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Distinctive features of pretransitional behaviour between nematic phases as 
revealed by DDM
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Ljubljana, Slovenia; cSchool of Physics and Astronomy, University of Leeds, Leeds, UK; dSchool of Chemistry, University of Leeds, Leeds, UK

ABSTRACT
Pretransitional behaviour, with strong softening of the bend or splay elastic constants, is char-
acteristic of two of the nematic to nematic phase transitions reported in the last decade. Such 
softening is strongly reflected in the pretransitional behaviour of the thermally excited director 
fluctuations. Here we give a comprehensive overview of the cross-Differential Dynamic Microscopy 
(c-DDM) method and its application to the investigation of thermal director fluctuations and phase 
transitions. For this, we build on the potentialities of the method for the investigation of the 
standard nematic phase of E7 to compare with the pretransitional behaviour of the nematic to 
twist bend nematic phase transition as well as the nematic to ferroelectric nematic transition.
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Introduction

The last decade has witnessed the discovery of two novel 
nematic (N) phases that have raised a lot of interest and 
expectations. The theoretically predicted [1] twist-bend 
nematic (NTB) phase was identified as the low- 
temperature nematic phase in some systems of odd 
dimers [2–5]. In the NTB phase, the nematic director 
twists and bends forming an oblique helicoid [6]. The 
helix can be either right- or left-handed, so the transi-
tion breaks the chiral symmetry of the normal N phase. 
The archetypal NTB materials are the CBnCB family, 
consisting of two cyanobiphenyl mesogenic units linked 
through n methylene units. From n = 5 to n = 13 all the 
odd members of the family show a N-NTB phase transi-
tion. Research on NTB phases rapidly expanded through 
many materials, but notably the predominant phase 
sequence involves a weakly first-order N-NTB phase 
transition [7] driven by the dramatic decrease towards 

zero of the bend elastic constant K3. In Dozov’s precur-
sor model [1], he showed that in the case of a system in 
which the bend elastic constant K3 is small and goes to 
zero becoming negative for a critical temperature, the 
uniform N phase becomes unstable towards modulated 
phases, either a twist-bend or a splay-bend (NSB) phase, 
being the balance between elastic constants the decisive 
factor. This model was followed by other theoretical 
approaches based on a macroscopic description of the 
nematic phase [8,9] with a notable contribution from 
L. Longa et al. [10–15].

More recently, the ferroelectric nematic (NF) phase 
has been identified for a series of highly polar rod- 
shaped compounds [16]. In the NF phase inversion 
symmetry is broken, leading to a 3D liquid with large 
spontaneous electric polarisation. The reference materi-
als for NF phases are RM734 [17,18] and DIO [19], both 
reported in 2017 to show several N phases. While the 
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first exhibits a direct N-NF transition, the latter was 
reported to exhibit an intermediate phase (N-M2-NF 
phase sequence). In the case of the direct N-NF transi-
tion of RM734, it has been shown that the splay elastic 
constant K1 is not only low in the N phase but strongly 
decreases when approaching the transition to the polar 
phase [20–22].

As with any new material, one of the first investiga-
tions relies on polarising optical microscopy investiga-
tions in thin confinements. For the trained eye, both 
phase transitions, both N-NTB and N-NF/N-M2 show 
evident pretransitional behaviour characterised by 
strong distinctive optical flickering for each case respec-
tively. Such flickering is related to thermally excited 
director fluctuations. The rate and amplitude of such 
fluctuations depend on the viscoelastic properties of the 
material under consideration, and so for the N-NTB 
transition, they are affected by the softening of bend 
fluctuations while for the N-NF/N-M2 they are by the 
softening of the splay fluctuations.

Dynamic light scattering (DLS), in which the sample 
is illuminated by laser light and the scattered light is 
analysed as a function of the scattering vector and time, 
is a well-established technique for the study of viscoe-
lastic properties of nematic liquid crystals [23], exten-
sively discussed and applied in LC systems. Recently 
Cerbino and Trappe developed a method equivalent to 
DLS, differential dynamic microscopy (DDM), a near- 
technique based on optical microscopy based on digital 
Fourier microscopy [24]. DDM has been shown to be 
a very useful method for studies of the dynamical prop-
erties of soft matter. The method has been used to study, 
for example, diffusion motion of colloids [24–26], ani-
sotropy of diffusion in colloids [27,28], non-diffusive 
motion of bacteria [29], kinetics of colloidal aggregation 
[30] and capillary waves [31]. Its advantage is that the 
measured part of the sample is imaged, so any unwanted 
processes, for example, diffusion of dust particles, can 
be easily identified.

Following the DDM method, the cross-Differential 
Dynamic Microscopy (c-DDM) method was reported 
by Arko and Petelin [32], based on two randomly trig-
gered cameras imaging the same region of the sample, 
from which the cross-image differences and Fourier ana-
lysis based on the time delay between images are per-
formed. This enhances the time resolution of the method 
well beyond the frame rate of a single camera and, there-
fore, gives access to faster dynamics (higher q vectors) 
than that accessible in standard DDM.

Such visual access to the area under examination 
is of great interest in the case of non-standard liquid 
crystals, e.g. ferroelectric nematic liquid crystals, 
which tend to form a hierarchy of domains under 

confinement. That is also certain for cases such as 
the NTB phase. In the field of liquid crystals, DDM 
has been used to probe orientational dynamics in 
bulk nematic liquid crystals [33], critical fluctuations 
at magnetic field-induced structural transition in 
ferromagnetic liquid crystals [34], fluctuations dur-
ing domain formation in ferromagnetic ferrofluid 
[35] and chiral fluctuations in unwound cholesterics 
[36]. In the case of NF materials, it has been used to 
probe the π-twisted structure in antiparallel rubbed 
cells [37].

