology is applied to the on-line monitor-

ing of the rotor system. Compared to conventional

condition monitoring methods, the proposed approach

can output an early warning 26 min before a shaft

fracture occurs, without generating false alarms.

Consequently, this approach can greatly enhance

diagnostic accuracy, demonstrating its potential to

contribute to the advancement of rotor system condi-

tion monitoring techniques.

Keywords Rotor systems � Nonlinear output
frequency response functions � Dynamic process

model � Condition monitoring

1 Introduction

For rotating machinery, such as an aero-engine, gas

turbine, or machine tool [1], advanced and effective

on-line condition monitoring methods are essential to

detect the faults and deterioration of rotor systems,

including shaft fractures, turbine disc cracks, rub-

impact between the rotor and stator, and bearing

spalling [2]. On-line condition monitoring is crucial to

achieve the safe operation of rotor systems, reduce

downtime and improve production efficiency [3].

Vibration analyses are widely used techniques for

on-line monitoring of rotor systems because mechan-

ical anomalies and faults generated from rotor systems

can be collected from vibration signals [4, 5]. To

conduct the on-line monitoring of rotor systems, one

method is the signal feature-based technique, which

directly extracts significant signal features, such as

time-, frequency-, and time–frequency-domain fea-

tures, from collected signals to determine the actual

status of rotor systems. Then, based on the extracted

signal features, supervised and unsupervised learning
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methods are often performed to diagnose and prognose

rotor systems [6]. For example, Liu [7] extracted the

time- and frequency-domain features of shaft vibra-

tion signals, such as standard deviation, shape factor,

root mean square frequency, and standard deviation

frequency, and combined them with a non-fuzzy

solution-weighted back-propagation-AdaBoost to

realize a multi-fault diagnosis. Nath [8] combined

distinctive frequency components, such as rotating

frequency and its harmonic frequencies, in the vibra-

tion spectrum with a developed long short-term

memory to diagnose the structural rotor fault. In

addition, some scholars proposed to use fuzzy logic-

based data preprocessing methods to reduce the

influence of signal-based feature uncertainty on diag-

nosis results [9, 10]. However, signal feature-based

methods still have two fundamental limitations and

drawbacks:

(1) The primary concern is robustness. These

methods are often limited to repeated and

simple rotor rotation movements, which allows

the signal features to accurately represent the

condition of the rotor system. However, such

methods may not be appropriate for practical

applications where the rotor system is unbal-

anced or misaligned.

(2) For different working conditions, signal features

may need to be re-designed, which makes the

feature design a substantial task each time.

Another vibration analysis approach for on-line

monitoring of rotor systems is the vibration displace-

ment analysis-based method, which directly measures

the vibration displacements of the shaft in two vertical

directions using eddy current vibration sensors. Fur-

thermore, condition monitoring can be conducted using

orbit- or hologram-based methods [11]. For example,

Nembhard [12] compared and analysed orbits under six

conditions of added unbalance, bow, crack, looseness,

misalignment, and rub-impact through experiments

under four subcritical steady-state rotating speeds.

Compared with the signal feature-based techniques,

this method is more robust and simpler to use as no

feature selection procedure is needed.

However, the vibration displacement analysis-

based method requires the direct measurement of the

rotor’s condition, which places extremely high

demands on the installation of the sensors. For some

rotating machinery in real-world applications, such as

the aero-engine, the position and number of sensor

mounting points are limited because casing acces-

sories are mostly set outside the rotor system [13], and

vibration displacement signals of the shaft cannot be

directly measured because no mounting points are

near the shaft. For this kind of rotating machinery, the

existing solutions of vibration analysis are mainly

based on the vibration signal of the measurement point

on the casing, and the rotating speeds related–

frequency components of the vibration signals are

determined to conduct spectrum analyses [14].

Nonetheless, this method is susceptible to interfer-

ences from the external noise, such as internal airflow

excitation, casing and pipeline accessory vibration,

and complex operating conditions with variable speed

and load, which result in complex vibration responses,

thus reducing the accuracy and stability of diagnosis

[15]. Therefore, using the acquired vibration signals of

the casing for monitoring the health status of the rotor

system is a challenge, and applying the external

vibration sensor to monitor the health status of this

kind of rotor system to provide early warning for fault

occurrence is a current research hotspot.

To fundamentally solve this issue faced by con-

ventional vibration analysis techniques, in the present

study, a novel diagnostic framework known as non-

linear data-driven modelling and model frequency

analysis is proposed. Considering the dynamic cou-

pling characteristics of the rotor system [16], the

damaged bearing or shaft can affect the vibration

response of the rotor system through the transmission

path. The main idea of the proposed method is to build

a dynamic process model through nonlinear data-

driven modelling to reveal the dynamic characteristics

of the rotor system. Then, model frequency analysis is

conducted to extract the model frequency properties of

the nonlinear data-driven model to evaluate the health

conditions of the rotor system. Last, AI (artificial

intelligence) methods are applied to use the frequency

properties as features to conduct the on-line monitor-

ing of the rotor system. The significance of this

approach lies in its strong interpretability, namely the

model frequency analysis can disclose unique and

physically meaningful features of the rotor system. As

previous studies demonstrated [17–19], the proposed

diagnostic framework can be implemented for rotor

systems monitoring. However, these studies simply

utilized measured vibration displacement signals of

the shaft, neglecting to consider the rotor system faults
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associated with speed fluctuations, misalignment, and

unbalance, which are impractical for real-world

applications. This study is the first attempt to consider

these challenges for monitoring rotor systems using

the proposed approach, yielding results more repre-

sentative of real-world applications. Promising results

demonstrate that the proposed data-driven modelling

and model frequency analysis surpass conventional

monitoring methods, offering enhanced potential for

industrial application.

The main contributions of this paper can therefore

be summarized as follows:

(1) A run-to-failure experiment of a rotor system

was conducted using a bearing-rotor test rig,

wherein the shaft was operated from a healthy

state to complete fatigue fractures. The life

cycle test data of shaft fatigue fracture obtained

from the test rig offer valuable insights and

information for the study of on-line rotor system

monitoring.

