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Abstract  10 

This paper studies the acoustic wave scattering and attenuation in a cylindrical waveguide with wall 11 

roughness varying along all three dimensions and roughness height smaller than the acoustic 12 

wavelength. Using the decomposition of the acoustic wave field into deterministic and random 13 

components, small perturbation method and Fourier transform the analytical solution of a 3-D 14 

averaged acoustic wave field is obtained. The correction term describing the mechanism of wave 15 

attenuation caused by roughness and determined by the modal cross-talk is also derived. The solution 16 

for the plane wave is validated in the frequency range extended well beyond the second cut-off 17 

frequency, where the crosstalk between the fundamental and non-axisymmetric modes are observed. 18 

The analytical solution is compared with the numerical results obtained with the Monte-Carlo method 19 

and Finite Element solver. The numerical study results have demonstrated a close agreement with the 20 

analytical solution for the averaged sound field, dispersion curves, and the wave attenuation effect 21 

expressed as the wavenumber correction term. A key novelty of this work is a comprehensive analysis 22 

of wave dispersion and cut-off frequency changes due to the presence of 3-D wall roughness. 23 

I. Introduction 24 

The impact of boundary randomness on wave behaviour holds paramount importance in both physical 25 
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and mathematical contexts, particularly with regards to non-dispersive and dispersive waves, such as 26 

those exhibited by seismic, electromagnetic, acoustic, and water waves [1]. Wall roughness effects on 27 

the acoustic wave propagation has been studied extensively going back to the Lord Rayleigh’s work 28 

[2] on wave scattering by a small (compared to the wavelength) periodic grating. The small 29 

perturbation method (SPM) was developed [2] and then extensively applied in other research on 30 

random rough surfaces (e.g. roughness effects on acoustic scattering [3] and electromagnetic 31 

scattering [4]). Another classical method for the analysis of the surface roughness effect is the 32 

Kirchhoff Approximation (KA) that assumes that the local wave field is the sum of the incident field 33 

and field reflected by the local tangential plane [5, 6]. A more detailed overview of the SPM and KA 34 

methods is provided by Ogilvy [7]. Other related methods e.g. small slope approximation [8] and 35 

parabolic equation [9], are reviewed by more recent authors [10, 11].  36 

Wall roughness effects in a multimodal acoustic waveguide can be complicated and challenging to 37 

predict. For a relatively small wall roughness (compared to acoustic wavelength) the SPM can be used 38 

effectively to analyse the random wave field. For example, Bass et al [12] investigated the average 39 

field in a statistically irregular waveguide using SPM and Green’s function method. Maximov et al 40 

[13] applied SPM to study the attenuation and scattering of axisymmetric modes in a fluid-filled 41 

round pipe with internally rough walls, where the averaged scattered filed and dispersion relations are 42 

presented. A mode coupling solution can also be obtained using SPM as discussed by Brasier et al 43 

[14]. Maradudin et al [15] used small perturbation method to predict the attenuation coefficient of 44 

Rayleigh waves on flat surfaces due to surface roughness. Krynkin et al [16] used the perturbation 45 

method and Fourier analysis to derive the approximation of attenuation of the propagating mode in a 46 

2-D rough waveguide. The approximation proposed in [16] has been applied to analyse the wave 47 

scattering due to dynamically rough surface of the turbulent flow in a partially filled circular pipe [17]. 48 

Apart from the research work in acoustic wave, perturbation technique has also been used to study 49 

water waves (e.g. Ref. [1]) to show that random component in the scattered wave field contributed a 50 

linear term with complex coefficient to an evolution equation in a nonlinear context.  51 

Little research has been done to study the separate effects of the axial and circumferential random 52 
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roughness patterns on the wall of a round pipe, i.e. acoustic wave propagation in a waveguide with the 53 

wall roughness varied along all the three dimensions. This pattern of roughness is of particular interest 54 

when acoustic waves are used for sensing and communication in pipes which are air-filled (drainage 55 

pipes) or pipes partially filled with water, e.g. in sewers [18]. The presence of autonomous robot [19] 56 

[20] [21] provides the possibility and capability of carrying the acoustic sensors for the quantification 57 

of surface roughness for condition monitoring and maintenance in pipes.  58 

In this paper, SPM and stochastic approach [16] is applied to a 3-D cylindrical waveguide model to 59 

account for both the axial and angular patterns in the wall roughness. The plane wave analysis in the 60 

previous study (Ref. [16]) was presented as an example in the frequency range below the first cut-off 61 

frequency. The small roughness induces the acoustic wave attenuation along the axial direction of the 62 

pipe, which may not be observable/measurable below the cut-off frequency with a relatively short 63 

propagation distance (<10% amplitude attenuation after travelling distance at 50 times radius of the 64 

pipe). To the best of our knowledge, the wave dispersion changes due to the scattering from surface 65 

roughness have never been studied analytically in a cylindrical acoustic waveguide. The main novelty 66 

of this paper is:  (i) derivation of the correction term explaining the shift in the cut-off frequencies and 67 

the wave dispersion curves due to the roughness; (ii) the analytical expression predicting both 68 

forwards and backwards waves propagating in the pipe with rough walls; (iii) analytical and 69 

numerical analysis of the plane wave in the frequency range extended beyond the first/second cut-off 70 

frequencies demonstrating the cross-modal effects caused by roughness. 71 

This paper is organised as follows. Section II derives the analytical approximation for the eigen-value 72 

problem of a cylindrical pipe with Gaussian roughness wall. This includes Section IIA, where 73 

roughness is assumed to be small compared to the wavelength, and the scattered wave field is 74 

composed of deterministic (averaged) and random components. In Section IIB, the random and 75 

averaged solutions are defined at the waveguide wall by using the Neumann boundary conditions. In 76 

Section IIC, the perturbed Helmholtz equation and boundary conditions are solved to predict the 77 

eigen-values. Fourier transform is used in the axial domain to account for the statistical properties of 78 

the wall roughness. Section IID, discusses the eigen-value correction for plane wave mode in the 79 
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frequency below the first eigen-frequency. Sections IIE and IIF are used to extend the frequency 80 

range to the second and third eigen-frequency, respectively. Section III assesses the analytical model 81 

using the Finite Element Method (FEM) validation. The wave scattering effect is presented using the 82 

wave dispersion plot in Section IIIA. The wave attenuation of the average plane wave field is 83 

discussed in Section IIIB where the numerical method using a finite element model (FEM) is 84 

compared with the analytical model.  Section IIIC provides the correction term results of the 85 

wavenumber of plane wave mode from analytical and numerical predictions. 86 

 87 

II. Approximations 88 

The acoustic field in a cylindrical pipe with radius R is the solution of the wave equation written in 89 

cylindrical coordinates (𝑟, 𝜃, 𝑧). A cylindrical pipe with rough surface, cylindrical coordinate system 90 

and the axes orientation are illustrated in Figure 1. Assuming that these waves are propagating in a 91 

motionless acoustic medium with density 𝜌 and speed of sound c, the Helmholtz equation is:   92 

where ∆= 1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝜕𝑟) + 1𝑟2 𝜕2𝜕𝜃2 + 𝜕2𝜕𝑧2   is the Laplacian operator in cylindrical coordinates, 𝑘 = 𝜔/𝑐 is 93 

the acoustic wavenumber in the free field, 𝜔  is the angular frequency and 𝑝  is the frequency 94 

dependent sound pressure in the pipe. Note that the time harmonic dependence exp (−𝑖𝜔𝑡) is assumed 95 

throughout the paper.  96 
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 97 

∆𝑝 + 𝑘2𝑝 = 0, (1) 
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Figure 1. Cylindrical pipe with (a) smooth and (b) rough surface, 𝜂 denotes the rough surface  98 

Assuming that the stochastically rough surface of the pipe wall can be described by a dual-variable 99 

real roughness elevation function 𝜂(𝜃, 𝑧)  (see Figure 1b), which belongs to the sample space 100 

described by the Gaussian distribution with standard deviation 𝜎 and correlation length l. Gaussian 101 

distribution assumption for the rough wall in pipes has been studied and applied extensively e.g. [22] 102 

and observed naturally for real surfaces, e.g. [23, 24]. The mean value of 𝜂(𝜃, 𝑧) is set to zero which 103 

can be expressed as the first moment of the given probability distribution [16]: 104 

where 𝑤(𝜂, 𝜃, 𝑧) is the probability density function of the randomly rough surface.  105 