In this contribution, we aim to provide 
a comprehensive overview of the large potential of 
the DDM technique for the investigation of director 
fluctuations at the N-NTB and N-NF transitions, as 
exemplary for N-N transitions. For that, after the 
description of the theoretical background covering 
basic aspects of light scattering in nematic systems, 
DLS and DDM techniques, a comprehensive over-
view of the application of DDM for N phases is 
given covering selection rules and confinement 
effects among others. Such an overview serves as 
a reference for the interpretation of the investiga-
tions of pretransitional behaviour for the N-NTB and 
N-NF transitions reported next.

Theoretical background

Fluctuations in nematic liquid crystals

In nematic liquid crystals, the orientational fluctuations 
are the fundamental hydrodynamic excitations of the 
director field. In bulk, the eigenmodes of orientational 
fluctuations are over-damped plane waves, 
eβδn0β eiq�r þ c:c:ð Þe� t=τβ . They have two dispersion 
branches, splay-bend β ¼ 1ð Þ and twist-bend 
β ¼ 2ð Þ(Figure 1), along the axes e1 and e2 of the coor-

dinate system defined as 

e3 k n0; e2 ¼
e3�q
e3�qj j

; e1 ¼ e2 � e3 (1) 

The relaxation rates are proportional to the ratio of the 
nematic elastic constants Ki and viscosity coefficients 
ηβ qð Þ [23],  

1
τβ

qð Þ ¼
Kβq2

? þ K3q2
k

ηβ
q?
qk

� � (2) 

where q
k

and q
?

are the components of the wave vector 
parallel and perpendicular to the nematic director and 
Ki i ¼ 1; 2; 3ð Þ denote splay, twist and bend elastic con-
stants. The viscosity coefficients depend on the ratio 
q
?

q
k

as 
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η1 ¼ γ1 �
α2� α3

q?
qk

� �2� �2

ηcþ α1þα3þα4þα5ð Þ
q?
qk

� �2

þηb
q?
qk

� �4 (3) 

η2 ¼ γ1 �
α2

2

ηcþηa

q
k

qk

� �2 (4) 

where γ1 is the rotational viscosity, ηa;b;c are Miesowicz 
viscosities and αi i ¼ 1 � 5ð Þ are the Leslie viscosity 
parameters [23]. The q-dependent term in viscosities is 
due to the coupling between flow and nematic director, 
i.e. backflow, and reduces the viscosity coefficients of 
the fluctuation modes. It depends only on the ratio 

q
?

q
k

� �

and not on actual values of q. The pure twist 

viscosity η2 qk ¼ 0
� �� �

is not affected by the backflow 
and is equal to the rotational viscosity. Moreover, in 
calamitic nematic liquid crystals, the value of α3j j is 
much smaller than γ1 and ηc and, consequently, the 
pure splay viscosity, η1 qk ¼ 0

� �
¼ γ1 � α2

3=ηb, typically 
differs from γ1 by a few percent.

When an eigenmode of the fluctuations is thermally 
excited, there is a deformation of the nematic director 
which causes an increase in the free elastic energy 
density, 

fel ¼
1
2 K1 Ñ � nð Þ

2
þ 1

2 K2 n � Ñ� nð Þð Þ
2
þ 1

2 K3 n� Ñ� nð Þð Þ
2

(5) 

and, consequently, an elastic torque forces the director 
back in the equilibrium direction while a viscous torque 
opposes it. The expression for the relaxation rate 

(Equation 2. 2) reflects this torque balance. The 
numerator comes from elastic torques deduced from 
the elastic free energy (Equation 5. 5), while the denomi-
nator originates in the viscous torques obtained from 
the linearised Leslie Ericksen equations [23].

The average square amplitudes of the fluctuation 
modes, hδn0β

2i, can be calculated from Eq. 5 by using 
the equipartition theorem 

hδn0β
2i ¼ kBT

V Kβq2
?
þK3q2

k

� �
(6) 

Here V is the volume of the sample, kB Boltzmann 
constant and T temperature.

Effect of confinement
In an infinite sample, the spectrum of the fluctuations is 
continuous, i.e. all wave vectors are allowed, while in 
confined geometries it becomes discrete [38]. In 
a uniform nematic layer, the spectrum becomes discrete 
only in the direction perpendicular to the layer. For 
example, if backflow is not present, as is the case for 
the pure twist mode, the eigenmodes become sinusoidal 
standing waves with wave vectors that depend on the 
boundary conditions. For a layer spanning in z-direc-
tion from –d/2 to d/2, the pure twist mode becomes 
δn0β eiq2D�r2D þ c:c:ð Þ cosðqzzÞe� t=τβ with q2D and r2D 

being the wavevector and position in the xy plane, 
respectively. For strong boundary conditions, the 
allowed values of the wave vectors perpendicular to 
the layer are qz;twist ¼ Nπ=d N ¼ 1; 2 . . .ð Þ, where d is 
the thickness of the layer.

Figure 1. (Colour Online) Scheme of fluctuation eigenmodes in a nematic liquid crystal. Black arrows denote the wavevector q. In 
general, there are two branches - the splay-bend and twist-bend. When q is perpendicular to n0, they become pure splay and twist 
modes, and when q is parallel to n0, both modes become pure bend mode. The darker and lighter orange colours in twist cases denote 
the out of plane tilt of n with different signs, respectively.
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In the bulk, due to the coupling between flow and 
nematic director, an eigenmode of the director orienta-
tional fluctuations is accompanied by a flow eigenmode, 
which is also a plane wave, which in the space coordi-
nates is shifted for π/2 with respect to the corresponding 
director eigenmode, i.e. if a director fluctuation is 
described by cosðqm;zzÞ, flow is described by 
sinðqm;zzÞ. In a finite layer, such bulk solutions are not 
good solutions of nematodynamic equations, since they 
do not simultaneously satisfy the boundary conditions 
for the director δnjboundary ¼ 0 and flow vjboundary ¼ 0. 
This causes the dispersion relations of the eigenmodes 
to change in such a way that the crossings of the modes 
are avoided [39]. This will be discussed in more detail 
later.