(2) Since this study conducted the run-to-failure

experiment, more actual scenarios with more

complicated faults that happened inside the

rotor system are investigated.

(3) A novel on-line condition monitoring frame-

work based on nonlinear data-driven modelling

and model frequency analysis is proposed which

outperforms the conventional monitoring meth-

ods in terms of reliability, robustness and

accuracy.

The rest of this paper is organized as follows: In

Sect. 2, the basic idea of using the vibration acceler-

ation of fulcrum structures to monitor rotor systems is

illustrated. The algorithm of nonlinear data-driven

modelling and model frequency analysis is detailed

introduced in Sect. 3. The implementation process of

the proposed on-line condition monitoring approach is

specified in Sect. 4. The experimental studies on the

application of the proposed approach to the monitoring

shaft degradation rotor systems are discussed in Sect. 5.

Finally, conclusions are summarized in Sect. 6.

2 Basic principle of the proposed rotor system

condition monitoring framework

For rotor systems shown in Fig. 1, such as aero-

engines or gas turbines, vibration measurement points

are generally arranged in an external casing close to

the fulcrum structure to obtain maximum vibration

energy. The greater the vibration energy of the

measurement point, the more adequate the fault

information will be. Therefore, using a vibration

acceleration signal that is measured externally is worth

studying to monitor the health condition of the internal

rotor system.

As can be seen in Fig. 1, the vibration energy of the

measurement point for this kind of rotor system is

transmitted from the internal excitation source (re-

garded as power input), such as misalignment and disc

unbalanced excitation. The power input generated by

the disc finally reaches the vibration measurement

point of the casing through the transmission path of the

disc–shaft–bearing–fulcrum structure. When a com-

ponent in the transmission path is damaged, such as a

shaft misalignment or bearing spalling, the frequency

properties of the transmission path systemwill change.

Fault characteristics will affect the vibration response

of the fulcrum structure through this transmission

path. If the frequency properties can be determined by

the vibration response of the measurement point, the

health condition of the system can then be predicted.

As can be seen in Fig. 2, the variations, such as

speed fluctuation, unbalance, misalignment, that

occurred between two measurement points are

regarded as the rotor system changes. Any situations

that occurred outside the two measurement points are

regarded as the environmental variations. In the

present study, the external loading and working

conditions are unvaried, so the environmental varia-

tions are unchanged. The objective of the present

study is to implement transfer function-based diag-

nostic methods to monitor the system changes over

time.

2.1 Justification of nonlinear data-driven

modelling and model frequency analysis

As can be seen in Fig. 1, for the vibration response at

both ends of any transmission path of rotor systems,

the vibration response near the motor is defined as

input signal u(1), and the other end is defined as output

signal y(1); a general model representing the dynamics

of the rotor system can be presented as

123

On-line condition monitoring for rotor systems based on nonlinear data-driven modelling and… 5231



uð1Þ ¼ DðC1iÞ½Pð1Þ�
yð1Þ ¼ DðC2iÞ½Pð1Þ�

ð1Þ

where P(1) represents the power input of the disc. Take

an aero-engine as an example, the power input of the

disc mainly comes from unbalance and airflow

excitation.DC1i represents the dynamic characteristics

of the transmission path between u(1) and P(1), and

DC2i represents the dynamic characteristics of the

transmission path between y(1) and P(1). C1i repre-

sents the components in the transmission path between

u(1) and P(1). C2i represents the components in the

transmission path between y(1) and P(1). i is the

number of components that included in the two

transmission paths, such as the shaft and bearing

shown in Fig. 1. Under the condition that DC1i and

DC2i are invertible, Eq. (1) can be derived as

Pð1Þ ¼ D�1
ðC1iÞ½uð1Þ�

Pð1Þ ¼ D�1
ðC2iÞ½yð1Þ�

ð2Þ

which can be rewritten as

D�1
ðC1iÞ½uð1Þ� ¼ D�1

ðC2iÞ½yð1Þ� ð3Þ

By transforming Eq. (3),

yð1Þ ¼ DðC2iÞ D�1
ðC1iÞ½uð1Þ�

n o

¼ DðC1i;C2iÞ½uð1Þ� ð4Þ

In Eq. (4), if DðC1i;C2iÞ is a linear system, it can be

transformed from the time domain into the frequency

domain as

YðjxÞ
UðjxÞ ¼

FFT½yð1Þ�
FFT½uð1Þ� ¼

FFT DðC1i;C2iÞ½uð1Þ�
� �

FFT½uð1Þ� ¼ HðjxÞ

ð5Þ

where H(jx) represent the FRF (frequency response

functions) of the transmission path between u(1) and

y(1) reflecting the dynamics of the rotor system.

However, for the rotor systems in engineering, the

dynamic relationship is generally nonlinear under the

influence of assembly clearance, impact, or friction

and other factors. The traditional linear FRF analysis

simplifies the dynamic relationship DðC1i;C2iÞ into a

linear system leading to the loss of a significant

amount of fault information.

In addressing this issue, the present study develops

a dynamic process model that accounts for nonlinear

phenomena, utilizing a nonlinear data-driven

approach. Subsequently, component faults and dam-

age within the transmission path system are charac-

terized by performing a nonlinear model frequency

analysis. This analysis employs NOFRFs (nonlinear

output frequency response functions), which extend

traditional FRF to accommodate nonlinear cases. The

following section will introduce the algorithms of

Accelerometer
Power input--P(ς)

xy

z

Fulcrum A

Fulcrum B
Bearing DiscShaft Coupling

u(ς)y(ς)

Fig. 1 Typical vibration transmission path of rotor systems

1

2

misalignment 

speed fluctuation

System changes:

unbalance

Environmental 

variations

...

Fig. 2 System changes and environmental variations
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nonlinear data-driven modelling and subsequent

model frequency analysis.

3 Algorithms of nonlinear data-driven modelling

and model frequency analysis

3.1 Nonlinear data-driven modelling

(1) Model identification

In this paper, the nonlinear data-driven modelling

employs the NARX (nonlinear autoregressive with

exogenous input) model, which has the function of

noise reduction and filtering and is convenient for

subsequent frequency response analysis.