Random rough surfaces are also characterised by spatial correlation. This can be understood 106 

intuitively that at any arbitrary position of the rough pipe surface patterns are related within the 107 

correlation radius and become independent at distance bigger than the correlation length. The second 108 

moment of the probability distribution that is defined by the dimensionless correlation function: 109 

with lim|𝑧1−𝑧2|→∞𝑊(𝜃1, 𝜃2, 𝑧1, 𝑧2) = 0. 110 

The Neumann boundary conditions are imposed on the waveguides wall, yielding [25]: 111 

where 𝒏 = 𝑛𝑟𝒓 + 𝑛𝜃𝜽 + 𝑛𝑧𝒛 denotes the unit normal vector to the surface (see Figure 1b), 𝒓,  𝜽, 𝒛 112 

are the base unit vectors of cylindrical coordinates, and 𝛁 = ( 𝜕𝜕𝑟 , 𝜕𝑟𝜕𝜃 , 𝜕𝜕𝑧) is the gradient in cylindrical 113 

coordinates. It is assumed here that the rigid pipe is filled with gas (e.g. air) with the characteristic 114 

acoustic impedance much smaller than that of the pipe wall. For example, the characteristic acoustic 115 

impedance of air is 1.29 kg/m ×  343 m/s. It is almost 4 orders of magnitude smaller than the 116 

�̅�(𝜃, 𝑧) = ∫ 𝜂(𝜃, 𝑧)𝑤(𝜂, 𝜃, 𝑧)∞
−∞ 𝑑𝜂 = 0, (2) 

𝑊(𝜃1, 𝜃2, 𝑧1, 𝑧2) = 𝜂(𝜃1, 𝑧1)𝜂(𝜃2, 𝑧2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= ∫ 𝜂(𝜃1, 𝑧1)𝜂(𝜃2, 𝑧2)𝑤(𝜂1, 𝜃1, 𝑧1; 𝜂2, 𝜃2, 𝑧2)∞

−∞ 𝑑𝜂1𝑑𝜂2, (3) 

(𝒏 ∙ 𝛁)𝑝 = 0, (4) 
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characteristic impedance of a PVC pipe 1330 kg/m3 × 2400 m/s. The vector 𝒏 (see Figure 1b) defined 117 

in the boundary conditions Eq. (4) can be expressed as: 118 

where 𝜂𝜃 = 𝜕𝜂 𝜕𝜃⁄ , 𝜂𝑧 = 𝜕𝜂 𝜕𝑧⁄ . 119 

Therefore, the boundary condition on the pipe wall (Eq. (4)) can be expressed as: 120 

 121 

A. Deterministic and random wave fields 122 

The presence of a stochastically rough wall in the waveguide generates random components in the 123 

wave solution of Eq. (1). Therefore, it is assumed that the solution can be decomposed into the 124 

averaged pa and random pr components [16]: 125 

Note that the statistical averaging of the solution p gives �̅� = 𝑝𝑎 and 𝑝𝑟̅̅ ̅ = 0. 126 

The Helmholtz equation (Eq. (1)) for sound field in the pipe with a randomly rough wall can be 127 

written as: 128 

Eq. (8) can be decomposed into two separate equations [16]: 129 

𝒏 = 1√𝜂𝜃2𝑟2 + 1√𝜂𝑧2 + 1𝒓 +
−𝜂𝜃𝑟√𝜂𝜃2𝑟2 + 1√𝜂𝑧2 + 1𝜽 +

−𝜂𝑧√𝜂𝑧2 + 1𝒛, (5) 

( 1√𝜂𝜃2𝑟2 + 1√𝜂𝑧2 + 1
𝜕𝜕𝑟 − 𝜂𝜃𝑟√𝜂𝜃2𝑟2 + 1√𝜂𝑧2 + 1

𝜕𝑟𝜕𝜃 − 𝜂𝑧√𝜂𝑧2 + 1 𝜕𝜕𝑧) 𝑝 = 0. (6) 

𝑝 = 𝑝𝑎 + 𝑝𝑟 . 
 

(7) 

[1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝜕𝑟) + 1𝑟2 𝜕2𝜕𝜃2 + 𝜕2𝜕𝑧2] (𝑝𝑎 + 𝑝𝑟) + 𝑘2(𝑝𝑎 + 𝑝𝑟) = 0. 
 

(8) 

[1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝜕𝑟) + 1𝑟2 𝜕2𝜕𝜃2 + 𝜕2𝜕𝑧2] 𝑝𝑎 + 𝑘2𝑝𝑎 = 0, (9) 
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In this paper it is assumed that the standard deviation 𝜎 of the surface roughness is much smaller than 130 

the radius of the smooth pipe 𝑅 which is true in most practical cases, e.g. in buried metal, clay and 131 

concrete pipes used to convey water. Therefore, a non-dimensional factor [16] can be defined as: 132 

with  133 

Note that the dimensionless coordinates, wavenumber, sound pressure and wall roughness used in this 134 

paper are: 135 

respectively. For the convenience of expressions, the star is omitted in the following narratives of this 136 

paper. 137 

In this paper it is also assumed that the standard deviation 𝜎 of the surface roughness is relatively 138 

smaller than the acoustic wavelength 𝜆, i.e. 
𝜎𝜆 ≪ 1. The random component of the sound pressure 139 𝑝𝑟  should be of order 𝜖 that links it with the first order moment introduced in Eq. (2), i.e. [16]  140 

Due to the scattered wave field in the presence of the rough surface, the averaged solution 𝑝𝑎 can be 141 

expressed as [16]: 142 

[1𝑟 𝜕𝜕𝑟 (𝑟 𝜕𝜕𝑟) + 1𝑟2 𝜕2𝜕𝜃2 + 𝜕2𝜕𝑧2] 𝑝𝑟 + 𝑘2𝑝𝑟 = 0. 
 

(10) 

𝜖 = 𝜎/𝑅 ≪ 1, 
 

(11) 

𝜎 = √𝜂(𝜃, 𝑧)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
 

(12) 

𝑟∗ = 𝑟𝑅 , 𝑧∗ = 𝑧𝑅 , 𝑘∗ = 𝑘𝑅, 𝑝∗ = 𝑝𝜌𝑐2 , 𝜂∗ = 𝜂𝜎.      
(13) 

𝑝𝑎 = 𝒪(1), 𝑝𝑟 = 𝒪(𝜖). 
 

(14) 

𝑝𝑎 = 𝑝𝑎(0) + 𝜖2𝑝𝑎(2) + 𝒪(𝜖4), (15) 
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where 𝑝𝑎(0) and 𝑝𝑎(2) denote the averaged solution for the smooth pipe and the small perturbation term, 143 

respectively. The second order smallness 𝜖2𝑝𝑎(2) is related to the variance of the surface 𝜎2 and the 144 

correlation function (see Eq. (3)). Using Eqs. (7), (14) and (15), the general solution for 𝑝 can be 145 

expressed as [16]: 146 

where  147 

B. Boundary condition 148 

In the vicinity of the rough surface, 𝑟 = 1 + 𝜖𝜂(𝜃, 𝑧) , the general solution for (7) can be 149 

approximated as [16]: 150 

where r runs from the centre of the pipe as shown in Figure 1. Substituting Eqs. (16)-(18) in Eq. (6), 151 

the boundary condition can be given by: 152 

 153 

In order to predict the averaged solution 𝑝𝑎(0), 𝑝𝑎(2) associated with the boundary condition Eq. (19), 154 

the statistical averaging is used here (Eq. (2)). Collecting the terms of the same order of magnitude, 155 

Eq. (19) can be rewritten as: 156 

 

𝑝 = 𝑝𝑎(0) + 𝜖𝑝𝑟(1) + 𝜖2𝑝𝑎(2) + 𝒪(𝜖3), 
 

(16) 

𝑝𝑎(0) = 𝒪(1), 𝑝𝑟(1) = 𝒪(1), 𝑝𝑎(2) = 𝒪(1). 
 

(17) 

𝑝(𝑟, 𝜃, 𝑧) = [𝑝 + 𝜖𝜂 𝜕𝜕𝑟 𝑝 + 12 𝜖2𝜂2 𝜕2𝜕2𝑟 𝑝 + 𝒪(𝜖3)]𝑟=1, (18) 

( 1√𝜂𝜃2𝑟2 + 1√𝜂𝑧2 + 1
𝜕𝜕𝑟 − 𝜂𝜃𝑟√𝜂𝜃2𝑟2 + 1√𝜂𝑧2 + 1

𝜕𝑟𝜕𝜃 − 𝜂𝑧√𝜂𝑧2 + 1 𝜕𝜕𝑧) (1 + 𝜖𝜂 𝜕𝜕𝑟
+ 12 𝜖2𝜂2 𝜕2𝜕𝑟2)(𝑝𝑎(0) + 𝜖𝑝𝑟(1) + 𝜖2𝑝𝑎(2)) = 0 ,      for  𝑟 = 1. 