Coupling to other (order) parameters
The nematic order parameter can be coupled to other 
physical quantities – also called secondary order para-
meters. In such cases, the number of director fluctuation 
modes increases. In the following, we will focus on 
systems in which the nematic order parameter is 
coupled to polarisation due to the flexoelectric effect. 
The fluctuation modes can be calculated from the free 
energy density, 

f ¼ fel � γSn Ñ � nð Þ � P � γBn� Ñ� nð Þ � P

þ
1
2

aP � Pþ
1
2

b ÑPð Þ
2 (7) 

Here, besides elastic free energy fel, the second and third 
terms describe the coupling between the splay and bend 
deformations and electric polarisation respectively, 
where γS and γB are bare splay and bend flexoelectric 
coefficients. The last two terms are the lowest by sym-
metry allowed terms in P and @Pi=@xj.

In the case of the phase transition from the nematic to 
the ferroelectric nematic phase, the pure splay fluctua-
tions (qk ¼ 0) are relevant. Here we will focus on this 
case. For that, we will assume that the polarization is 
parallel to the director, so P ¼ Pn. It is important to 
note here, that the free energy in Equation (7) : is written 
in the general form with P as a vector. Because P and 
n are parallel, only one vector is needed, which in our 
notation is n and it is mathematically a vector describing 
both, the nematic order parameter as Q ¼ S n� n � 1

3 I
� �

and polarization as P ¼ Pn. In such a notation, Q has 
inversion symmetry, while P does not. The symmetry of 
Q is already taken into account in the terms related to the 
nematic order parameter. Because we focus on the transi-
tion, only the lowest terms associated with P are included 
in Equation (7) because in the N phase hPi ¼ 0. This 
description is only good very close to the phase transition.

We assume that the director is homogeneously 
aligned along the x-axis and, consequently, the average 
<p> is zero. The fluctuations can be described by a small 
angle φ between the fluctuating director 
n x; tð Þ ¼ cos φ x; tð Þð Þ; 0; sin φ x; tð Þð Þð Þ and the average 
director n0, and normalized Pn = P/Pr., where Pr is an 
arbitrary normalization constant. The renormalized 
coefficients are: ar ¼ aP2

r ; γr ¼ γSPr; and br ¼ bPr. 
The free energy density (Eq. 7) expanded to 
the second order in φ and P simplifies to 

ffl ¼
1
2 arP2

r þ br
@Pn
@x

� �2
� 2γrPn

@φ
@x þ K1

@φ
@x

� �2
� �

(8) 

From which the linear coupled dynamic equations for φ 
and Pn follow 

η1
@φ
@τ ¼ K1

@2φ
@x2 � γr

@Pn
@x (9) 

ηP0

@Pn
@τ ¼ br

@2Pn
@x2 � γr

@φ
@x þ arPn (10) 

Here η1 is the effective splay orientational viscosity and 
ηP0 the dissipation coefficient for P. The two solutions of 
Eqs. 9 and 10 are: φ1;2 ¼ �φ01;02 sin qxð Þe� t=τ01;02 and 
P1;2 ¼ � P01;02 cos qxð Þe� t=τ01;02 , with the relaxation rates 

1
τ01;02
¼

brq2þarð Þη1þK1q2ηP0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
brq2þarð Þ

2η2
1� 2q2 brK1q2þK1ar � 2γ2

rð Þη1ηpþK2
1 q4η2

P0

p

2η1ηP0

(11) 

For small q they simplify to 

1
τ01
¼

K1�
γ2

s
a

η1
q2 (12) 

1
τ02
¼ a

ηP
þ b

ηP
þ

γ2
s

η1a

� �
q2 (13) 

Here, ηP ¼ ηP0P2
r .

The first mode is of a hydrodynamic type and is 
mainly a director mode. If the splay elastic constant is 
replaced by an effective elastic constant 

K1;eff ¼ K1 �
γs

2

a
(14) 

the relaxation rate Eq.(12) becomes identical to the 
relaxation rate of the splay fluctuations [23] with the 
splay elastic constant replaced by the effective one. This 
shows that in a usual measurement of the splay elastic 
constant by either dynamic light scattering (DLS) or by 
Frederiks transition, always the effective elastic constant 
Eq. (14) is measured. The second mode is of an optic 
type with a relaxation rate which is finite at q = 0 and 
this is the collective mode observed in the dielectric 
spectroscopy.

The average square amplitudes of the fluctuation 
modes can be calculated by using the equipartition 
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theorem. For small q the amplitudes of the director 
fluctuations are given as 

hφ2
01i ¼

kBT
VK1;eff q2 (15) 

hφ2
02i ¼

2kBTγ2η2
P0

Va3η2
1

q2 (16) 

Here V is the volume of the sample. The first mode is 
much slower and has a much larger amplitude, and is 
the one measured in DLS experiments. On the other 
hand, the average square amplitudes of the polarisation 
fluctuation modes at q = 0 are 

hP2
01i ¼

2kBTγ2

VK1;eff a2 (17) 

P2
02 ¼

2kBT
Va (18) 

In dielectric experiments, the modes at q = 0 and with 
finite relaxation rates are measured, which in our case is 
the second mode. That is, the amplitude of the collective 
mode measured in the dielectric spectroscopy is propor-
tional to hP2

02i [40] 

Δεk / hP2
02i /

1
a (19) 

In the Landau description of the ferroelectric phase 
transition the coefficient in the quadratic term of P is 
the inverse of the electric susceptibility. (Eq. 17) and 
(Eq.18) show that in our case, the contribution of the 
dielectric susceptibility that drives the ferroelectric 
phase transition is the second mode and 

a ¼ 1
ε0Δεk (20) 

where ε0 is the vacuum permittivity.
Similarly, for the pure bend mode (q? ¼ 0) in which 

flexoelectric polarization is perpendicular to n, and 
which is relevant for the transition to the NTB phase, it 
can be shown that for small q, relaxation rates corre-
sponding to pure bend are given by [41] 

1
τ01
¼

K3�
γ2

B
a

η3
q2 (21) 

1
τ02
¼ a

ηP
þ b

ηP
þ

γ2
B

η3a

� �
q2 (22) 

While the transition from N to NF phase can be well 
described by this model, the transition to the NTB phase 
is dominated by higher-order terms in elastic 
energy [9,13].