The purpose of nonlinear data-driven modelling is

to obtain the dynamic relationship between two

vibration measurement points as shown in Fig. 1.

Let u(k) and y(k) be the discrete vibration signals

collected from the continuous vibration signals u(1)

and y(1), respectively, where k represents the sampling

point. The dynamic relationship can be represented by

the NARX model with single input and single output

in the discrete-time domain [20],

y kð Þ ¼ Fl yðk � 1Þ; yðk � 2Þ; :::; yðk � dyÞ;
�

uðk � 1Þ; uðk � 2Þ; :::; uðk � duÞ� þ eðkÞ
ð6Þ

where Fl[.] represents a nonlinear polynomial function

with the maximum polynomial degree l [ Z?. du and

dy are the maximum lags for the two measure points

signal, respectively. e(k) represents the noise and

unmodelled dynamics, which is an independent

sequence and is normally defined as the prediction

error term [20].

To facilitate the solving, rewriting Eq. (6) into the

following matrix format,

y kð Þ ¼
X

M

m¼1

hmdmðkÞ þ eðkÞ ð7Þ

where hm(m = 1, 2,…,M) represent the coefficients of

the model terms, and dm(k) is the mth-order monomial

term composed of y(k-1), y(k-2), y(k-dy),…, u(k-1),

u(k-1), and u(k-du).M is the total number of candidate

model terms, M = (n ? l)!/n!/l!, and n = dy ? du.

To facilitate the solution, rewrite Eq. (7) into the

following matrix form,

y ¼ Dhþ E

¼

d1ð1Þ d2ð1Þ � � � dMð1Þ
d1ð2Þ d2ð2Þ � � � dMð2Þ
.
.
.

.

.

.
.
.

.
.
.
.

d1ðNÞ d2ðNÞ � � � dMðNÞ

2

6

6

6

4

3

7

7

7

5

h1
h2

.

.

.

hM

2

6

6

6

4

3

7

7

7

5

þ

e1
e2

.

.

.

eM

2

6

6

6

4

3

7

7

7

5

¼

y1
y2

.

.

.

yM

2

6

6

6

4

3

7

7

7

5

ð8Þ

where y is the vector of model output, N is the total

number of sampling points, h is a parameter vector,

D is a dictionary matrix composed of the model

candidate terms, and E is the modelling error vector.

The FROLS (forward regression with orthogonal

least squares) introduced in Ref. [21] is applied to

select the most significant model terms from the

redundant initial dictionary matrix D. The algorithm

introduces the reordering process of model terms.

Every step of the model terms search process will

conduct a comprehensive screening of the remaining

model terms and finally get a most concise model

structure. The FROLS selected model can be deter-

mined as

y ¼ Waþ E� ð9Þ

where W represents a final model structure, and

W = {d1,…, dM*}, M.*\ \M. a is a FROLS

parameter vector, a = [h1,…, hM*], which can be

calculated by [20]

a ¼ argmin Wa� yk k22þk ak k2
n o

¼ WTWþ kI
� ��1

WTy

ð10Þ

where k is the regularization parameter; and I is an

M*
9 M* identity matrix. In this paper, the Euclidean

norm is used to regularize the NARXmodel in order to

meet the stability, robustness, and accuracy principles

introduced in the following subsection. Although

other methods can regularize the model, they are less

efficient than the Euclidean norm in achieving these

principles.
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(2) Principles for choosing regularization parame-

ter k

To obtain a satisfactory NARX model, the regular-

ization parameter k is a critical factor that determines

the balance between bias and variance in the estima-

tors obtained. During the tuning process of k, it is

necessary to consider three conditions to evaluate the

generated models.

• Stability: To ensure that the model is stable, the

MPO (model predicted output) predictions should

be convergent. In MPO, the system output is

initialized by a few known measured output values

and then MPO is calculated from the identified

model driven only by the given input [20]. For

example, consider a NARX model,

yðkÞ ¼ ay2ðk � 1Þ þ byðk � 2Þ þ cuðk � 1Þ ð11Þ

The MPO predictions of the model are defined as

ŷð1Þ ¼ yð1Þ
ŷð2Þ ¼ yð2Þ

ŷð3Þ ¼ aŷ2ð2Þ þ bŷð1Þ þ cŷð2Þ
ŷð4Þ ¼ aŷ2ð3Þ þ bŷð2Þ þ cŷð3Þ

.

.

.
.
.
.

.

.

.
.
.
.

ŷðkÞ ¼ aŷ2ðk � 1Þ þ bŷðk � 2Þ þ cŷðk � 1Þ
.
.
.

.

.

.
.
.
.

.

.

.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð12Þ

Due to the predicted values being on the right side,

any prediction error will quickly accumulate and

become obvious. In the event that theMPO predictions

exhibit convergence, the candidate k will be utilized

for subsequent verification. If the MPO predictions are

divergent, the candidate k will be discarded.

• Robustness: Once the candidate k is selected from

Stability principle, its robustness is assessed

through k-fold cross-validation with the following

process:

Step 1 The original dataset is partitioned into

k subsets, and the modelling procedure is iterated

k times using the chosen candidate k.

Step 2 During each iteration, one of the k subsets

serves as the validation dataset, while the remaining

k-1 subsets are combined to create a training dataset.

Step 3 Ultimately, the MPO is assessed across all

k validation sets.

To evaluate the model’s robustness, if any of the

k validation MPOs exhibit significant divergence, the

candidate penalty parameter k will be excluded.

• Accuracy: After the candidate k is checked by

Stability and Robustness principles, to ensure the

accuracy of the model, the MSE (mean square

error) is used to quantify the MPO predictions and

make sure the accuracy of the model. The smaller

the MSE is, the more accurate the model prediction

will be. Under the condition that MSE meets the

given precision, the principle of minimizing the

number of NARXmodel terms should be followed.

MSE ¼ ð1=NÞ
XN

k¼1
ðyðkÞ � ŷðkÞÞ2 ð13Þ

whereŷ is the predicted output of the model. If the

MPO predictions are convergent and MSE is satisfied,

the k will be used for the modelling. Otherwise, the

selected k will be abandoned.