(19) 
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The mixed derivatives 
𝜕2𝑝𝑎(0)𝜕𝑟𝜕𝜃  and 

𝜕2𝑝𝑎(0)𝜕𝑟𝜕𝑧  are ignored in the derivation of Eqs. (20), (21) and (22) for 157 

reasons similar to those described in Ref. [16] (Eqs. 23-25). Compared with the boundary conditions 158 

from Ref. [16] (Eqs. 23-25), this paper discusses the 3D boundary condition including the angular 159 

term (the first term at the right side of Eqs. (21) and (22)).  160 

C. Modal eigen-values 161 

In order to find the eigen-value solution for the averaging sound pressure, the 2-D Fourier transform is 162 

applied in the axial wave propagation direction (z-axis): 163 

where 𝜉 is the wavenumber associated with the acoustic wave propagation in the z-direction, the hat 164 

symbol  ̂  denotes the Fourier transform applied in the following text. The Fourier integration 165 

implemented along the z- and 𝜃- axis can be referred to as averaging along the axis and circumference 166 

of the pipe. This can be beneficial for the introduction of statistical feature into the solution. 167 

Convergence of the Fourier integrals is required before the Fourier transform. In this paper, Gaussian 168 

distribution is used for the realization of the surface roughness, resulting in the integrals existence in 169 

the sense of probabilistic convergence that corresponds to the decay of the correlation function at 170 

infinity [16].  171 

It makes sense to separate the variables in the sound pressure, i.e. 𝑝 (𝑟, 𝜃, 𝑧) = ℛ(𝑟)Θ(𝜃)𝒵(𝑧). The 172 

Fourier transformed Helmholtz equation can be simplified to the Bessel equation: 173 

𝜖0 :        𝜕𝑝𝑎(0)𝜕𝑟 = 0,                                                                     for 𝑟 = 1; (20) 

𝜖1 :        𝜕𝑝𝑟(1)𝜕𝑟 = 𝜂𝜃 𝜕𝑝𝑎(0)𝜕𝜃 + 𝜂𝑧 𝜕𝑝𝑎(0)𝜕𝑧 − 𝜂 𝜕2𝑝𝑎(0)𝜕𝑟2 ,             for 𝑟 = 1; (21) 

𝜖2 :        𝜕𝑝𝑎(2)𝜕𝑟 = 𝜂𝜃 𝜕𝑝𝑟(1)𝜕𝜃 + 𝜂𝑧 𝜕𝑝𝑟(1)𝜕𝑧 − 𝜂 𝜕2𝑝𝑟(1)𝜕𝑟2 − 12𝜂2 𝜕3𝑝𝑎(0)𝜕𝑟3 .             for 𝑟 = 1.  (22) 

�̂�(𝑟,𝑚, 𝜉) = ∫ ∫ 𝐹(𝑟, 𝜃, 𝑧)𝑒−𝑖𝑚𝜃𝑑𝜃𝑒−𝑖𝜉𝑧𝑑𝑧2𝜋
0

∞
−∞ , (23) 

[ 𝑑2𝑑𝑟2 + 1𝑟 𝑑𝑑𝑟 + (𝑘𝑟2 −𝑚2𝑟2 )] ℛ̂𝑎(𝑟) = 0, (24) 
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where 𝑘𝑟2 = 𝑘2 − 𝜉2 . ℛ̂𝑎(𝑟) and ℛ̂𝑟(1)(𝑟) are associated with the radial components of the sound 174 

pressure �̂�𝑎and �̂�𝑟(1), respectively. It is assumed that the Fourier parameter 𝜉 is the perturbed eigen-175 

value 𝜉𝑚𝑛 of mode (m, n) (𝑚, 𝑛 ∈ ℤ) in the pipe with the smooth wall:  176 

where 𝑘𝑚𝑛,22 = −2𝜉𝑚𝑛,2𝜉𝑚𝑛 and 𝑘𝑚𝑛2 = 𝑘2 − 𝜉𝑚𝑛2 , 𝑘𝑚𝑛 is the nth root of 𝐽�̇�(𝑘) = 0, which stands for 177 

the cross-sectional eigen-value of mode (m, n) of the pipe with a smooth wall. On the contrary, the 178 

Fourier parameter in Eq. (25) can take any value along the integration path of real axis.  179 

Substituting the expansion of Eq. (26) into Eq. (24), and collecting the same order terms in averaged 180 

Eq. (24) gives: 181 

Using the Fourier transform, the boundary conditions (Eqs. (20)(21)(22)) can be rewritten as: 182 

Using the boundary condition (Eq. (29)) and the Bessel differential equation (Eq. (27)), the 183 

unperturbed solution �̂�𝑎(0) for mode (m, n) can be given as [25]: 184 

 

[ 𝑑2𝑑𝑟2 + 1𝑟 𝑑𝑑𝑟 + (𝑘𝑟2 −𝑚2𝑟2 )] ℛ̂𝑟(1)(𝑟) = 0, (25) 

𝜉 = 𝜉𝑚𝑛 + 𝜖2𝜉𝑚𝑛,2 + 𝑂(𝜖4)  and  𝑘𝑟2 = 𝑘𝑚𝑛2 + 𝜖2𝑘𝑚𝑛,22 + 𝑂(𝜖4), (26) 

[ 𝑑2𝑑𝑟2 + 1𝑟 𝑑𝑑𝑟 + (𝑘𝑚𝑛2 −𝑚2𝑟2 )] ℛ̂𝑎(0) = 0, (27) 

[ 𝑑2𝑑𝑟2 + 1𝑟 𝑑𝑑𝑟 + (𝑘𝑚𝑛2 −𝑚2𝑟2 )] ℛ̂𝑎(2) = −𝑘𝑚𝑛,22 ℛ̂𝑎(0). (28) 

𝜖0 :  𝜕�̂�𝑎(0)𝜕𝑟 = 0,                                                                                                       for 𝑟 = 1; (29) 

𝜖1 :  𝜕�̂�𝑟(1)𝜕𝑟 = ∫ ∫ (𝜂𝜃 𝜕𝜕𝜃 + 𝜂𝑧 𝜕𝜕𝑧 − 𝜂 𝜕2𝜕𝑟2)𝑝𝑎(0)𝑒−𝑖𝑚𝜃𝑑𝜃𝑒−𝑖𝜉𝑧𝑑𝑧2𝜋
0

∞
−∞ ,   for 𝑟 = 1; (30) 

𝜖2 :  𝜕�̂�𝑎(2)𝜕𝑟 = ∫ ∫ [(𝜂𝜃 𝜕𝜕𝜃 + 𝜂𝑧 𝜕𝜕𝑧 − 𝜂 𝜕2𝜕𝑟2)𝑝𝑟(1)2𝜋
0

∞
−∞
− 12𝜂2 𝜕3𝜕𝑟3 𝑝𝑎(0)] 𝑒−𝑖𝑚𝜃𝑑𝜃𝑒−𝑖𝜉𝑧𝑑𝑧 , for 𝑟 = 1. (31) 
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where 𝜉𝑚𝑛 = √𝑘2 − 𝑘𝑚𝑛2 , 𝑚, 𝑛 ∈  ℤ, 𝐴𝑚𝑛 is the modal amplitude which corresponds to the acoustic 185 

excitation with a particular source. 186 

Using the deterministic eigen-value from Eq. (26), the leading order averaged solution can be 187 

represented by: 188 

The inverse Fourier transform can also be applied to the random component 𝑝𝑟(1)  which can be 189 

expressed as: 190 

Substituting Eqs. (33)-(34) into Eqs. (30)-(31), respectively, the boundary conditions (30)-(31) can be 191 

rewritten as: 192 

where  193 

with 𝜉 = 𝜉 − 𝜉′  and 𝑘𝑟′ 2 = √𝑘2 − 𝜉′2 , 𝐽�̈�(∙) denotes the second order derivative of the mth order 194 

Bessel function, 𝐽𝑚(∙) denotes the second order derivative of the mth order Bessel function. The prime 195 

mark (∙)′ for 𝑚′, 𝜉′, and 𝑘𝑟′  is used as a distinctive variable for 𝑚, 𝜉 and 𝑘𝑟, respectively. Note that r 196 

is ignored in �̂�(𝜉′, 𝜉) because the boundary condition is valid when r=1. Then the random solution 197 

�̂�𝑎(0)(𝑟,𝑚, 𝜉𝑚𝑛) = 𝐴𝑚𝑛𝐽𝑚(𝑘𝑚𝑛𝑟), (32) 

𝑝𝑎(0) = 12𝜋 ∫ 𝛿(𝜉𝑚𝑛 − 𝜉)�̂�𝑎(0)(𝑟,𝑚, 𝜉)𝑒𝑖𝜉𝑧𝑑𝜉∞
−∞ . (33) 

𝑝𝑟(1) = 12𝜋 ∫ �̂�𝑟(1)(𝑟,𝑚, 𝜉)𝑒𝑖𝜉𝑧𝑑𝜉∞
−∞ . (34) 

𝜕𝑝𝑟(1)𝜕𝑟 = ∫ 𝛿𝑅𝛿(𝜉𝑚𝑛 − 𝜉′)�̂�(𝜉′, 𝜉)�̂�𝑎(0)(𝑟,𝑚, 𝜉′)𝑑𝜉′∞−∞ ,              for 𝑟 = 1; (35) 