Experimental

Light scattering on fluctuations

The director fluctuations give rise to fluctuations of the 
dielectric tensor which cause strong scattering of light, 
i.e. the turbidity of the nematic phase. In linear theory, 
the director field can be written as a sum of a static part, 
n0, that describes the equilibrium configuration, and 
a small, time-dependent part δn r; tð Þ that describes 
thermal orientational fluctuations around the equili-
brium configuration. In frustrated confined geometries 
and around defects the static part n0 depends on posi-
tion; however, in this paper, we will discuss only the case 
of ordered nematic, where n0 is uniform (independent 
of r). In such a case, for a given scattering vector q, the 
scattered light amplitude depends on two independent 
Fourier components δn1 qð Þ and δn2 qð Þ of the Fourier 
transform of the director fluctuations, corresponding to 
the splay-bend and the twist-bend excitations as 
described in the previous section, respectively.

The optical dielectric tensor of a nematic liquid crys-
tal can be written as 

ε r; tð Þ ¼ ε?Iþ εan r; tð Þ � n r; tð Þ (23) 

where εa ¼ εe � εo with εe and εo the components of the 
optical dielectric tensor along (extraordinary) and per-
pendicular (ordinary) to the director. The fluctuations 
of the dielectric tensor are dominated by the orienta-
tional fluctuations of the nematic director, and their 
Fourier components can be written in the coordinate 
system defined above as functions of δn1 qð Þ and δn2 qð Þ

δeε q; tð Þ � εa

0 0 δn1 qð Þ
0 0 δn2 qð Þ

δn1 qð Þ δn2 qð Þ 0

2

4

3

5 (24) 

The best way to observe them is by dynamic light 
scattering (DLS). In DLS experiments, the intensity 
autocorrelation function is measured, which is con-
nected to the electric field autocorrelation function of 
the scattered light, G1 qs; tð Þ ¼ hEs qs; t0ð ÞE�s qs; t0 þ tð Þi

[42]. For weak scattering G1 qs; tð Þ is proportional to 
the dynamical structure function 

B i; ki ! f; kf ; t
� �

¼ k4
0δ~εif qs; t0ð Þδ~ε�if qs; t0 þ tð Þ (25) 

where i, f, ki and, kf are the polarisations and wave vectors 
of the incoming and scattered light and, qs ¼ kf � ki. For 
t ¼ 0, the electric field autocorrelation function is simply 
the intensity of the scattered light and Expression is the 
optical structure function. The measured component of 
the optical dielectric tensor is selected by the polariza-
tions, δ~εif qs; tð Þ ¼ f � δeε qs; tð Þ � i. The dynamic structure 
function is a time correlation function of the Fourier 
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component of the optical dielectric tensor with 
a wavevector corresponding to the scattering vector. In 
the systems where the eigenmodes of the fluctuations are 
plane waves, a given Fourier component therefore corre-
sponds to an eigenmode with the eigenvector equal to the 
scattering vector, q ¼ qs. Thus, in bulk nematic liquid 
crystals the direction of the scattering vector and the 
polarizations can be chosen so that either twist-bend or 
splay-bend mode is observed. In such a case, the electric 
field autocorrelation function obtained in the DLS experi-
ment is an exponentially decaying function with 
a relaxation rate equal to the relaxation rate (Eq. 2) of 
the chosen eigenmode of the orientational fluctuations.

The intensity of the scattered light Is;β from a given 
mode depends on the projections of the polarisations on 
the eigenaxes (Eq. 1), determined by the so-called geo-
metrical factor 

Sβ ¼ i � e3ð Þ f � eβ
� �

þ i � eβ
� �

f � e3ð Þ (26) 

where β ¼ 1; 2ð Þ, on the square of the optical anisotropy 
εa and on the amplitudes of the nematic fluctuations 

Is;β qð Þ /
εað Þ

2S2
β

Kβq2
?
þK3q2

k

(27) 

In bulk liquid crystals, the dynamical structure function 
is then proportional to 

B i; ki ! f; kf ; t
� �

/
P

β
Is;β qð Þe� t=τβ qð Þ

(28) 

with q ¼ kf � ki.

Dynamic light scattering experiments
A standard setup for DLS experiments consists of 
a frequency-doubled diode-pumped Nd:YAG laser 
(532 nm, 80 mW), a single-mode optical fibre to col-
lect the scattered light within one coherence area [43], 
a cross-correlation detector (e.g ALV APD), and 
a correlator (e.g. ELC-6010/160) to obtain the auto-
correlation function of the scattered light intensity. 
Based on Eq. (26) it is important to choose the direc-
tion and the polarization of the incoming and detected 
light so that pure modes can be observed. Two 

scenarios are particularly useful and are depicted in 
Figure 2. For a scattering geometry in which the 
director is in the scattering plane, and incoming and 
detected polarizations are selected orthogonal to the 
scattering plane and contained in it respectively 
(Figure 2(a)), it can be shown that S2

1 ¼ 0 at any 
angle and that for α ¼ 35� almost pure bend mode 
K3q2

k
=η2 can be detected. For the second depicted 

geometry, where the director is orthogonal to the 
scattering plane and incoming and detected polariza-
tions correspond to the ordinary and extraordinary 
components respectively, q2

k
¼ 0 at any detection 

angle, and at low scattering angles (α ¼ 2�) pure 
twist mode K2q2

k
=η2 is detected, while at larger angles 

(α ¼ 35�) is the pure splay mode K1q2
k
=η1 the one 

experimentally accessible. The intensity of the mea-
sured autocorrelation function g2 can be then fitted to 
g2 ¼ 1þ 2 1 � jdð Þjdg1 þ j2

dg2
1 , being jd the ratio 

between the intensity of the inelastically scattered 
light and the total scattered intensity. In the measure-
ments reported below for the comparison with DDM 
experiments in sections Classic nematic E7 and N-NF 
phase transition, g1 is taken as a single exponential 
function.