(3) Optimization of parameter k

To identify an appropriate k that satisfies the three

key principles, an evolutionary algorithm is employed

to seek the optimal regularization parameter k [19].

Ki ¼ ki;1; ki;2; . . .; ki;ri ; . . .; ki;Ri

� �

ð14Þ

where Ki represents a candidate parameter vector with

a common difference w/10i-1, where w [ R? and

i [ Z?. 1 B ri B Ri and ki;ri indicates the candidate

penalty parameter at the ith generation and the rith

position, respectively. Based on this, the first vector is

described as K1 ¼ k1;1; k1;2; . . .; k1;r1 ; . . .; k1;R1

� �

with

the common difference w.

After that, the optimization process begins with the

first iteration using Ki and applying the three princi-

ples. If no candidate penalty parameters in the first

candidate parameter vector satisfies all three princi-

ples, Ki requires redesign. Otherwise, the potential

penalty parameter can be selected as k1;r1 , and the

corresponding MSE is denoted as E1. Similarly, the

second generation sequence is generated as K2 ¼
k2;1; k2;2; . . .; k2;r2 ; . . .; k2;R2

� �

with the common dif-

ference of w/10.

The evolution process is repeated, and the selected

potential penalty parameter for the second iteration is

k2;r2 with the corresponding MSE of E2. The evolution

terminates at the ith evolutionwhen |1 - Ratioi,i-1| is less

than a predefined threshold q, which is a small number.
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1� Ratioi;i�1

�

�

�

�� q ð15Þ

where Ratioi,i-1 = Ei/Ei-1.

(4) Discussion on parameter choices

Before model identification, other suitable parame-

ters need to be established, such as l, du, and dy. The

optimal l can help to obtain satisfactory model terms.

However, the increase of l will significantly enlarge

the size of the initial dictionary matrix D. To improve

the algorithm’s solving speed, the initial l is set to 2 for

modelling. Similarly, the larger du and dy can help in

obtaining enough useful information for modelling but

also generate redundant model terms, reducing com-

putational efficiency. To obtain satisfactory du and dy,

the trail-and-error method are adopted and combined

with MSE above. Specifically, the combination of du
and dy that produces the smallest MSE will be used for

subsequent dynamic process modelling.

3.2 Model frequency analysis

In the NARX modelling process, the NARX model

meets the stability, robustness, and accuracy require-

ments through the selection and optimization of k to

ensure the convergence. At this time, the NARX

model’s output in the time domain can be represented

by a discrete Volterra series as [22]

yðtÞ �
X

N

n¼1

ynðtÞ

¼
X

N

n¼1

Z þ1

�1
� � �

Z þ1

�1
hnðs1 � � � snÞ

Y

n

i¼1

uðt � siÞdsi

ð16Þ

where N represents the maximum order of interest of

the system’s nonlinearity, and hn is the nth kernel

function of the Volterra series. The convergence of the

NARX model guarantees the convergence of the

integrals in Eq. (16). In the frequency domain, the

spectrum of the nth-order output yn(t) can be repre-

sented as

FFTðynðtÞÞ ¼ YnðjxÞ ¼
1=

ffiffiffi

n
p

ð2pÞn�1

Z

x1þ���xn¼x

Hnðjx1; � � � ; jxnÞ
Y

n

i¼1

UðjxiÞdrnx
ð17Þ

Under the condition that FFTðunðtÞÞ ¼ UnðjxÞ ¼
1=

ffiffi

n
p

ð2pÞn�1

R

x1þ���xn¼x

Q

n

i¼1

UðjxiÞdrnx 6¼ 0, the NOFRFs are

defined as [22]

GnðjxÞ ¼

R

x1þ���xn¼x
Hnðjx1; � � � ; jxnÞ

Q

n

i¼1

UðjxiÞdrnx
R

x1þ���xn¼x

Q

n

i¼1

UðjxiÞdrnx

ð18Þ

The Gn(jx) represents the result of a weighted sum

of generalized frequency response functions (GFRF)

Hn(jx1,…, jxn) over the n-dimensional hyper-plane

x = x1 ? … ? xn. Based on Eqs. (17) and (18), nth

order NOFRF Gn(jx) can be represented as [22]

Gn jxð Þ¼FFTðynðtÞÞ=FFTðunðtÞÞ¼Yn jxð Þ=Un jxð Þ
ð19Þ

where un(t) and yn(t) are the nth order input and its

corresponding output, respectively, and un(t) = (u*(-

t))n, n = 1,…,N. u*(t) is the input excitation signal. At

this time, the spectrum of the total output of the system

(6) in the frequency domain can be represented as

FFTðyðtÞÞ ¼ YðjxÞ

�
X

N

n¼1

YnðjxÞ¼
X

N

n¼1

GnðjxÞUnðjxÞ ð20Þ

The discrete nth-order output yn(k) can be obtained

using the Generalized Associated Linear Equa-

tions (GALEs) [23], which is defined as

yn kð Þ �
X

K

k1¼1

c1;0 k1ð Þyn k � k1ð Þ

¼
X

K

k1;kn¼1

c0;n k1; � � � ; knð Þ �
Y

n

i¼1

u k � kið Þ

þ
X

n�1

q¼1

X

n�q

p¼1

X

K

k1; kpþq¼1

cp;q k1; � � � ; kpþq

� �

yKn�q;p kð Þ

�
Y

pþq

i¼pþ1

u k � kið Þ þ
X

n

p¼2

X

K

k1; kp¼1

cp;0 k1; � � � ; kp
� �

yKn;p kð Þ

ð21Þ

where n = 1,…, N, K = (k1,…,kp?q) is the integer set

of delay for coefficients c = (k1,…, kp?q), and
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yKn;p kð Þ ¼
X

n�ðp�1Þ

i¼1

yi k � kp
� �

yKn�i;p�1 kð Þ

yKn;1 kð Þ ¼ yn k � k1ð Þ

8

>

>

<

>

>

:

ð22Þ

The algorithms of the above nonlinear data-driven

modelling and model frequency analysis algorithm are

described as follows.
Algorithm 1 Nonlinear data-driven modelling and model frequency analysis

