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Abstract— Computational biomechanical analysis plays
a pivotal role in understanding and improving human move-
ments and physical functions. Although physics-based
modeling methods can interpret the dynamic interaction
between the neural drive to muscle dynamics and joint
kinematics, they suffer from high computational latency.
In recent years, data-driven methods have emerged as a
promising alternative due to their fast execution speed, but
label information is still required during training, which is
not easy to acquire in practice. To tackle these issues,
this paper presents a novel physics-informed deep learning
method to predict muscle forces without any label infor-
mation during model training. In addition, the proposed
method could also identify personalized muscle-tendon
parameters. To achieve this, the Hill muscle model-based
forward dynamics is embedded into the deep neural net-
work as the additional loss to further regulate the behavior
of the deep neural network. Experimental validations on the
wrist joint from six healthy subjects are performed, and a
fully connected neural network (FNN) is selected to imple-
ment the proposed method. The predicted results of muscle
forces show comparable or even lower root mean square
error (RMSE) and higher coefficient of determination com-
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pared with baseline methods, which have to use the labeled
surface electromyography (sEMG) signals, and it can also
identify muscle-tendon parameters accurately, demonstrat-
ing the effectiveness of the proposed physics-informed
deep learning method.

Index Terms— Musculoskeletal model, muscle force pre-
diction, parameter identification, physics-informed deep
learning, unlabeled sEMG data.

I. INTRODUCTION

HUMAN movements need the coordinated actions of
various muscle elements, thus accurate muscle force

estimation could support promising applications in diverse
domains, ranging from efficacious rehabilitation protocol
design [1], optimizing motion control [2], [3], to enhancing
clinical decision-making [4], [5], [6] and the performance
of athletes [7], [8]. The majority of muscle force estimation
methods are based on physics-based modeling techniques. For
instance, inverse dynamics techniques have been validated to
generate reasonable estimations of muscle forces and muscular
activation patterns usually based on static optimization [9],
[10], [11], [12], [13]. The static optimization could find the
set of muscle forces by minimizing the physiological criterion,
such as muscle activation, volume-scaled activation, forces,
stresses, metabolic energy or joint contact forces. However,
it is challenging to provide the biologically consistent rationale
for the selection of any objective function [14], [15], due to
the lack of knowledge about the method used by the central
nervous system [16]. Furthermore, physics-based modeling
methods also suffer from high computational latency, espe-
cially in complex modeling scenarios [17], [18].

To address the time-consuming issue of physics-based meth-
ods, data-driven methods have been investigated to establish
relationships between the movement variables and neuromus-
cular status, such as from electromyography (EMG) signals
to muscle forces, in the past few years [19], [20], [21], [22].
Although the training of deep neural networks may be lengthy,
as the inference only involves a relatively simple forward pass
through the network, it is computationally inexpensive and
thus very quick. For instance, Hua et al. [23] proposed a
linear regression (LR) and long short-term memory (LSTM)-
integrated method (LR-LSTM) to predict the muscle force
under the isometric contraction state. Tang et al. [24] devel-
oped a modified framework to accurately predict muscle forces
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based on encoder-decoder networks. Moreover, Lu et al. [25]
designed an integrated deep learning framework that combined
a convolutional neural network (CNN) and a bidirectional
LSTM (BiLSTM), complemented by an attention mechanism,
for elbow flexion force estimation. However, all these models
are established without explicit physical modeling of the
underlying neuromechanical processes, and these conventional
“black-box” tools do not consider the physical significance
underlying the modeling process [26], [27].