DDM and c-DDM
The orientational fluctuations are easily observed by 
polarised optical microscopy as the flickering character-
istic of the nematic phase. This flickering can be mea-
sured to extract information about the fluctuating 
modes. In the DDM, using a standard microscope with 
incoherent illumination, a sequence of near-field images 
is taken with a CCD or CMOS camera. From the inten-
sity of the image I(r2D,t) at pixel position r2D and time t, 
the image structure function can be calculated [24] 

F q2D;Δt
� �

¼ Δ~I q2D;Δt
� ��

�
�

�
�
�

2
� �

¼ 2 ~I q2D;0
� ��
�
�

�
�
�

2
� �

1 � gincoh
2ð Þ q2D;Δt
� �� �

(29) 

gincoh
2ð Þ q2D;Δt
� �

¼

~I� q2D;0
� �

~I q2D;Δt
� ��

�
�

�
�
�

D E

~I q2D;

� ��
�
�

�
�
�

2
� � (30) 

where Δ~I q2D;Δt
� �

is the difference between the 
two-dimensional Fourier transforms of the two 
images taken at a time difference Δt, and 

~I q2D;Δt
� �

¼ 1
2π

ððI
r2D;Δt
� �� iq2D�r2D dr2D with 

q2D ; qx; qy
� �

. The average h. . .i is taken over 
many statistically independent realisations of the 

Figure 2. (Colour Online) Dynamic light scattering geometries to 
gain experimental access to (a) pure bend (α ¼ 35�), (b) pure 
twist (α ¼ 2�) and pure splay (α ¼ 35�) modes.
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system, which in ergodic systems is the same as the 
average over time.

To model the measured image intensity, Giavazzi 
et al. [25] proposed to use the Nemoto-Streibl model 
of a microscope, for which the image on the camera in 
the weak scattering regime is written 

I r2D;t
� �

¼ I0 þ

ððð

dr02Ddz0K r2D � r02D; � z0
� �

δεif r02D; � z0; t
� �

(31) 

where K r2D; zð Þ is the transfer function of the micro-
scope that depends on the properties of the light source, 
condenser, objective and the orientation of the polariser 
and analyser. While I0 is the directly transmitted light, 
δεif r02D; � z0; t
� �

is the fluctuating part of a given com-
ponent of the optical dielectric tensor chosen by the 
polariser and analyser.

In a DLS experiment, well-defined wave vectors and 
polarisations of incoming and scattered light define the 
scattering vector q and the geometrical factors Sβ, which 
tell whether splay-bend or/and twist-bend mode con-
tribute and, if both modes contribute, which is the more 
pronounced. In DDM experiments, the incoming light 
is spatially incoherent, i.e. there is a distribution of wave 
vectors ki and kf of incoming and scattered light respec-
tively, and consequently, the scattered intensity 
~I q2D;Δt
� �

at a given 2D scattering vector q2D is 
a weighted sum over all possible combinations of ki and 
kf that correspond to that given q2D. The 3D scattering 
vectors that contribute to the detected intensity are in 
principle all that satisfy the condition: 
q ; q2D; qzð Þ ¼ kf � ki, which means that scattering 
processes with different qz contribute to the scattered 
intensity at a given q2D. However, the strength of the 
contribution of a given qz depends on the transfer func-
tion of the microscope. It has been shown that this leads 
to an expression for the image correlation function [25] 

gincoh
2ð Þ q2D;Δtð Þ ¼ A q2Dð Þ

ð

dqz ~K q2D; qzð Þ
�
�

�
�2

B i; ki ! f; kf ; t
� �

(32) 

Here, the intermediate scattering function from Ref [25] is 
replaced with a more general dynamic structure function 
(Eq. 25), and A q2Dð Þ is the normalization constant, 

A q2Dð Þ
� 1
¼ ò

d qz ~K q2D; qzð Þ
�
�

�
�2B i; ki ! f; kf ; 0
� �

. In Ref 
[25], it has been shown that for a process with 
B i; ki ! f; kf ; t
� �

¼ Ae� Dq2
z � Dxyq2 , the image correlation 

function gincoh
2ð Þ q2D;Δtð Þ � e� Dxyq2

2D , which effectively 
means the dynamics at qz ¼ 0 is probed as a function 
of q2D.

The applicability of DDM for the characterisation of 
the dynamics of bulk nematic liquid crystals has been 
demonstrated in Ref [33]. However, in DDM experi-
ments the liquid crystals are typically confined to layers 
with thicknesses from a few microns to a few tens of 
microns, which affects the measured gincoh

2ð Þ q2D;Δt
� �

in 
two ways. The first, described in [25], causes broadening 
of the weight ~K q2D; qzð Þ

�
�

�
�2; the second described in the 

section Effect of confinement causes discrete eigenvalues 
of fluctuating eigenmodes. As a result, the image corre-
lation function is a sum of a few eigenmodes with 
z-component of the eigenvector within the region 
where the weight ~K q2D; qzð Þ

�
�

�
�2 is significant (Figure 3).