𝜕𝑝𝑎(2)𝜕𝑟 = 12𝜋∫ �̂�(𝜉′, 𝜉)�̂�1(1)(𝑟,𝑚, 𝜉′)𝑑𝜉′∞−∞ ,                                   for 𝑟 = 1. (36) 

�̂�(𝜉′, 𝜉) = ∫ ∫ [𝑖𝑚′𝜂𝜃 + 𝑖𝜉′𝜂𝑧 − 𝜂𝑘𝑟′ 2𝐽�̈�′(𝑘𝑟′ )𝐽𝑚′(𝑘𝑟′ )2𝜋
0

∞
−∞
− 𝜂2𝑘𝑚′𝑛3 �⃛�𝑚′(𝑘𝑚′𝑛)2𝐽𝑚′(𝑘𝑟′ ) ] 𝑒−𝑖𝑚′𝜃𝑑𝜃𝑒−𝑖�̃�𝑧𝑑𝑧, (37) 
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�̂�𝑟(1) for mode (m, n) can be obtained from Eqs. (25), (35) and (37) using the deterministic leading 198 

order solution Eq. (32): 199 

with  200 

where 𝜉𝑚𝑛 = 𝜉 − 𝜉𝑚𝑛, 𝐽�̇�(∙) denotes the first order derivative of the Bessel function. The scattered 201 

solution �̂�𝑎(2)  can be derived from Eqs. (28) and (36). The Bessel equation (Eq. (28)) is 202 

inhomogeneous and this inhomogeneous equation can be generalised as: 203 

The solution of the above equation 𝑓𝑚(𝑥) can be obtained numerically using Runge-Kutta method [26] 204 

(e.g. function @ode45 from Matlab). Here x is a generalized symbol for the inhomogeneous Bessel 205 

equation Eq. (40). An example of f0(x), f1(x) and their first derivatives is shown in Figure 2. 206 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

-1

-0.5

0

0.5

1

f0 (x)

f0
.

(x)

f1 (x)

f1
.

(x)

 207 

Figure 2. Examples of 𝑓0(𝑥) and 𝑓1(𝑥) and their first derivatives  𝑓0̇(𝑥) and 𝑓1̇(𝑥), respectively.  208 

The solution �̂�𝑎(2) for mode (m, n) from Eq. (28) can then be written as: 209 

�̂�𝑟(1) = 𝐵𝑚𝑛𝐽𝑚(𝑘𝑟𝑟), (38) 

𝐵𝑚𝑛 = �̂�(𝜉𝑚𝑛, 𝜉𝑚𝑛)�̂�𝑎(0)(1,𝑚, 𝜉)𝑘𝑟𝐽�̇�(𝑘𝑟) , (39) 

[ 𝑑2𝑑𝑥2 + 1𝑥 𝑑𝑑𝑥 + (1 −𝑚2𝑥2 )]𝑓𝑚(𝑥) = −𝐽𝑚(𝑥). (40) 
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The secondary solution of the eigen-value can be obtained by substituting Eq. (38) and (41) into the 210 

boundary condition given by Eq. (36): 211 

where  212 

and 213 

where 𝛼 = −𝐽�̈�′(𝑘𝑟′ )/𝐽𝑚′(𝑘𝑟′ ) , 𝛼𝑚𝑛 = − 𝐽̈𝑚′(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛) ,  𝛽 = −𝐽𝑚′(𝑘𝑟′ )/2𝐽𝑚′(𝑘𝑟′ ) , 𝛽𝑚𝑛 = −𝐽𝑚(𝑘𝑚𝑛)/214 2𝐽𝑚(𝑘𝑚𝑛).  215 

For a statistically homogeneous wall roughness, the correlation function has the following property 216 𝑊(𝑥1, 𝑥2; 𝑦1, 𝑦2) = 𝑊(𝑥, 𝑦) with 𝑥 = 𝑥1 − 𝑥2; 𝑦 = 𝑦1 − 𝑦2(see Eq. (3)). Therefore, the derivatives 217 

of the correlation function with respect to 𝑥1, 𝑥2, 𝑦1, 𝑦2 can be replaced with: 218 

�̂�𝑎(2) = 𝐴𝑚𝑛𝑘𝑚𝑛,22𝑘𝑚𝑛2 𝑓𝑚(𝑘𝑚𝑛𝑟). (41) 

𝜉𝑚𝑛,2 = − 𝑘𝑚𝑛𝐽𝑚(𝑘𝑚𝑛)𝛿𝑅𝐼𝑚𝑛2𝜋𝜉𝑚𝑛𝑓�̇�(𝑘𝑚𝑛)(1 + 𝛿𝑚0,𝑛0) , (42) 

𝐼𝑚𝑛 = ∫ �̂�(𝜉′, 𝜉𝑚𝑛 − 𝜉′)�̂�(𝜉𝑚𝑛, 𝜉′ − 𝜉𝑚𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐽𝑚′(𝑘𝑟′ )𝑘𝑟′ 𝐽�̇�′(𝑘𝑟′ ) 𝑑𝜉′∞
−∞ , (43) 

�̂�(𝜉′, 𝜉𝑚𝑛 − 𝜉′)�̂�(𝜉𝑚𝑛, 𝜉′ − 𝜉𝑚𝑛) 
= ∬∬(𝑖𝑚′𝜂𝜃1 + 𝑖𝜉′𝜂𝑧1 + 𝛼𝑘𝑟′ 2𝜂1 + 𝛽𝜂12𝑘𝑚′𝑛3 )(𝑖𝑚𝜂𝜃2 + 𝑖𝜉′𝜂𝑧2 + 𝛼𝑚𝑛𝑘𝑚𝑛2 𝜂22𝜋

0
∞

−∞ + 𝛽𝑚𝑛𝜂22𝑘𝑚𝑛3 )𝑒−𝑖[(𝜉𝑚𝑛−𝜉′)(𝑧1−𝑧2)+(𝑚−𝑚′)(𝜃1−𝜃2)]𝑑𝜃1𝑑𝜃2𝑑𝑧1𝑑𝑧2, 

 

(44) 

𝜂𝑥1𝜂𝑥2̅̅ ̅̅ ̅̅ ̅̅ = −𝜕2𝑊(𝑥, 𝑦)𝜕𝑥2 = −𝑊𝑥𝑥, 
𝜂𝑥1𝜂(𝑥2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜕𝑊(𝑥, 𝑦)𝜕𝑥 = 𝑊𝑥 , 

𝜂(𝑥1)𝜂𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −𝜕𝑊(𝑥, 𝑦)𝜕𝑥 = −𝑊𝑥 , 
𝜂𝑥1𝜂𝑦2̅̅ ̅̅ ̅̅ ̅̅ = −𝜕2𝑊(𝑥, 𝑦)𝜕𝑥𝜕𝑦 = −𝑊𝑥𝑦 . 

 

(45) 
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 219 

Hence, the integration of Eq. (44) can be expressed as: 220 

where �̂�(𝑚 −𝑚′, 𝜉𝑚𝑛 − 𝜉′) = ∫ ∫ 𝑊(𝜃, 𝑧)𝑒−𝑖[(𝜉𝑚𝑛−𝜉′)𝑧+(𝑚−𝑚′)𝜃]𝑑𝑧𝑑𝜃∞−∞∞−∞ . Using the Fourier 221 

transform, the second moment of statistical properties of the roughness can be introduced through the 222 

correlation function. Both the circumferential, 𝑚, and axial, 𝜉𝑚𝑛 , components are included in the 223 

correlation function, �̂�(𝑚, 𝜉𝑚𝑛). 224 

Before solving the wavenumber correction term in Eq. (42), the integral of Eq. (43) can be obtained 225 

using the residue theorem. The integrand function is analytic everywhere except at the poles: 226 

where index (q, s) are mode numbers, 𝜉𝑞𝑠 is the axial wavenumber of a smooth waveguide associated 227 

with the mode (q, s). The sign ± is the direction of the wavenumber which means that the scattered 228 

wave can propagate forwards or backwards in the waveguide. Since (q, s) is not necessarily the same 229 

as (m, n), this introduces the cross-mode effects (modal crosstalk). According to Eq. (47), the integral 230 

is only calculated at the poles equal to the eigen-values, which means only the wavenumbers at eigen-231 

values are effective. The phenomenon implies that the rough surface can be effectively replaced by 232 

extraneous sources distributed over the waveguide wall that radiates waves propagating with different 233 

modes [7]. 234 

Using the residue theorem, the integration 𝐼𝑚𝑛 in Eq. (42) can be rewritten as: 235 