Next, the Duffing equation is used as an example to

illustrate the application of model frequency analysis

in the condition assessment of nonlinear dynamic

systems. Considering that the classical Duffing equa-

tion that has only a third stiffness term is not enough to

represent the complex nonlinearity of the real mechan-

ical system, this paper introduces a quadratic stiffness

term into the classical Duffing equation. The Duffing

equation with square stiffness term is established as

follows:

m€yðtÞ þ c _yðtÞ þ k1yðtÞ þ kk2y
2ðtÞ þ kk3y

3ðtÞ ¼ uðtÞ
ð23Þ

where m and c are the mass and the linear damping,

respectively. k1, k2, and k3 represent the linear

stiffness, square stiffness, and cubic stiffness, respec-

tively. k is the nonlinear factor, representing the

strength of nonlinearity. The system nonlinearity can

be increased by increasing k, indicating that the

system fault become serious. Equation (23) can be

discretized to a NARX model using the forward-

backwards difference (FBD) method [24] defined as

_yðtÞ ¼ yðtÞ � yðt � 1Þ
Dt

€yðtÞ ¼ yðt þ 1Þ � 2yðtÞ þ yðt � 1Þ
Dt2

ð24Þ

where Dt is the sampling period and Dt = 1/fs,

yðtÞ ¼c0;1ð0Þuðt � 1Þ þ c1;0ð1Þyðt � 1Þ þ c1;0ð2Þyðt � 2Þ
þ c2;0ð1; 1Þyðt � 1Þ2 þ c3;0ð1; 1; 1Þyðt � 1Þ3

ð25Þ

where the coefficients are represented as follows:

c0;1ð0Þ ¼ Dt2=m; c1;0ð1Þ ¼ ð2m� cDt � k1Dt
2Þ=m; c1;0ð2Þ

¼ ðm� cDtÞ=m;
c2;0ð1; 1Þ ¼ �k2Dt

2=m; c3;0ð1; 1; 1Þ ¼ �k3Dt
2=m

Using the GALEs in Eq. (21), the first three order

outputs expressions in time domain can be represented

as,

y1ðtÞ ¼ c1;0ð1Þy1ðt � 1Þ þ c1;0ð2Þy1ðt � 2Þ þ c0;1ð1Þuðt � 1Þ
y2ðtÞ ¼ c1;0ð1Þy2ðt � 1Þ þ c1;0ð2Þy2ðt � 2Þ þ c2;0ð1; 1Þy1ðt � 1Þ2

y3ðtÞ ¼ c1;0ð1Þy3ðt � 1Þ þ c1;0ð2Þy3ðt � 2Þ þ 2c2;0ð1; 1Þy1ðt � 1Þy2ðt � 1Þ
þ c3;0ð1; 1; 1Þy1ðt � 1Þ3

8

>

>

>

>

<

>

>

>

>

:

ð26Þ

123

5236 Y. Zhao et al.



Considering that the system is excited by the band-

limited input,

uðtÞ ¼ 3

2p

sinð2� 55� p� tÞ � sinð2� 30� p� tÞ
t

ð27Þ

The parameters in Eq. (23) are set as m = 1 kg,

c = 20 Ns/m, k1 = 1 9 104 N/m, k2 = 1 9 107 N/m2,

and k3 = 1 9 109 N/m3, respectively. The sampling

frequency is fs = 1/Dt = 5120 Hz. Then, the vibration

response of the system can be obtained by the Runge–

Kutta numerical solving method. When the nonlinear

factor takes three different values, namely k = {0.2,

0.4, 0.6}, the first three orders NOFRFs of the system

can be obtained as shown in Fig. 3.

As system nonlinearity increases caused by increas-

ing the nonlinear factor k, the first NOFRF, namely

traditional FRFs (frequency response functions),

remains the same, while the second and third NOFRFs

increase significantly. The results indicate that the

high-order NOFRFs obtained based on model fre-

quency analysis can identify the faults occur and

worsen that cannot be identified by traditional FRFs.

For rotor systems, by comparing NOFRFs with a

baseline, the dynamic characteristics can be monitored

to achieve condition monitoring and fault diagnosis.

4 The implementation of the proposed on-line

condition monitoring approach

The implementation of the proposed on-line health

monitoring approach includes two main stages—off-

line health state features extraction and on-line

monitoring.

In the off-line stage, the NOFRFs features are

extracted from the training set to construct the health

state features via the following steps:

(1) Acquire the vibration acceleration of fulcrum

structures under the initial health condition of

rotor systems. Establish the NARX models

characterising the health states using the vibra-

tion signals of the input and output measurement

points. Use the FROLS algorithm to determine

the model terms and their coefficients, and apply

the stability and accuracy criteria to validate the

model.

(2) Conduct the model frequency analysis using the

identified models. Introduce the input excitation

u*(t) with the continuous spectrum to calculate

the models’ NOFRFs (Gn(jx), n = 1,…, N) us-

ing the GALEs in Eq. (21). Then, extract the

amplitudes of the frequency components in the

nonlinear spectrum within the bandwidth of

input (u*(t))n, n = 1, …, N, which are taken as

the state features.

(3) Apply the k-means method to calculate the

means of state features of all identified models

in the training set, and take the means of state

features as the health state features.

The on-line stage is the construction of the health

indicator (HI), which mainly uses the vibration data

collected under the current degradation state of the

rotor systems with the following steps:

(1) Acquire the vibration acceleration of fulcrum

structures under the current degradation state

(including validation and test sets) to establish

the NARX model satisfying validity to charac-

terize the system dynamic process.

(2) Calculate the NOFRFs features of the model and

take them as degradation state features. Then,

compute the Euclidean distance between degra-

dation state features and health state features to

characterize the similarity, and apply the

Euclidean distance as the HI.

10 15 20

f (Hz)

0

0.005

0.01

0.015

10 15 20

f (Hz)

0

0.5

1
10-7

10 15 20

f (Hz)

0

0.5

1

10-6

|G
1
(j
ω

)|

|G
2
(j
ω

)|

|G
3
(j
ω

)|

λ=0.2

λ=0.4

λ=0.6

λ=0.6
λ=0.4

λ=0.2

λ=0.2
λ=0.4
λ=0.6

(a) (b) (c)

Fig. 3 The NOFRFs under

different nonlinear factor k

a first NOFRF, b second

NOFRF and c third NOFRF

123

On-line condition monitoring for rotor systems based on nonlinear data-driven modelling and… 5237



HI ¼ Dðd; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
ðdi � hiÞ2

r

ð28Þ

where N represents the number of feature elements,

d represents the current degradation state features, and

h represents the health state features.