Experimental details

Besides the weight in Eq. 32 the contribution of a given 
mode to the measured intensity depends also on its 
amplitude and geometrical factor as described by 
Eq. 27. In the following, we will focus on a nematic 
layer in a planar LC cell, with n0 oriented along the 
rubbing direction. In Figure 4, the dependence of the 
squares of the geometrical factors S1 and S2 are shown 
for two typical geometries. In the first, denoted by E10O 

Figure 3. (Colour Online) Weight functions for thicknesses (a) 20 μm, (b) 10 μm and (c) 2 μm. The discrete values of z-components of 
wavevectors corresponding to eigenmodes in confinement Nπ

d are denoted for each thickness by vertical dashed red lines.
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(E for extraordinary and O for ordinary polarization), the 
polarizer is at an angle of 10 degrees with respect to n0 
and the analyzer is perpendicular to n0. This geometry 
corresponds to the EO scattering geometry typical for 
DLS. The polarizer is uncrossed for 10 degrees, so that 
the detected signal with O polarization is mixed with 
directly transmitted O polarized light to achieve hetero-
dyning [42]. Calculation of the geometrical factors Sβ in 
this geometry allows to visualize the selection rules (Eq. 
26), showing that in the case of E10O geometry the twist- 
bend mode dominates. In the second geometry, EE, both 
the polarizer and analyzer are parallel to n0. It is chosen to 
probe the splay-bend mode. However, it should be noted 
that the values of S1 and S2 in this geometry are 

comparable and much smaller than in E10O geometry. 
That is why the twist-bend mode is also present and the 
splay-bend is dominant only in the region with small q?. 
The width of such a region depends on the thickness of 
the nematic layer, e.g. for a 20-micron thick the region is 
much narrower than for a 2-micron layer as shown in 
Figure 4. One should note here that the geometrical 
factors depicted in Figure 4 will directly determine the 
accessible modes via DDM only in those cases where 
elastic constants K1 and K2 are comparable. In cases in 
which elastic constants drastically change or differ, such 
as in the case of the transition to the ferroelectric nematic 
phase, the region of accessibility to splay-bend mode 
expands (Eq. 24) as will be discussed later.

Figure 4. (Colour Online) Selection rules for the (a) E10O and (b–c) EE geometries showing that in the first case, the twist-bend mode 
dominates, while for the second geometry splay-bend mode is only dominant the region of small q?. For EE geometry two cases are 
given: (b) a thin 2 μm thickness layer and (c) a thicker 20 μm one. P and a are the polarizer and analyser, respectively and n denotes the 
director.
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In the experiments, the c-DDM setup extensively 
described in Ref [32] was used. It consists of an infinity- 
corrected microscope objective with a 20× magnification, 
a 20 mm focal length tube lens followed by 
a beamsplitter, and two identical cameras (Flir BFS-U3 
-04S2CCS with 6.9 μm pixel size and 1/3 inch sensor). 
The precise alignment of the field of view of both cameras 
is achieved by aligning the cameras with an alignment 
ruler using translational and rotational mechanisms. 
Koehler illumination setup is used, consisting of 
a Thorlab’s M565L3 mounted phosphor-converted LED 
with a nominal wavelength of 565 nm and a bandwidth of 
100 nm. Cameras were triggered as described in reference 
[20] to acquire two different sets of images with varying 
times of acquisition. Camera exposure time was 21 µs, 
and we set the shortest time delay between two consecu-
tive frames on cameras to 250 µs. To calculate the nor-
malised image-cross-correlation function an open-source 
package cddm is used [44].

Systems

Classic nematic E7
In order to give a comprehensive overview of the per-
formance of DDM in confined nematic LC, the standard 
liquid crystal mixture E7 (Merck) was filled in planar 
cells with thicknesses 23.5, 10, 8.3, 5.6 and 1.9 microns. 
The c-DDM was performed on all samples at room 
temperature (23°C) in geometries depicted in Figure 4. 
The measured autocorrelation functions 
gincoh

2ð Þ q2D;Δtð Þ showed one relaxation, which was 
fitted by an exponential function A0e� Δt=τ þ y0. In 
Figure 5, the 2D dispersion relation, i.e. the dependence 
of the relaxation rates 1=τ on q2D, is shown.

E10O geometry. In this case, the relaxation rates 
along (qk), and perpendicular (q?) to n0 are indepen-
dent of the thickness. Confinement does not have an 
effect here because the accessible qz are determined by 
the incoming ki ¼ 0; 0; nek0ð Þ and outgoing 

kf ¼ q?; qk;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nok0ð Þ

2
� q2

? � q2
k

q� �
. For q?; qk � k0 

as characteristic of DDM, it follows 
q � q?; qk; εak0 � q2

? þ q2
k

� �
= 2nek0ð Þ

� �
, which means 

qz is much larger than π=d, so the discretization of the 
eigenmodes can be neglected. Here, ne and no are 
extraordinary and ordinary refractive index, 
respectively.

In this case for qk ¼ 0, the twist-bend relaxation rate 
(Eq. 2), simplifies to 

1
τ2
¼ K2

γ1
q2

eo þ
ne
no

q2
?

� �
: (33) 

Here qeo ¼ ne � noð Þk0 is determined by the optical aniso-
tropy of the material. From the fit, the 
diffusivity K2

γ1
¼ 4:2� 0:2ð Þ � 10� 11m2=s and 

qeo ¼ 2:1� 0:1ð Þμm� 1 are obtained (Figure 5(f)). For 
comparison, in Figure 5(f), the relaxation rates as measured 
by DLS in the same geometry are shown. The DLS values 
are larger because the wavelength of the laser (532 nm) is 
smaller than that of the LED used in c-DDM (565 nm) 
which causes the offset at q? ¼ 0 to be larger larger. If the 
DLS relaxation rates are shifted for 
K2
γ1

ne � noð Þ
2 2π

λlaser

� �2
� 2π

λLED

� �2
� �

, the values are very 

good agreement with those measured in the c-DDM.
Similarly, for q? ¼ 0, the twist-bend relaxation rate 

(Eq 2) can be rewritten 

1
τ2
¼ K2

γ1
q2

eo
1þa2

qk
qeo

� �2
þa4

qk
qeo

� �4

1þb2
qk
qeo

� �2

 !