�̂�(𝜉′, 𝜉𝑚𝑛 − 𝜉′)�̂�(𝜉𝑚𝑛, 𝜉′ − 𝜉𝑚𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
= 1𝛿𝑅 (−𝑚′𝑚+𝑚′2 − 𝜉′𝜉𝑚𝑛 + 𝜉′2 + 𝛼𝑘2 − 𝛼𝜉′2)(−𝑚′𝑚+𝑚2 − 𝜉′𝜉𝑚𝑛 + 𝜉𝑚𝑛2+ 𝛼𝑚𝑛𝑘2 − 𝛼𝑚𝑛𝜉𝑚𝑛2 )�̂�(𝑚 −𝑚′, 𝜉𝑚𝑛 − 𝜉′)+ 𝛽𝛽𝑚𝑛(𝑘2 − 𝜉′2)1.5(𝑘2 − 𝜉𝑚𝑛2 )1.5[1+ 2�̂�2(𝑚 −𝑚′, 𝜉𝑚𝑛 − 𝜉′)] 

 

(46) 

𝜉 ′ = 𝜉𝑞𝑠± = ±√𝑘2 − 𝑘𝑞𝑠2 ,  
(47) 
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 236 

From Eq.(48), the correction term of wavenumber 𝜉𝑚𝑛,2 can be obtained: 237 

For the full solution for the wavenumber in Eqs. (49), the statistical properties expressed through the 238 

correlation function are required. For the dual variable, a 2-D Gaussian correlation function is 239 

proposed here for the 3-D modelling: 240 

𝐼𝑚𝑛 = 2𝜋𝑖 lim𝜉′  →𝜉𝑞𝑠± {𝐽𝑚′(𝑘𝑟′ ) (𝜉′ − 𝜉𝑞𝑠± )𝑘𝑟′ 𝐽�̇�′(𝑘𝑟′ ) (−𝑚′𝑚+𝑚′2 − 𝜉′𝜉𝑚𝑛 + 𝜉′2 + 𝛼𝑘2
− 𝛼𝜉′2) (−𝑚′𝑚+𝑚2 − 𝜉′𝜉𝑚𝑛 + 𝜉𝑚𝑛2 + 𝛼𝑚𝑛𝑘2 − 𝛼𝑚𝑛𝜉𝑚𝑛2 )�̂�(𝑚, 𝜉𝑚𝑛− 𝜉′)
+ 𝛽𝛽𝑚𝑛(𝑘2 − 𝜉′2)1.5(𝑘2 − 𝜉𝑚𝑛2 )1.5[1
+ 2�̂�2(𝑚 −𝑚′, 𝜉𝑚𝑛 − 𝜉′)]} 

= 2𝜋𝑖 𝐽𝑞(𝑘𝑞𝑠± )𝐽�̈�(𝑘𝑞𝑠± )𝜉𝑞𝑠± {(−𝑞𝑚+ 𝑞2 − 𝜉𝑞𝑠± 𝜉𝑚𝑛 + 𝜉𝑞𝑠± 2 − 𝐽�̈�(𝑘𝑞𝑠± )𝐽𝑞(𝑘𝑞𝑠± )  𝑘𝑞𝑠± 2)(−𝑞𝑚+𝑚2 − 𝜉𝑞𝑠± 𝜉𝑚𝑛
+ 𝜉𝑚𝑛2 − 𝐽�̈�(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛)  𝑘𝑚𝑛2 ) �̂�(𝑚 − 𝑞, 𝜉𝑚𝑛 − 𝜉𝑞𝑠± )
+ 𝐽𝑞(𝑘𝑞𝑠± )4𝐽𝑞(𝑘𝑞𝑠± ) 𝐽𝑚(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛)  𝑘𝑚𝑛3  𝑘𝑞𝑠± 3 [1 + 2�̂�2(𝑚−𝑞, 𝜉𝑚𝑛 − 𝜉𝑞𝑠± )]}. 

(48) 

𝜉𝑚𝑛,2 = 𝑖2∑∑ 𝑘𝑚𝑛𝐽𝑚(𝑘𝑚𝑛)𝜉𝑚𝑛𝜉𝑞𝑠+ 𝑓�̇�(𝑘𝑚𝑛)(1 + 𝛿𝑚0,𝑛0,𝑞0,𝑠0) 𝐽𝑞(𝑘𝑞𝑠)�̈�𝑞(𝑘𝑞𝑠) {(−𝑞𝑚 + 𝑞2 − 𝜉𝑞𝑠± 𝜉𝑚𝑛𝑆
𝑠=0

𝑄
𝑞=0

+ 𝜉𝑞𝑠± 2 − �̈�𝑞(𝑘𝑞𝑠± )𝐽𝑞(𝑘𝑞𝑠± ) 𝑘𝑞𝑠± 2)(−𝑞𝑚 +𝑚2 − 𝜉𝑞𝑠± 𝜉𝑚𝑛 + 𝜉𝑚𝑛2
− �̈�𝑚(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛) 𝑘𝑚𝑛2 ) �̂� (𝑚 − 𝑞, 𝜉𝑚𝑛 − 𝜉𝑞𝑠± )
+ �⃛�𝑞(𝑘𝑞𝑠± )4𝐽𝑞(𝑘𝑞𝑠± ) �⃛�𝑚(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛) 𝑘𝑚𝑛3  𝑘𝑞𝑠± 3 [1 + 2�̂�2 (𝑚 − 𝑞, 𝜉𝑚𝑛 − 𝜉𝑞𝑠± )]}. 

(49) 
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which can be rewritten in a normalized form: 241 

Note that this 2-D correlation function depends on the distance separation in the axial as well as the 242 

circumferential directions. For simplicity, the star sign in Eq. (51) is eliminated throughout the text.  243 

Its Fourier transform can be given by: 244 

Therefore, the full equation of the wavenumber (Eq. (26)) can be rewritten as: 245 

Therefore, the wave scattering from the rough surface is dependent on the mode patterns, the cross-246 

correlation and standard deviation of the roughness.  247 

When 𝑘 > 𝑘𝑚𝑛, 𝑘 > 𝑘𝑞𝑠, the wavenumbers 𝜉𝑚𝑛 and 𝜉𝑞𝑠±  are real number, which represents the wave 248 

propagation in the smooth pipe in the form of mode (m, n) and the scattering wave in the form of 249 

mode (q, s), respectively. The wavenumber correction term 𝜉𝑚𝑛,2 is imaginary which represents the 250 

wave attenuation for the average pressure field. 251 

When 𝑘𝑚𝑛 < 𝑘 < 𝑘𝑞𝑠  (where 𝑘  is slightly smaller than 𝑘𝑞𝑠 ), which means 𝜉𝑚𝑛  is real and 𝜉𝑞𝑠±  is 252 

imaginary, corresponding to the wave propagation for the smooth pipe acoustic pressure field at mode 253 

(m, n) and the evanescent scattering wave at mode (q, s), respectively. Here we only discuss the case 254 

𝑊(𝜃, 𝑧) = 𝑒−𝑧2+𝑅2𝜃2𝑙2 , (50) 

𝑊(𝜃, 𝑧∗) = 𝑒−𝑧∗2+𝜃2𝑙2 . (51) 

�̂�(𝑚, 𝜉) = √𝜋𝑙𝑒−𝜉2𝑙2+𝑚2𝑙24 . (52) 

𝜉 = 𝜉𝑚𝑛 + 𝑖𝜎22𝑅2∑∑ 𝑘𝑚𝑛𝐽𝑚(𝑘𝑚𝑛)𝜉𝑚𝑛𝜉𝑞𝑠+ 𝑓�̇�(𝑘𝑚𝑛)(1 + 𝛿𝑚0,𝑛0,𝑞0,𝑠0) 𝐽𝑞(𝑘𝑞𝑠)�̈�𝑞(𝑘𝑞𝑠) {(−𝑞𝑚 + 𝑞2𝑆
𝑠=0

𝑄
𝑞=0
− 𝜉𝑞𝑠± 𝜉𝑚𝑛 + 𝜉𝑞𝑠± 2 − �̈�𝑞(𝑘𝑞𝑠± )𝐽𝑞(𝑘𝑞𝑠± ) 𝑘𝑞𝑠± 2)(−𝑞𝑚 +𝑚2 − 𝜉𝑞𝑠± 𝜉𝑚𝑛 + 𝜉𝑚𝑛2
− �̈�𝑚(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛) 𝑘𝑚𝑛2 ) �̂� (𝑚 − 𝑞, 𝜉𝑚𝑛 − 𝜉𝑞𝑠± )
+ �⃛�𝑞(𝑘𝑞𝑠± )4𝐽𝑞(𝑘𝑞𝑠± ) �⃛�𝑚(𝑘𝑚𝑛)𝐽𝑚(𝑘𝑚𝑛) 𝑘𝑚𝑛3  𝑘𝑞𝑠± 3 [1 + 2�̂�2 (𝑚 − 𝑞, 𝜉𝑚𝑛 − 𝜉𝑞𝑠± )]}. 