In recent years, the integration of physics-based model-
ing and data-driven modeling has emerged as an effective
strategy to overcome the limitations of these two methods,
such as deep energy method-based deep neural network [28],
deep Ritz method [29], physics-informed deep neural oper-
ator networks [30], and thermodynamics-informed neural
network [31], etc. In musculoskeletal (MSK) modeling, some
existing works also investigate the integration of physics
domain knowledge and data-driven modeling. Specifically,
Zhang et al. [32] proposed a physics-informed deep learning
framework for muscle forces and joint kinematics prediction,
in which the equation of motion was embedded into the
loss function as the soft constraints to penalize and regu-
larize the deep neural network training. They also designed
a physics-informed deep transfer learning framework to
strengthen the performance of the personalized MSK model-
ing [33]. Taneja et al. [34] designed a novel physics-informed
parameter identification neural network for simultaneously
predicting motion and identifying parameters of MSK sys-
tems. They also developed a multi-resolution physics-informed
recurrent neural network to further enhance motion prediction
and parameter identification [35]. Shi et al. [36] developed a
physics-informed low-shot learning approach based on genera-
tive adversarial network for muscle forces and joint kinematics
prediction, which first integrated the Lagrange’s equation of
motion into the generative model to restrain the structured
decoding of discriminative features, and a physics-informed
policy gradient was then proposed to enhance the adversarial
learning efficiency by rewarding the consistent physical repre-
sentation of extrapolated estimations and physical references.
Although the aforementioned physics-informed data-driven
methods have achieved great progress for MSK modeling
enhancement, there are still two main challenging issues:
1) Labeled data are required for model training [32], [33],
[36], 2) For muscle force prediction, [34] and [35] need to
reprocess the network’s output in conjunction with the MSK
dynamics, making the running latency far over the maximum
75 ms considered optimal real-time biofeedback. Therefore,
it is urgent to design a novel physics-informed neural network
framework, that does not need to acquire a large amount and
sufficient labeled data for deep neural network training, and
can still work well in real-time application scenarios.

In this paper, a novel physics-informed deep learning
method is presented to predict muscle forces using unla-
beled surface EMG (sEMG) data. Additionally, the proposed
method could also identify muscle-tendon parameters of the
Hill muscle model. In the proposed method, a fully con-
nected neural network (FNN) is utilized to implement the
designed physics-informed deep learning framework, and the

Hill muscle model is embedded into FNN as the additional
loss component to further penalize and regularize the behavior
of FNN. To validate the proposed method, a self-collected
dataset consisting of six healthy subjects performing wrist
flexion/extension motion is used in the experiments. Accord-
ing to the experimental results, the proposed method with
unlabeled sEMG data shows comparable and even better
performance compared with selected machine learning and
deep learning methods, which have to use labeled sEMG
data.

The remainder of this paper is organized as follows: The
proposed physics-informed deep learning method is detailed
in Section II, including the main framework, the network
architecture and training strategy, the loss function, and the
incorporation of Hill-muscle-based forward dynamics. Dataset
and experimental settings are described in Section III. Exper-
imental results are reported in Section IV, and discussions
are presented in Section V. Finally, conclusions are given in
Section VI.

II. METHODS

In this section, we first describe the details of the pro-
posed method, in the context of muscle force prediction
and muscle-tendon parameters identification from unlabeled
sEMG signals, including the main framework, the network
architecture and training, the loss function as well as the
incorporation of Hill-muscle-based forward dynamics.

A. Main Framework
Fig. 1 shows the main framework of the proposed method,

in the context of muscle forces prediction and muscle-related
physiological parameters identification from unlabeled sEMG
signals. Specifically, in the neural network surrogate, inputs to
the λ-parameterized deep neural network are sEMG measure-
ments and the corresponding time t , while outputs are the joint
movement qt and muscle forces Ft = (Ft,1, Ft,2, · · · , Ft,N ),
where N is the total number of muscles at the joint of interest.
A FNN is utilized to extract more discriminative features and
build the relationship between the inputs and outputs. Different
from conventional loss functions, the novel total loss con-
sists of the data-based loss and physics-informed losses. The
data-based loss is based on mean squared error (MSE), while
the physics-informed losses are based on the κ-parameterized
underlying Hill-muscle-based forward dynamics, where κ =

(A, κ1, κ2, · · · , κN ) and A is the EMG-to-activation coeffi-
cient.