: (34) 

a2 ¼ 2
ne

no
� 2þ

K3

K2
þ

ηc
ηa
;

a4 ¼
ne

no
� 1þ

K3

K2

� �
ne

no
� 1þ

ηc
ηa

� �

;

b2 ¼
ne

no
� 1þ

ηc
ηa
�

α2
2

γ1ηa 

In principle, by taking the values for K2
γ1

q2
eo and qeo from 

the fit of the q?- dependence (Equation 34. 34), there 
are only 3 parameters to the fit qk- dependence. 
However, for E7 these parameters are such that for the 
region of qk

qeo 
obtained in the experiment, they cannot be 

reliably determined.
In the EE geometry, there is a strong thickness depen-

dence whose sources are multifold. Firstly, the confine-
ment causes the eigenvalues to become discrete, which 
means that at qk ¼ 0 and q? ¼ 0, for strong anchoring 
the pure splay mode with qm;z ¼ π=d would be mea-
sured. The geometric factor S1 is zero in this case, how-
ever, in Figure 5(e) it can be seen that the relaxation 
rates indeed increase with decreasing thickness. 
Secondly, the coupling to flow causes changes in the 
eigenmodes, so that they are no longer plane waves [39], 
and, consequently, the dispersion relation, i.e. the 
dependence of the relaxation rates on q, can no longer 
be analytically expressed. It can only be calculated 
numerically when all the viscoelastic parameters are 
known. For 5CB, the numerical calculations have 
shown that the first eigenmode roughly corresponds to 
the slowest eigenmode, which for small qk is that with 
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Figure 5. (Colour Online) 2D dispersion curves as measured by c-DDM for classic nematic liquid crystal E7 in planar cells with different 
thicknesses in (a) E10O and (b) EE geometries. (c) and (d) dispersion curves along c) q? and d) qk axes for E10O geometry and (e) along 
qk axis for EE geometry. (f) the twist relaxation rate (E10O) as a function q2

? (blue circles) with linear fit (black line) and comparison 
with DLS (orange squares) and shifted DLS (green diamonds). (g) the splay bend relaxation rate (EE) as a function q2

k
(blue circles) and 

the rates for the first four modes calculated for bulk (orange lines).
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qm;z ¼ π=d, but with increasing qk the mode with 
qm;z ¼ 3π=d becomes slower, for even higher qk the 
one with qm;z ¼ 5π=d etc. [39]. Similarly, the second 
mode corresponds to a combination of even modes 
with qm;z ¼

2Nπ
d ; N ¼ 1; 2::ð Þ. In Figure 5(g), the disper-

sion of a few lowest modes as calculated from analytical 
expression for bulk (Equation 2) are shown together 
with measured dispersion. Thirdly, the contribution of 
the modes to the scattering intensity decreases with 
decreasing thickness which is a consequence of qm;z 
falling out of the region where the weight function is 
significant (Figure 3).

To sum up, in DDM experiments the E10O geo-
metry allows us to measure the twist bend mode 
and to determine the twist diffusivity. On the other 
hand, in the EE geometry for q? ¼ 0, the splay bend 

mode is observed; however, it is strongly affected by 
the confinement, which needs to be accounted for 
in the further analysis. The elongated shape of 2D 
dispersion curves in both geometries reflects two 
facts: that the K3 is larger than K2 and K1 and, 
additionally, that bend viscosity is reduced signifi-
cantly more by the backflow. Thus it is expected 
that any changes in ratios of elastic constants and/ 
or viscosity coefficients will change the shape of 2D 
dispersion curves.

N-NTB phase transition
DLS studies of nematic phases above the NTB transition 
revealed strong softening of bend fluctuations, which 
was attributed to the softening of bend elastic constant 
[3,9,45], and thus constitute an excellent system to 

Figure 6. (Colour Online) 2D dispersion curves in E10O geometry for (a) CB7CB and (b) KA(0.2) for different ΔT ¼ T � TN� NTB .

Figure 7. (Colour Online) Dispersion curves along (a) q? and (b) qk axes for CB7CB in the E10O geometry.
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evaluate the potentialities of the cDDM technique for 
the investigation of pretransitional behaviour in 
nematic phases. For this purpose, the liquid crystalline 
materials CB7CB (Merck) and the mixture KA(0.2) [3] 
filled in planar cells with thicknesses 20 μm and 25 μm, 
respectively, were studied by cDDM in the same scatter-
ing geometries as E7. In Figures 6–8, the 2D dispersion 
curves are shown, and, in both geometries and for both 
materials, there is a clear difference in comparison to E7 
(Figure 5).

E10O geometry. Away from the N to NTB phase transi-
tion, the shape of the 2D dispersion curve is similar to 
that measured in E7. The main difference is that it is less 

anisotropic, which can be attributed to the small aniso-
tropy of the elastic constants in the case of the dimers, 
i.e. the smaller value of K3 when compared with E7 
results in slower fluctuation rates in the qk direction. 
When approaching the phase transition, the shape of the 
2D dispersion changes – it becomes more diamond-like 
and, while in q? direction still shows q2 dependence, in 
qk direction it clearly deviates from it (Figure 7(a,b)). 
This diamond shape observed in both materials seems 
to be a characteristic pretransitional feature mirroring 
a specific combination of elastic and viscous coeffi-
cients. The latter to our best knowledge have not been 
measured in this system. From DLS experiments, in 
principle, viscosities of pure twist, bend and splay 

Figure 8. (Colour Online) Examples of the correlation function for KA(0.2) at T � TN� NTB ¼ 0:2K in EE geometry (a) in the region with 
one mode and b) two modes. Lines are the fits to a) single and (b) double exponential functions.

Figure 9. (Colour Online) 2D dispersion curves in EE geometry for CB7CB for a) mode 1 and b) mode 2 for different ΔT ¼ T � TN� NTB .
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mode can be measured, but this is not sufficient to 
determine all 5 independent Leslie viscosities.

EE Geometry. Here, the shape of the 2D dispersion 
curve strongly deviates from that in E7 (see Figures 9 
and 10), even at temperatures 10 degrees above the N- 
NTB transition, showing slow relaxation rates in the qk
direction. This is mainly a consequence of the small K3 
value. Additionally, at small qk, where scattering the 
amplitudes of the splay-bend and twist-bend modes 
are very small, another faster relaxation is observed, 
which was more pronounced in the CB7CB case. Thus, 
the correlation functions in that region were fitted by 
two exponential decay (Figure 8). The 2D dispersion 

curves for both modes are shown in Figures 9 and 10, 
where the faster relaxation is denoted by mode 2.