(53) 
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that k is slightly smaller than 𝑘𝑞𝑠 , otherwise the evanescent wave mode (q, s) attenuates rapidly 255 

enough that does not contribute to the wave field and can be truncated by Q, S in the upper limit of the 256 

summation in Eq. (53). The wavenumber correction term 𝜉𝑚𝑛,2 is complex with its imaginary part 257 

representing the wave attenuation for the averaged pressure field, and its real part representing the 258 

wave propagation. This means that the imaginary scattering wavenumber 𝜉𝑞𝑠   corresponding to 259 

evanescent modes can transfer energy and contribute to the propagating wave mode (m, n). Although 260 

evanescent waves do not propagate and decay axially, the scattering due to the rough surface 261 

continuously generates these evanescent waves all along the pipe contributing to wave propagation. A 262 

“propagating” wave can be scattered by the rough surface and generate the propagating wave mode 263 

(m, n). This phenomenon will be discussed in detail in the following section with an example of plane 264 

wave mode.  265 

When 𝑘𝑞𝑠 < 𝑘 < 𝑘𝑚𝑛 (where 𝑘 is slightly smaller than 𝑘𝑚𝑛) 𝜉𝑚𝑛 is imaginary and 𝜉𝑞𝑠±  is real. These 266 

correspond to the evanescent wave for the averaged pressure field at mode (m, n) and the propagating 267 

scattered wave at mode (q, s), respectively. Again 𝜉𝑚𝑛,2 is complex with its imaginary part 268 

representing the wave attenuation for the averaged pressure field, and its real part representing the 269 

wave propagation. For 𝑘 < 𝑘𝑚𝑛 , 𝜉𝑚𝑛  is imaginary corresponding to evanescent wave modes. 270 

Although these modes do not propagate in a smooth pipe, they can be scattered continuously along the 271 

axial direction by the rough surface and contribute to the propagating wave 𝜉𝑞𝑠± . The phenomenon of a 272 

non-propagating wave scattered into a propagating wave due to the rough surface results in the 273 

reduced cut-off frequency. This will be validated via numerical simulation in Section III.  274 

When 𝑘 = 𝑘𝑚𝑛, 𝜉𝑚𝑛 = 0, this means that the wave could not propagate and result in an infinite 275 

attenuation. The corrected wavenumber, denoted as 𝜉𝑚𝑛,2 , exhibits singularity at this particular 276 

frequency (𝑘 = 𝑘𝑚𝑛 ) due to the presence of 𝜉𝑚𝑛  in the denominator of Eq. (53). This will be 277 

discussed more with the numerical validation in Section III. 278 

Note that the wavenumber 𝜉𝑚𝑛 has commutative properties so that mode index pairs (m, n) and (q, s) 279 

are interchangeable. This means that the propagating wave mode (m, n) can transfer energy to mode 280 
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(q, s) after scattering from the rough surface and vice versa. It should be noted that this paper does not 281 

quantify the energy transfer between the cross-mode effects.  282 

In the following section, the fundamental mode (plane wave) will be discussed as an example using 283 

the theoretical results from Eq. (53) to illustrate the acoustic wave attenuation in a rough waveguide. 284 

Furthermore, this paper will also investigate the plane wave behaviour beyond the first eigen-285 

frequency to illustrate how its propagation is affected by other higher-order modes.  286 

D. Plane wave mode when f<f10 287 

In the frequency range where a smooth cylindrical waveguide only supports the plane wave m, n =0, 288 

the wavenumber  𝜉00 = 𝑘, 𝑘𝑚𝑛 = 0, lim𝑘𝑚𝑛→0 𝑓0̇(𝑘𝑚𝑛)𝑘𝑚𝑛 = −0.5. Therefore, Eq. (49) can be reduced to: 289 

Eq. (54) is the result identical to Eq. (50) from Ref. [16]. The averaged acoustic pressure in the 290 

cylindrical waveguide with a stochastically rough surface can be approximated by Eqs. (15),(41): 291 

Using 𝑘00,22 = −2𝜉00,2𝜉00, 𝜉00 = 𝑘, lim𝑥→0𝑓0̇(𝑥)/𝑥 = −0.5 this equation can be simplified as: 292 

Therefore, the acoustic pressure of the averaged field not only attenuates along the axial direction, but 293 

also increases with radial direction and reaches the maximum value close to the rough wall. 294 

E. Plane wave mode when f10<f<f20 295 

When the frequency range is extended above the first eigen-frequency (f10), the plane wave can be 296 

affected by the mode coupling, e.g. the energy from mode (0,0) can leak into mode (1,0) and vice 297 

versa because in the frequency range f10<f<f20 two different modes (0,0) and (1,0) can propagate. For 298 

mode (1,0) the wavenumber of a smooth pipe is  𝜉10 = √𝑘2 − 𝑘102 , 𝑘10 = 1.841  (which can be 299 

𝜉00,2 = 𝑖𝜎22𝑅2 𝑘2�̂�(0,2𝑘). (54) 

𝑝𝑎 = lim𝑘00→0𝐴00 [1 + 𝑘00,22𝑘002 𝑓0(𝑘00𝑟)] 𝑒𝑖(𝑘+𝜉00,2)𝑧. (55) 

𝑝𝑎 = 𝐴00𝑔(𝑟)𝑒𝑖(𝑘+𝜉00,2)𝑧 with  𝑔(𝑟) = 1 − 2𝑘𝜉00,2 lim𝑘00→0𝑓0(𝑘00𝑟)/𝑘002= 1 + 12𝑘𝜉00,2𝑟2. (56) 
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obtained from Eq. (29)), Eq. (49) can be reduced to: 300 

The first term on the right side of Eq. (57) is the plane wave mode solution (see Eq. (54)).  301 

When 𝜉10 is real (𝑘 > 𝑘10), the second term represents the coupling effect between mode (0,0) and 302 

mode (1,0) which propagate forward, whereas the third term represents the coupling effect between 303 

mode (0,0) and mode (1,0) which propagate backward.  304 

When 𝜉10 is imaginary (𝑘 < 𝑘10, again it is assumed k is slightly smaller than 𝑘10), the scattered 305 

wave mode is evanescent and decays exponentially in the axial direction. This imaginary wavenumber 306 

contributes the real part of the wavenumber 𝜉00,2 in Eq. (57) which represents the propagating wave 307 

pattern. The second term of the right side of Eq. (57) was calculated from 𝜉10+  which is associated with 308 

the positive (forward) “propagating” evanescent wave, whereas the third term calculated from 𝜉10−  is 309 

associated with the negative (backwards) “propagating” evanescent wave. 310 

F. Plane wave mode when f20<f<f01 311 

In the frequency range where three modes can propagate along the pipe: i.e. modes (0,0), (1,0), (2,0). 312 

The wavenumber for mode (2,0) is 𝜉20 = √𝑘2 − 𝑘202 , 𝑘20 = 3.054 (which can be obtained from Eq. 313 

(29)). Therefore, Eq. (49) can be reduced to: 314 

𝜉00,2 = 𝑖𝜎22𝑅2 [𝑘2�̂�(0,2𝑘)
+ 𝐽1(𝑘10)4𝑘𝜉10𝐽1̈(𝑘10) (𝜉102 − 𝑘𝜉10 − 𝐽1̈(𝑘10)𝐽1(𝑘10) 𝑘102 ) (𝑘2 − 𝑘𝜉10)�̂�(1, 𝑘 − 𝜉10)
+ 𝐽1(𝑘10)4𝑘𝜉10𝐽1̈(𝑘10) (𝜉102 + 𝑘𝜉10 − 𝐽1̈(𝑘10)𝐽1(𝑘10) 𝑘102 ) (𝑘2 + 𝑘𝜉10)�̂�(1, 𝑘 + 𝜉10)]. 

(57) 
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The second and third terms represent the coupling effect between mode (0,0) and mode (1,0) where 315 

mode (1,0) propagates forward and backward, respectively. The fourth and fifth terms represent the 316 

coupling effect between mode (0,0) and mode (2,0) where mode (2,0) propagates forward and 317 

backward, respectively. Note that the coupling of the scattering wave between mode (1,0) and (2,0) 318 

are ignored here since the scattering waves are assumed as a first order small term. 319 

The use of “propagating” evanescent wave discussed in the previous section is also valid here for the 320 

second non-axisymmetric mode. 321 

III. Numerical simulation  322 

In this study, a 6m long, 150mm diameter pipe was used to study the 3-D surface roughness effects. 323 

The surface roughness matrix was generated by Gaussian distribution function in MATLAB, with 324 

zero mean and standard deviation 
𝜎𝑅. The matrix rows and columns represent the roughness realization 325 

in the axial and angular directions, respectively. The number of rows and columns was determined by 326 

the spatial separation d between random values of the surface. The spatial separation between random 327 

numbers defines the effective correlation length 𝑑 = √𝜋𝑙 [16]. This surface roughness matrix can be 328 

imported to the FEM simulation software using COMSOL as interpolation function. The geometry of 329 

the pipe wall with roughness can be generated using the parametric surface characterised by the 330 

interpolation function. Figure 1b shows an example of rough surface generated by parametric surface 331 

using COMSOL. 332 

𝜉00,2 = 𝑖𝜎22𝑅2 [𝑘2�̂�(0,2𝑘)
+ 𝐽1(𝑘10)4𝑘𝜉10𝐽1̈(𝑘10) (𝜉102 − 𝑘𝜉10 − 𝐽1̈(𝑘10)𝐽1(𝑘10) 𝑘102 ) (𝑘2 − 𝑘𝜉10)�̂�(1, 𝑘 − 𝜉10)
+ 𝐽1(𝑘10)4𝑘𝜉10𝐽1̈(𝑘10) (𝜉102 + 𝑘𝜉10 − 𝐽1̈(𝑘10)𝐽1(𝑘10) 𝑘102 ) (𝑘2 + 𝑘𝜉10)�̂�(1, 𝑘 + 𝜉10)
+ 𝐽2(𝑘20)4𝑘𝜉20𝐽2̈(𝑘20) (𝜉202 − 𝑘𝜉20 − 𝐽2̈(𝑘20)𝐽2(𝑘20) 𝑘202 ) (𝑘2 − 𝑘𝜉20)�̂�(2, 𝑘 − 𝜉20)
+ 𝐽2̈(𝑘20)4𝑘𝜉20𝐽2(𝑘20) (𝜉202 + 𝑘𝜉20 − 𝐽2̈(𝑘20)𝐽2(𝑘20) 𝑘202 ) (𝑘2 + 𝑘𝜉20)�̂�(2, 𝑘 + 𝜉20)]. 