B. FNN Architecture and Training
Without loss of generality, a FNN is utilized as the deep

neural network to implement the proposed method, and it
is composed of four fully connected (FC) blocks and one
regression block. To be specific, each FC block has one linear
layer, one ReLU layer and one dropout layer. The regression
block consists of one ReLU layer and one dropout layer.
The trainable parameters of FNN are obtained by minimizing
the loss function (more details about the loss function refer
to Section II-C). The training is performed using the Adam
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Fig. 1. Main framework of the proposed method. Inputs to the λ-parameterized deep neural network are sEMG measurements et =

(et,1,et,2, · · · ,et,N) and time t, while outputs are joint movements qt and muscle forces Ft = (Ft,1,Ft,2, · · · ,Ft,N), where N is the total number of
muscles at the joint of interest. For the subject-specific Hill-muscle-based forward dynamics model, κ = (A, κ1, κ2, · · · , κN), where n = (1,2, · · · ,N),
κn is the muscle-tendon parameters of the nth muscle, and A is the EMG-to-activation coefficient.

algorithm with an initial learning rate of 0.001, the batch size
is 1, the maximum iteration is 1000, and the dropout rate is
0.3.

C. Loss Function Design
The designed loss function of the proposed method includes

the data-based loss Lq , and physics-informed losses L f d and
L F , which can be represented as

L total = Lq + L f d + L F (1)

where Lq is the MSE of the actual joint angles and predicted
joint angles, L f d represents the Hill-muscle-based forward
dynamics constraint, L F is an implicit relationship between
muscle forces predicted by the neural network and calculated
by the embedded Hill muscle model.

1) MSE Loss: The MSE of ground truths of the joint angle
and the joint angle predicted by FNN is

Lq =
1
T

T∑
t=1

(q̂t − qt )
2 (2)

where qt is as the ground truth of the joint angle and q̂t is the
predicted joint angle of FNN with the trainable parameters λ

at time t .
2) Physics-Informed Forward Dynamics Loss: L f d reflects

underlying relationships among the muscle force and
kinematics in human motion, which can be written
as

L f d =
1
T

T∑
t=1

(M(q̂t ) ¨̂qt + C(q̂t , ˙̂qt ) + G(q̂t ) − τt (κ))2 (3)

where M(q̂t ), C(q̂t , ˙̂qt ) and G(q̂t ) are the mass matrix, the
Centrifugal and Coriolis force, and the gravity. ˙̂qt and ¨̂qt are
the predicted joint angular velocity and joint angular acceler-
ation. τt (κ) represents the joint torque, which is calculated by

the summation of the product of the moment arm and muscle-
tendon force:

τt (κ) =

N∑
n=1

Fmt
t,n (κn)rt,n . (4)

where N is the number of muscles involved, rt,n is the moment
arm of the nth muscle which can be calculated using the
polynomial equation and the scale coefficient against joint
angle qt [37], Fmt

t,n (κn) is the estimated muscle force by
the Hill muscle model with muscle-tendon parameters κn
(Additional details about the calculation of the muscle force
Fmt

t,n (κn) are located in Section II-D).
3) Physics-Informed Implicit Loss: There is also an implicit

relationship between the muscle forces F̂ t
n predicted by FNN

and the muscle force Fmt
t,n (κn) calculated by the Hill muscle

model. Thus, L F is designed for estimating muscle forces by
minimizing the difference between F̂ t

n and Fmt
t,n (κn), which can

be written as

L F =
1
T

T∑
t=1

N∑
n=1

(F̂ t
n − Fmt

t,n (κn))2 (5)

Therefore, the optimal neural network parameters λ and the
subject-specific physiological parameters κ can be obtained by
minimizing the composite loss function L total :

κ̂, λ̂ = arg min
κ,λ

(L total). (6)