To elucidate the nature of this faster relaxation, we 
checked other scattering geometries and found that it is 
present also in the OO geometry (where both polariser 
and analyser are perpendicular to n), in which the splay- 
bend and twist-bend geometric factors S1 and S2 are 0 
and no signal is expected. However, in the OO geometry 
clear signal is detected with the measured 2D dispersion 
curve being symmetric, i.e. it depends on the value of 
q2D but not on its direction (Figure 11(a)). The values 
match those measured for mode 2 in EE geometry 
(Figure 11(b)). To obtain the relaxation rate at 
q2D ¼ 0, the dispersion curves of mode 2 in q?direction 

Figure 10. (Colour Online) 2D dispersion curves in EE geometry for KA(0.2) for (a) mode 1 and (b) mode 2 for different 
ΔT ¼ T � TN� NTB .

Figure 11. (Colour Online) (a) 2D dispersion curve in OO geometry for CB7CB. (b) comparison of the dispersion curves along qk and q?
axes in OO geometry and EE geometry. (c) Temperature dependence of the offset of the dispersion curve of mode 2 at q2D ¼ 0.
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were fitted with a quadratic function. In the measured 
temperature range (0–10 K above the N-NTB phase 
transition) it doesn’t exhibit any significant temperature 
dependence ((Figure 11(c)) and, additionally, it is also 
observed below the phase transition.

In the OO and partially in the EE geometries, the 
diagonal elements of the optical dielectric tensors 
(Eq. 23) are probed. These components depend on the 
scalar order parameter S and, if present, on the biaxiality 
B of the system. The biaxiality fluctuations could origi-
nate from the bend flexoelectric coupling as discussed in 
Section Coupling to other (order) parameters. The polar-
ization in such a case would be replaced by shape polar-
ity (as also discussed by Longa et al. [10]), and the 
relaxation rate at q2D ¼ 0 would be equal to a=ηP, 
where a is the Landau parameter (Eq. 22). If the emer-
ging polar order is the driving mechanism for the N- 
NTB phase transition, then a ¼ a0 T � T�N� NTB

� �
, which 

would result in the slowing down of the mode when 
approaching the phase transition. Additionally, for 
molecules having a nonzero component of the dipole 
moment perpendicular to the long axis, this mode 
would be also seen in dielectric spectra as a collective 
mode at the frequency around 0.2–0.3 kHz. This has not 
been observed in CB7CB, however, in this frequency 
regime in dielectric spectroscopy there are other con-
tributions to the spectra arising from conductivity and 
electrode polarisation effects. Another possibility is that 
the origin of mode 2 is connected to the fluctuation of 
the scalar order parameter. This question remains open 
to further investigation.

N-NF phase transition. DLS studies of the nematic 
phase above the N-NF transition revealed strong pre-
transitional softening of splay fluctuations, which was 
attributed to the softening of the splay elastic constant 
[20,21]. Here we compare DLS results with the accessi-
ble pretransitional behaviour via cDDM measurements. 
For that, we investigated RM734 confined in 20 μm cell 
(Instec) with antiparallel rubbing.

In Figure 12(a) the 2D dispersion curves measured 
EO10 geometry are shown. In this geometry for K1 larger 
than K2, the twist bend mode dominates in almost the 
entire range of q2Ds (Figure 4(a)). However, for RM734, 
in the region of larger q?, it can be clearly seen how the 
dispersion curve gets broader with decreasing tempera-
ture reflecting a significant slowing down of the relaxa-
tion rates in that region of qs. If one takes into 
consideration a decreasing splay elastic constant, then it 
follows that the ratio between the scattering amplitudes 
K2
K1

S1
S2

� �2 
in this region is increasing and, consequently, at 

this larger qs mostly the splay-bend mode contributes, 
while at small q? the twist-bend still dominates. That is 
the reason why in Figure 12(b) for ΔT ¼ 1:3K and 0:3K 
there is an increase of relaxation rate when q? approaches 
zero. The splay diffusivity was calculated by averaging 

1
τ

q2
eoþ

ne
noq2
?ð Þ

in the region qk ¼ 0; q? > 2μm� 1, while the 

twist was obtained by 
1
τ0

q2
eoð Þ

, where 1
τ0 is the value at 

qk ¼ 0; q? ¼ 0 and was determined by fitting the middle 
part (from 0.5 μm� 1 to 0.5 μm� 1) of qk-dependence 

Figure 12. (a) 2D dispersion curves at E10O geometry for RM734 at 3 selected temperatures above phase transition. The values above 
graphs are ΔT ¼ T � TNNF . (b) and (c) show the dispersions along q? and qk axes. (d) comparison of the splay and the twist diffusivities 
measured by c-DDM and DLS.
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(Figure 12(c)) by a quadratic function. In Figure 12(d) the 
temperature dependence of so obtained values is com-
pared to those measured in the DLS experiments. The 
agreement is considerably good showing that at 
q? > 2μm� 1 indeed splay-bend mode dominates.

Conclusions and outlook

The presented examples demonstrate the usability of 
DDM techniques for the investigation of nematic 
liquid crystalline systems. While its principle is similar 
to DLS, the methods are complementary. DLS is more 
sensitive and it can access faster dynamics at higher 
values of q. The strength of DDM is that it is 
a microscopy technique, which allows imaging of the 
part of the sample that is measured, which is particu-
larly important when there are defects or impurities 
present which affect the system’s dynamics. A huge 
advantage is also that in a single measurement correla-
tion functions at many q are measured and the shape 
of the 2D dispersion curve gives information about the 
distinctive properties of the system and its symmetry. 
For example, in the case of the NF phase, it has been 
shown that one can clearly distinguish the π-twist 
domains with different chirality [37]. The DLS mea-
surements at small qs are often challenging because of 
the static scattering, and this is not an issue for the 
DDM. Our study of the nematic phase of dimeric 
materials also pointed out that modes corresponding 
to fluctuation of scalar order parameter or biaxiality 
(when sufficiently strong) can be detected by 
the DDM.
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