(58) 
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A. Surface roughness effects on wave dispersion in an empty pipe 333 

In order to understand better the acoustic pressure distribution along an empty pipe with surface 334 

roughness, the wave dispersion was investigated. The dispersion relation of acoustic wave could be 335 

determined based on the frequency responses from FEM simulation in COMSOL.  336 

PML PML
Point source Equally spaced 

receiver points

5m

0.02m spacing
0.5 m

 337 

Figure 3. An illustration of the simulation setup for surface roughness effects on wave dispersion with 338 

point source excitation. 339 

As shown in Figure 3, a point source was set up close to the pipe wall so that both the anti-340 

axisymmetic and axisymmetric modes could be excited. The receiver points were also located close to 341 

the pipe wall to measure different modes. These were located from 20mm to 5m with a 20mm sptial 342 

step. The distance and frequency were normalized with respect to the pipe radius to generalize the 343 

conclusion for a pipe with an arbitrary radius. Perfectly matched layers (PML) were used at both ends 344 

of the pipe to minimise any sound reflections. The tetrahedral elements were used for the mesh of the 345 

whole system. The minimum size of the element was 0.0086m, i.e. around 0.1 of the wavelength at 346 

4kHz. This simulation was implemented on a workstation with Intel(R) Core(TM) i7-9800X CPU @ 347 

3.80GHz and 128G RAM, which takes around 5 hours for a computation with 20 Hz frequency step 348 

up to 4kHz. Applying the Fourier transform to the spatial domain, the wave dispersion can be 349 

obtained with the results shown in Figure 4.  350 
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Figure 4. The dispersion relations using a point source excitation in a pipe with: (a) smooth surface, (b) 354 

surface roughness ( 𝜎/𝑅 = 0.05 ), (c) surface roughness ( 𝜎/𝑅 = 0.1 ). Colormap: COMSOL 355 

simulation; dashed white line: theoretical wave dispersion for the smooth pipe, dashed black line: 356 

theoretical wave dispersion using Eq. (53). Colour-bar: normalized amplitude of acoustic pressure 357 

level (dB). 358 

As shown in Figure 4a, the simulated dispersive contour plot shows a close agreement of the 359 

theoretical solution for an empty smooth pipe. This simulation method was then applied to pipes with 360 

rough surfaces with 𝜎/𝑅 = 0.05 and 𝜎/𝑅 = 0.1 as shown in Figure 4b and Figure 4c, respectively. 361 

Compared with the smooth pipe, surface roughness results in the negative wavenumber components 362 

that represent the scattered wave propagating backwards. As expected, the scattering tends to be more 363 

significant when the surface roughness becomes larger. Furthermore, these scattered waves due to the 364 

rough surface tend to propagate in the form of the same modes as in the case of the pipe with smooth 365 

walls. This provides the same conclusion as discussed in Sec. II. From the theoretical study in Sec. II, 366 

Eqs. (47)(48), the scattered wavenumber 𝜉 ′ is effective only when it is equal to the eigen-modes of a 367 

smooth pipe  𝜉 ′ = 𝜉𝑞𝑠± . The wavenumber 𝜉𝑞𝑠±  is the axial wavenumber of (q, s) mode of a smooth pipe, 368 

and the positive and negative sign of the wavenumber 𝜉𝑞𝑠±  denote the wave that propagates forward 369 
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and backward, respectively. This means that the scattered wave due to the surface roughness 370 

propagates as a superposition of modes predicted for a smooth pipe interfering with the deterministic 371 

(averaged) propagating wave.  372 

The numerical results show that the cut-off frequency of the first three non-axisymmetric modes 373 

reduces relative to the amplitude of the standard deviation of the rough surface, whereas the 374 

axisymmetric mode (0, 1) does not exhibit significant changes. This indicates the importance of the 375 

contribution from circumferential roughness that highlights the necessity of 3-D modelling.  376 

As discussed in the theoretical study, the reduction of the cut-off frequency and the shift of the 377 

dispersion curve is due to the “propagating” evanescent wave.  The analytical solution of the 378 

dispersion curve shows close agreement with the numerical results, which supports the validity of the 379 

analytical solution proposed in the paper. The reduction of the cut-off frequency and the shift of the 380 

dispersion curve tend to be more significant with larger standard deviation of the roughness. 381 

As shown in Figure 4b and 4c, the backwards propagating plane wave (negative wavenumber) is 382 

generated by the scattering from the rough surface. The amplitude of the scattered plane wave below 383 

the first cut-off frequency (kR =1.841) is slightly smaller than the plane wave above the first cut-off 384 

frequency (kR =1.841). This is because of the higher modes at frequencies kR>1.841 also contribute to 385 

the scattered plane wave, which provides the evidence of the theorical discussion on the cross-mode 386 

effects, and this cross-mode effect becomes more significant with larger 𝜎/𝑅 by comparing the Figure 387 

4b and 4c.  388 

As shown in Figure 4b and 4c, there are singular points in the dispersion curves of higher modes at 389 

the eigen-frequencies of the smooth pipe (when 𝜉𝑚𝑛 = 0). This means that the acoustic wave at mode 390 

(m, n) is converted into a standing wave. 391 

To explicitly illustrate the cross-mode effect, an example of the acoustic field distribution and wave 392 

dispersion only using plane wave background excitation in a pipe with surface roughness (𝜎/𝑅 = 0.1) 393 

is shown in Figure 5. At both ends of the pipe, PMLs were used to absorb the acoustic wave for the 394 

assumption of infinitely long pipe. Figure 5a presents an example of the acoustic wave distribution at 395 
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the frequency kR=1.81 which is slightly smaller than the first cut-ff frequency kR=1.84.  396 

The composite wave field consists of the plane wave mode in conjunction with the "propagating" 397 

evanescent first non-axisymmetric mode (1,0), which exhibits a complex wave field. The rotational 398 

motion of the first non-axisymmetric mode (1,0) arises from the stochastic scattering occurring at the 399 

rough surface, as depicted in Figure 5a. Further insights into the spatial distribution of sound pressure 400 

are provided in Figure 5b-d, showcasing a detailed cross-sectional view. The rotational behavior of 401 

mode (1,0) is attributed to the presence of double eigenvalues for non-axisymmetric modes, such as 402 

(mode (1,0)), with the corresponding eigenfunctions being identical but phase-shifted by 90 degrees. 403 

Superimposing these two eigenfunctions obtains acoustic rotational mode patterns (e.g. [27]).  404 

Even though only the plane wave background excitation was used, the energy of the plane wave 405 

transferred to the first mode (1,0) as well as other higher modes as shown in the dispersion curve in 406 

Figure 5b. The scatted wave field due to the cross-mode effect exhibits close agreement with 407 

analytical solution (<10% error apart from at the cut-off frequency of the smooth pipe). Whereas in a 408 

smooth pipe, the wave dispersion only exhibits the plane wave without the energy transfer to higher 409 

mode as expected (see A1 in the Appendix). 410 
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Figure 5. (a) an illustration of the acoustic field distribution (real part of wavenumber) using plane 415 

wave background excitation in a pipe with surface roughness (𝜎/𝑅 = 0.1) at normalized frequency 416 

kR=1.81; (b)-(d) the cross section acoustic pressure distribution at axial coordinates 20R/3, 20R, and 417 

100R/3, respectively; (e) the dispersion relations of plane wave background excitation in a pipe with 418 

surface roughness (𝜎/𝑅 = 0.1). Colormap: COMSOL simulation (amplitude of sound pressure); 419 

dashed white line: theoretical wave dispersion for the smooth pipe, dashed black line: theoretical 420 

wave dispersion using Eq. (53). Colour-bar: normalized amplitude of acoustic pressure level (dB). 421 