(3) Set the hard failure threshold to l ? 2r based

on the 2r criterion, where l and r are the mean

and standard deviation of the HIs of the training

set, respectively. The moment when three

consecutive HI points exceed the threshold is

taken as the anomaly alarm. If only one or two

points exceed the threshold and the next point

falls below, the event is considered due to

chance factors.

Figure 4 shows a schematic flowchart of the

proposed off-line health state features extraction and

on-line construction of HI and detection.

5 Shaft degradation monitoring

5.1 Experiment setup

To verify the feasibility of the proposed approach for

rotor system condition monitoring based on the

vibration signal of the fulcrum structure, the whole

life cycle vibration data of the motor output shaft

fatigue fracture were adopted. The structure of the

bearing-rotor test rig was consistent with Fig. 1. One

end of the shaft was connected with the output shaft of

the motor by rigid coupling, and the ball bearing

supported the other end. The non-driving end bearing

housing and motor output shaft bearing sleeve were

considered fulcrum structures. During the test rig

assembly, the rotor system was adjusted to have an

initial misalignment (out-of-line) of 0.1� to improve

the motion instability and promote the fatigue cracks

of the shaft and fracture occurrence [25, 26].

The primary measurement points were arranged as

shown in Fig. 1. The vibration of the bearing sleeve of

the motor output shaft was collected and defined as the

input of the transmission path. The vibration of the

bearing housing at the non-driving end was defined as

the output of the transmission path. The overall

transmission path was the motor output shaft bearing

sleeve–motor bearing–shaft–coupling–shaft (disc)–

support bearing–bearing housing. The failure or

damage of any component in the transmission path

would change the nonlinear frequency response func-

tion of the system.

Two BH5031EX-050-VL accelerometers with a

sensitivity of 100 mV/g and a frequency range from

0.5 to 5 kHz were adopted. The sampling frequency

was 12.8 kHz, and the vibration signal was collected

for 1 s every 1 min. The motor drive speed was

1500 rpm. The shaft underwent completed breakdown

after the experiment operated continuously for

316 min, and the data were collected for 316 s.

Additionally, the axial vibration acceleration signals

of two measurement points during the whole life cycle

were combined to demonstrate the signal variations in

the time domain (see Figs. 5 and 6). The vibration data

from 0 to 90 min were used as the training set, the

vibration data from 90 to 180 min made up the

validation set, and the vibration data from 180 min to

breakdown comprised the test set.

5.2 Nonlinear data-driven modelling

Considering the life cycle vibration data before the

breakdown, 316 data segments 1 s long were acquired

at each measurement point. Therefore, 316 NARX

models were obtained using nonlinear data-driven

modelling. For example, an identified NARX model

using a training dataset is shown in Eq. (29) with the

final selected parameters of k = 0.02, du = 5, dy = 5,

and l = 2. The waveforms of real and predicted

outputs are shown in Fig. 7, and the MSE is

Off-line stage On-line stage

Acquisition of signal under 

health condition

NARX model

NOFRFs extraction

Model-based features under 

health condition

Acquisition of signal under 

degradation condition

NARX model

NOFRFs extraction

Model-based features under 

degradation condition

Health indicator construction 

using Euclidean distanceHealth indicator construction 

using Euclidean distance
Set failure thresholds using

2σ criterion

Outcome of monitoring

Fig. 4 Flowchart of the proposed approach for on-line condi-

tion monitoring of rotor systems
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0.00017, which means that the identified model can

represent the nonlinear dynamics well.

y kð Þ ¼ � 0:255966u k � 2ð Þ � 0:734631y k � 1ð Þ þ 0:307441u k � 1ð Þ
þ 0:235601u k � 4ð Þ � 0:284478y k � 2ð Þ � 0:098567y k � 3ð Þ
þ 0:449025y k � 5ð Þ þ 0:275088u k � 3ð Þ þ 0:288734y k � 4ð Þ
þ 0:009198u k � 3ð Þy k � 4ð Þ þ 0:004677u k � 1ð Þu k � 4ð Þ þ . . .

ð29Þ

5.3 Model frequency analysis

Since the motor’s output speed was set to 1500 rpm,

the corresponding rotational frequency was 25 Hz.

For the model frequency analysis, to observe the

frequency properties at this frequency, the bandwidth

of input excitation was set to 20–30 Hz to evaluate the

NOFRFs of each model. (Usually, the motor speed is

not strictly constant during rotation owing to changes

in load and other unknown reasons, and the frequency

range can be designed slightly wider to cover motor

frequency variations.) The form of the input excitation

is designed as

u�ðtÞ ¼ 1

2p

sinð20� 2� p� tÞ � sinð30� 2� p� tÞ
t

;

� 2s� t� 2s

ð30Þ

Based on Eq. (19), the NOFRFs of the identified

NARX model are obtained. For this case study, the

first three orders of NOFRFs were considered, and the
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amplitude of each frequency component was taken as

the state features of the current moment.

5.4 Construction of health indicator and failure

detection

The construction of the HI that reflects the health state

of mechanical parts and quantifies the nonlinear

degradation process is crucial to condition monitoring

[27]. The obtained state features of the training set and

validation set are shown in Fig. 8. As can be seen, the

features are composed of first-order NOFRFs (G1),

second-order NOFRFs (G2) and third-order NOFRFs

(G3). First, G1 is derived from the fundamental

frequency of the system having 40 frequency compo-

nents as features.G2 is derived from the first harmonic

of the system where the number of the frequency

components is 2 times the number of fundamental

frequency components [20]. Therefore, the number of

frequencies for the results of G2 is 80 (= 40 9 2).

Similarly, G3 is derived from the second harmonic of

the system, so the number of frequencies for the results

of G3 is 120 (= 40 9 3).

For the on-line construction of the HI, the k-means

(k = 1) method is first used to calculate the mean of the

state features of 90 data segments in the training set
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and take them as the health state features, as shown in

Fig. 8. After obtaining the health state features, the

system’s status can be analysed by calculating the

similarity between the current degradation state fea-

tures and the health state features. In this paper, based

on Eq. (28), the Euclidean distance between the

degradation and the health state features was calcu-

lated to characterize the similarity, and the distance

was used as the HI. The value of the HI represents the

change degree of the state features, and a noticeable

change can indicate an anomaly. This interpretability

lays a theoretical foundation for the engineering

application of the proposed approach.

Finally, the failure threshold should be set. All state

features of the training set were used to calculate the

corresponding HI, as shown in Fig. 9a. The normal

distribution test of the HI was conducted, and then, the

failure threshold (red dash line in Fig. 9) was set to

l ? 2r according to the 2r criterion to achieve a

confidence interval of 95%, where l is the HI mean in

the training set and r is the standard deviation.

When the validation and test sets are used to detect

the anomaly of the rotor system, the moment three

consecutive points of the HI exceed the threshold is

taken as the alarm. This is because 2r criterion can

achieve a confidence interval of 95%. If only one or

two points exceed the threshold and the next point falls

within it, the event is considered a chance factor. In

Fig. 9b, only one HI point of the validation set exceeds

the threshold, and the rest are below the threshold.

Therefore, the validation set is in health status,

consistent with reality. In Fig. 9c, the HI exceeds the

threshold in the later period, where the marked point is

the alarm time, which is 290 min of the life cycle. The

breakdown occurs after 26 min, and thus, the

NOFRFs-based HI can effectively warn the occur-

rence of shaft fatigue fracture.

5.5 Comparative study

To highlight the superiority of the proposed approach,

the HIs based on traditional vibration signal features

were calculated and compared with the proposed

approach. The selected vibration signal features

include the peak-to-peak value (PP), root mean square

(RMS) [28], and amplitude of the rotational frequency
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(ARF), which are commonly used signal features in

the condition monitoring of rotor systems. Next, the

three features of the vibration acceleration signals at

the two measurement points were calculated respec-

tively, and the HIs and failure thresholds were

constructed using the same method. Additionally, the

linear FRF-based HI and NARX model parameters

(NARX-MP)-based HI [29] were also obtained and

compared with NOFRFs-based HI. The linear FRF-

based HI was generated using the FRF as the features,

and this FRF was evaluated using the linear part of the

NARXmodel output in relation to the linear input. The

results are shown in Figs. 10, 11, 12, 13 and 14.

Then, by calculating the alarm times and the

warning time of first alarm before the breakdown of

the verification and test sets, the proposed HI is

quantitatively compared with the traditional HIs. The

comparison results are shown in Table 1.

For the validation set of the shaft fracture life cycle

vibration data, the stability of the traditional vibration

signal feature-based HIs was poor, and a false alarm

appeared frequently. HIs based on PP and RMS had

four false alarms at different times. Especially for the

ARF-based HI, the continuous false alarm occurred

within 30–80 min. For the test set, the alarm time was

early and even at the beginning. After the alarm, the

traditional vibration signal feature-based HIs would

occasionally recover below the threshold. Still, most

of the time, they were above the threshold, so they

could not be used for shaft fracture condition

monitoring.

Linear FRF-based HI had two false alarms for the

validation set and most of HI values are above the

threshold. For the test set, linear FRF-based HI are

occasionally below the threshold in the later stages of

degradation, meaning the unreliable alarms. Apart

from two individual points, the other NARX-MP-

based HIs are below the threshold value in the

validation dataset. This means that the validation

dataset is in a healthy status. In the test set, the NARX-

MP-based HIs exhibit significant fluctuations, but still

fail to meet the alarm requirement. This suggests that

the shaft fracture cannot be predicted in advance. The

results presented in Table 1 indicate that the tradi-

tional signal feature-based HIs and linear FRF-based

HI had a high false alarm rate and unreliable warning
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before the breakdown. Furthermore, NARX-MP-

based HIs are unable to raise an alarm for shaft

fracture, which further highlights the adaptability and

reliability of the proposed HIs in the present study.

6 Discussion

To better illustrate the superiority of the proposed

nonlinear data-driven modelling and model frequency

analysis approach, some discussions are given as

follows:

(1) Reliability and robustness Influenced by speed

fluctuations, misalignment, and unbalance, the

signal features, such as PP, RMS and ARF,

change significantly, thus reducing the reliabil-

ity of traditional signal feature-based monitor-

ing methods. However, the proposed approach

focuses on the frequency properties of the rotor

system, which have the ability to resist these

perturbations. Therefore, the proposed nonlin-

ear data-driven modelling and model frequency

analysis approach has better robustness and

reliability.

(2) Interpretability The constructed HI and the on-

line condition monitoring approach based on

model frequency analysis have clear physical

significance. The proposed approach assesses

the health status of rotor systems by evaluating

the variations of the NOFRFs of the systems’

nonlinear data-driven model. However, the

traditional signal feature-based monitoring

methods only use statistic features which lack

certain interpretability. With the complexity of

mechanical equipment and operating condi-

tions, the adaptability of traditional signal

feature-based monitoring methods is seriously

affected.

7 Conclusions

This study proposes an on-line condition monitoring

approach for rotor systems based on nonlinear data-

driven modelling and model frequency analysis. This

proposed approach is validated using life cycle test

data of shaft fatigue fracture obtained from a bearing-

rotor test rig employing external vibration sensors,
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Fig. 14 NARX-MP-based health indicator of a validation and b test sets

Table 1 Comparisons of

the proposed HI and

traditional HIs

Health indicators Number of alarms Warning time (min)

Validation Test Validation Test

NOFRFs-based HI 0 1 – 26

PP-based HI 4 8 217 133

RMS-based HI 4 4 194 133

ARF-based HI 3 4 208 133

Linear FRF-based HI 2 7 218 129

NARX-MP-based HI 0 0 – –
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specifically vibration acceleration of fulcrum struc-

tures, to monitor the health status of rotor systems. The

results are more indicative of real-world applications,

as they account for challenges related to speed

fluctuations, misalignment, and unbalance. The results

are more indicative of real-world applications, as they

account for challenges related to external noise, such

as noise from the motor rotation. Experimental results

demonstrate that the proposed diagnostic method can

effectively provide early warnings for shaft fatigue

fractures while minimizing the occurrence of false

alarms. Conversely, traditional methods based on

vibration signal features exhibit a high false alarm

rate, underscoring the superior robustness and adapt-

ability of the proposed approach in comparison to

conventional techniques.