 422 

B. Surface roughness effects on averaged plane wave field  423 

In this section, the numerical model was implemented using COMSOL with plane wave excitation in 424 

a cylindrical pipe with surface roughness defined in the beginning of Section III.  425 

 426 

PML PML
Background plane 
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 427 
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Figure 6. An illustration of the simulation setup for surface roughness effects on wave attenuation 428 

with plane wave excitation. 429 

As shown in Figure 3, a point source was applied close to the pipe wall so that both the anti-430 

axisymmetic and axisymmetric modes could be excited. The receiver points were also located close to 431 

the pipe wall to measure different modes. These were located from 0.5 m to 4.5 m with a 10mm sptial 432 

step. The distance and frequency were normalized with respect to the pipe radius to generalize the 433 

conclusion for a pipe with an arbitrary radius. Perfectly matched layers (PML) were used at both ends 434 

of the pipe to minimise any sound reflections. The tetrahedral elements were used for the mesh of the 435 

whole system. The minimum size of the element is 0.0086m which is around 0.1 times of wavelength 436 

at 4k Hz. To obtain the averaged numerical solution for multiple samples of the random surface 437 

Monte Carlo method was used with FEM resulting in around 5 hours for each sample to be computed 438 

on a workstation with Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz and 128G RAM, which takes 439 

around 5 hours for a computation with 20 Hz frequency step up to 4k Hz..  440 

The analytical model proposed in this paper can be used to estimate the averaged wave attenuation in 441 

the cylindrical pipes with rough surface. Using the analytical model, the computation cost can be 442 

dramatically reduced (the computational cost for a single surface sample of the numerical model is 443 

104 times greater than that with the analytical calculations). It is worth noting that a rigorous 444 

convergence of the averaged sound pressure in the numerical model requires more than 103 445 

realizations [16] which could not be achieved in this paper due to the computationally expensive 446 

numerical validation. Instead, 40 samples of the rough surface were used to generate the numerical 447 

solution that limits the accuracy of the numerical model but maintains the general trend of the 448 

averaged solution. 449 
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Figure 7. The averaged absolute sound pressure (normalized) varies as a function of the normalized 451 

axial distance (z/R) for the plane wave frequency regime (f <f10): (left figures (a),(c),(e),(g)) 𝜎/𝑅 =452 0.05 and (right figures (b),(d),(f),(h)) 𝜎/𝑅 = 0.1. Cyan dashed lines: averaged absolute pressure from 453 

simulation results; red dashed-dotted lines: fitted curve with exponential decay from simulation 454 

results; black solid lines: analytical result from Eq. (54).  455 

In Figure 7, the dependence of the averaged acoustic pressure on the distance range along the 456 

waveguide is illustrated. To reduce the oscillation in the numerical solution along the distance range, 457 

40 simulation results were predicted and averaged with a moving average filter [16]. Since there still 458 

exists the oscillation of the averaged absolute pressure, a curve fitting with the exponential function 459 

was used to enable the comparison of the numerical results with the analytical results. A maximum 460 

error of 17% between the numerical and analytical solution was observed. This accuracy of the 461 

approximation at the end of the distance range is comparable to the results from Ref. [16] when the 462 

frequency of the plane wave approaches 𝑓10. The numerical simulation was also carried out at higher 463 

frequency beyond the first cut-off frequency. 464 
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Figure 8. The average absolute sound pressure for the plane wave mode as a function of the 466 

normalized axial distance (z/R) in the frequency range f10<f<f20: (left figures (a),(c),(e),(g)) 𝜎/𝑅 =467 0.05 and (right figures (b),(d),(f),(h)) 𝜎/𝑅 = 0.1. Cyan dashed lines: averaged absolute pressure from 468 

simulation results; red dashed-dotted lines: fitted curve with exponential decay from simulation 469 

results; black solid lines: analytical result from Eq. (57). 470 

In Figure 8, the comparison of the averaged absolute plane wave mode sound pressure between the 471 

numerical and analytical results is illustrated in the frequency range f10<f<f20. Less than 16% error 472 

between the numerical and analytical solution is observed, similar to accuracy of the method 473 

illustrated in Figure 7 and also in Ref. A better agreement between the analytical model and the 474 

numerical simulation is expected with sufficient realizations of the numerical simulation [16]. 475 

The reasonable agreement between the analytical model and the numerical study provides the 476 

evidence of the advantage of using this theoretical solution for the estimation of average sound field 477 

in the rough waveguide.  478 

 479 
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C. Wavenumber Correction 480 

This section pertains to the examination of the imaginary component of the wavenumber correction 481 

term within the analytical model (𝜉00,2  in Eqs. (54-58)) under plane wave excitation, wherein a 482 

comparative analysis is conducted against the corresponding numerical simulation, as evident from 483 

the observed attenuation. 484 
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Figure 9. The normalized wavenumber correction 𝜉00,2 as a function of the normalized frequency kR 487 

for the plane wave mode: (top) 𝜎/𝑅 = 0.05 and (bottom) 𝜎/𝑅 = 0.1. Red star points: numerical 488 

simulation results; dashed lines: analytical mode from Eq. (54) using plane wave without higher 489 

modes interference; solid black lines: analytical model using the imaginary part of 𝜉00,2𝑅 from Eq. 490 
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(54)-(58) with higher modes interference; dashed black lines: analytical model using the absolute 491 

value of 𝜉00,2𝑅 from Eq. (54)-(58) with higher modes interference 492 

Figure 9 shows the comparison of the value of the eigen-value correction predicted with the analytical 493 

solution (Eqs. (54)-(58)) and numerical simulation. The numerical counterpart is approximated based 494 

on the assumption of exponential decay (Eq. (55)) which can then be defined as [16]: 495 

where 𝐼𝑚[𝜉00,2] denotes the imaginary part of 𝜉00,2. The wavenumber corrections term from Eqs. 496 

(54)-(58) results in higher accuracy capable of recovering the coupled modes effect compared to that 497 

when using Eq. (54) only. The accuracy of the numerical results is also expected to deteriorate in the 498 

vicinity of the cut-off frequency due to the singular solution. The difference between the imaginary 499 

part result and the absolute value of the normalized correction wavenumber indicating the effects 500 

from the propagation wave (real wavenumber) at the vicinity frequency range below the cut-off 501 

frequencies . These evanescent waves can “propagate” along the pipe due to the continuous scattering 502 

from the rough surface which contributes to an real apart of the wavenumber.   503 

 504 

IV. Conclusions 505 

This paper discusses the acoustic wave scattering and attenuation in a cylindrical pipe with surface 506 

roughness. Based on method developed from the previous study [16] which focuses on a 2-D 507 

waveguide, this work derived a theoretical 3-D solution of the averaged plane wave field. Compared 508 

with the previous studies, the frequency range of the benchmark analysis has been extended beyond 509 

the first two eigen frequencies. The modal coupling between plane wave and first two non-510 

axisymmetric modes is studied analytically. The wave dispersion and the cut-off frequency change 511 

due to the roughness have also been studied analytically and numerically. A better understanding the 512 

above phenomena is the main novelty of this paper. 513 

Using the SPM and Fourier analysis, this paper derived analytically the averaged components of the 514 

𝐼𝑚[𝜉00,2] ≈ 1|𝑝num| 𝑑|𝑝num|𝑑𝑧 , (59) 
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wave field. The asymptotic solution of the averaged plane wave field, the corrected plane wave mode 515 

wavenumber and the wave dispersion curve shows close agreement with the numerical results 516 

obtained with the Monte Carlo method using an FEM Comsol solver. It is noted that computational 517 

time of the analytical solution is more than 104 times faster compared to that of the numerical 518 

solutions. The asymptotic solution can be used to analyse the acoustic wave attenuation in rough 519 

cylindrical pipes and in an inverse problem to estimate the pipe roughness from the measured acoustic 520 

wave. 521 

Acknowledgement 522 

This work is supported by the UK's Engineering and Physical Sciences Research Council (EPSRC) 523 

Programme Grant EP/S016813/1. For the purpose of open access, the author has applied a ‘Creative 524 

Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising. The 525 

authors would also like to thank the anonymous reviewers of this paper for constructive comments. 526 

Appendix  527 

This Appendix presents the numerical simulation of the acoustic field distribution in a cylindrical pipe 528 

without surface roughness using background plane wave excitation.  529 

 530 
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 533 

A1  (a) an illustration of the acoustic field distribution (real part) using plane wave background 534 

excitation in a pipe without surface roughness at normalized frequency kR=1.81; (b),(c),(d) the cross 535 

section acoustic pressure distribution at axial coordinates 20R/3, 20R, and 100R/3, respectively; (e) 536 

the dispersion relations of plane wave background excitation in a pipe without surface roughness, 537 

Colormap: COMSOL simulation (amplitude of sound pressure). Colour-bar: normalized amplitude of 538 

acoustic pressure level (dB). 539 
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