Future research will focus on other types of

mechanical failures to improve the practicality and

universality of the proposed diagnostic framework, as

well as how to increase the modelling speed and

optimize the modelling process.
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Laganá, F., Pellicanó, D., Palumbo, A.: Innovative soft

computing techniques for the evaluation of the mechanical

stress state of steel plates. In: International Conference on

Applied Intelligence and Informatics, pp. 14–28. Springer

Nature Switzerland, Cham (2022)

11. Liu, S., Qu, L.: A new field balancing method of rotor

systems based on holospectrum and genetic algorithm.

Appl. Soft Comput. 8(1), 446–455 (2008)

12. Nembhard, A.D., Sinha, J.K., Yunusa-Kaltungo, A.:

Experimental observations in the shaft orbits of relatively

flexible machines with different rotor related faults. Mea-

surement 75, 320–337 (2015)

13. Hou, L., Cao, S., Gao, T., Wang, S.: Vibration signal model

of an aero-engine rotor-casing system with a transfer path

effect and rubbing. Measurement 141, 429–441 (2019)

14. Nembhard, A.D., Sinha, J.K.: Unified Multi-speed analysis

(UMA) for the condition monitoring of aero-engines. Mech.

Syst. Signal Process. 64, 84–99 (2015)

15. Zhang, X., Chen, G., Hao, T., He, Z.: Rolling bearing fault

convolutional neural network diagnosis method based on

casing signal. J. Mech. Sci. Technol. 34, 2307–2316 (2020)

16. Xu, H., Yang, Y., Ma, H., Luo, Z., Li, X., Han, Q., Wen, B.:

Vibration characteristics of bearing-rotor systems with

inner ring dynamic misalignment. Int. J. Mech. Sci. 230,

107536 (2022)

123

5244 Y. Zhao et al.

http://creativecommons.org/licenses/by/4.0/


17. Zhu, Y., Zhao, Y., Lang, Z., Liu, Z., Liu, Y.: Online rotor

systems condition monitoring using nonlinear output fre-

quency response functions under harmonic excitations.

IEEE Trans. Ind. Inf. 18(10), 6798–6808 (2022)

18. Liu, Y., Liang, H.: Review on the application of the non-

linear output frequency response functions to mechanical

fault diagnosis. IEEE Trans. Instrum.Meas. 72, 1–12 (2023)

19. Liu, Y., Zhao, Y., Li, J., Ma, H., Yang, Q., Yan, X.:

Application of weighted contribution rate of nonlinear

output frequency response functions to rotor rub-impact.

Mech. Syst. Signal Process. 136, 106518 (2020)

20. Billings, S.A.: Nonlinear System Identification: NARMAX

Methods in the Time, Frequency, and Spatio-Temporal

Domains. Wiley, Hoboken, NJ, USA (2013)

21. Kadochnikova, A., Zhu, Y., Lang, Z., Kadirkamanathan, V.:

Integrated identification of the nonlinear autoregressive

models with exogenous inputs (narx) for engineering sys-

tems design. IEEE Trans. Control Syst. Technol. 31(1),

394–401 (2022)

22. Lang, Z., Billings, S.A.: Energy transfer properties of non-

linear systems in the frequency domain. Int. J. Control.

78(5), 345–362 (2005)

23. Zhu, Y., Lang, Z., Mao, H., Laalej, H.: Nonlinear output

frequency response functions: a new evaluation approach

and applications to railway and manufacturing systems’

condition monitoring. Mech. Syst. Signal Process. 163,

108179 (2022)

24. Li, Y., Luo, Z., He, F., Zhu, Y., Ge, X.: Modeling of rotating

machinery: a novel frequency sweep system identification

approach. J. Sound Vib. 494, 115882 (2021)

25. Zhao, Y., Liu, Z., Lin, J., Han, Q., Liu, Y.: A novel nonlinear

spectrum estimation method and its application in on-line

condition assessment of bearing-rotor system.Measurement

221, 113497 (2023)

26. Gómez, M.J., Castejón, C., Garcı́a-Prada, J.C.: Automatic

condition monitoring system for crack detection in rotating

machinery. Reliab. Eng. Syst. Saf. 152, 239–247 (2016)

27. Chang, M., Huang, X., Coolen, F.P., Coolen-Maturi, T.:

Reliability analysis for systems based on degradation rates

and hard failure thresholds changing with degradation

levels. Reliab. Eng. Syst. Saf. 216, 108007 (2021)

28. Li, N., Xu, P., Lei, Y., Cai, X., Kong, D.: A self-data-driven

method for remaining useful life prediction of wind turbines

considering continuously varying speeds. Mech. Syst. Sig-

nal Process. 165, 108315 (2022)

29. Liu, Y., Zhang, L.: Data-driven fault identification of ageing

wind turbine. In: 2022 UKACC 13th international confer-

ence on Control (CONTROL), pp. 183–188. IEEE (2022)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

On-line condition monitoring for rotor systems based on nonlinear data-driven modelling and… 5245


	On-line condition monitoring for rotor systems based on nonlinear data-driven modelling and model frequency analysis
	Abstract
	Introduction
	Basic principle of the proposed rotor system condition monitoring framework
	Justification of nonlinear data-driven modelling and model frequency analysis

	Algorithms of nonlinear data-driven modelling and model frequency analysis
	Nonlinear data-driven modelling
	Model frequency analysis

	The implementation of the proposed on-line condition monitoring approach
	Shaft degradation monitoring
	Experiment setup
	Nonlinear data-driven modelling
	Model frequency analysis
	Construction of health indicator and failure detection
	Comparative study

	Discussion
	Conclusions
	Data availability
	References