D. Hill Muscle Force Estimation
For the nth muscle-tendon unit, its muscle-tendon parame-

ters κn include the isometric muscle force Fm
o,n , the optimal

muscle length lm
o,n , the maximum contraction velocity vo,n , the

tendon slack length l t
s,n and the optimal pennation angle ϕo,n ,

κn = (Fm
o,n, lm

o,n, vo,n, l t
s,n, ϕo,n), and the EMG-to-activation

coefficient A.
The Hill-muscle-based forward dynamics model includes

activation dynamics and contraction dynamics. Activation
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dynamics refer to the process of transforming pre-processed
sEMG signals et,n into muscle activation signals at,n , which
can be estimated by [38]

at,n =
eAet,n − 1

eA − 1
(7)

Muscle forces will be determined, once muscle activa-
tion signals at,n have been obtained. Contraction dynamics
used in this study are described by the rigid musculotendon
model [39], in which the pennated muscle element, comprising
a contractile element in parallel with a passive elastic element,
is connected to an inextensible tendon element. Therefore, the
muscle-tendon force can be calculated [40]:

Fmt
t,n (κn) = (FC E

t,n + F P E
t,n ) cos ϕt,n

= Fm
o,n(at,n fv(vt,n) fa(l

m
t,n)

+ f p(l
m
t,n))cosϕt,n (8)

ϕt,n = sin−1(
lm
o,n sin ϕo,n

lm
t,n

) (9)

lm
t,n = (lmt

t,n − l t
t,n)cos−1 ϕt,n (10)

where FC E
t,n and F P E

t,n are the active force generated by
the muscle contraction and the passive force generated by the
muscle stretch, respectively. The pennation angle ϕt,n is the
angle between the orientation of the muscle fiber and tendon,
and the pennation angle at the current muscle fiber length
lm
t,n can be calculated through Eq. (9). To update the muscle

length lm
t,n , the muscle–tendon length lmt

t,n is approximated
by the higher-order polynomial with respect to the predicted
joint angle qt , which is exported from OpenSim [41]. l t

t,n
is the tendon length, and vt,n is the contraction velocity
which is defined as the time derivative of muscle fiber length.
fa(l

m
t,n), fv(vt,n) and f p(l

m
t,n) interpret the force-length-

velocity characteristics relating to at,n and normalized muscle
length l

m
t,n .

Before the model training, all the physiological parameters
included in κ need to be initialized by linear scaling based on
the initial values of the generic model from OpenSim. These
parameters will be continuously updated in each iteration
during the model training process.

III. DATASET AND EXPERIMENTAL SETTINGS

In this section, data collection and preprocessing are first
detailed, physiological parameters used in this study, eval-
uation criteria and baseline methods are then presented,
respectively.

A. Data Collection and Preprocessing
As approved by the MaPS and Engineering Joint Fac-

ulty Research Ethics Committee of the University of Leeds
(MEEC18-002), this study involves the participation of six
subjects who have all provided signed consent forms. We col-
lected data on the subjects’ weight and the length of
their hands to calculate the moment of inertia of their
hands.

During the data collection process, participants were
instructed to maintain a straight torso with their shoulder

TABLE I
PHYSIOLOGICAL PARAMETERS INVOLVED IN THE FORWARD

DYNAMICS SETUP OF WRIST FLEXION-EXTENSION

MOTION FOR SPECIFIC SUBJECT

abducted at a 90◦ angle and their elbow joints flexed at a
90◦ angle. The continuous wrist flexion/extension motion was
recorded using the VICON motion capture system, which
tracked joint angles at a rate of 250 Hz using 16 reflective
markers on the upper limb. In the meantime, sEMG signals
were recorded by Avanti Sensors at a rate of 2000 Hz from
the primary wrist muscles, including the Flexor Carpi Radialis
(FCR), Flexor Carpi Ulnaris (FCU), Extensor Carpi Radialis
Longus (ECRL), Extensor Carpi Radialis Brevis (ECRB), and
Extensor Carpi Ulnaris (ECU). The sEMG signals and motion
data were synchronized and resampled at a rate of 1000 Hz.
Each participant completed two repetitive trials at different
speeds with a three-minute break between the speed changes
to prevent muscle fatigue [42].

The collected sEMG signals underwent a series of pro-
cessing steps, which included band-pass filtering (20 Hz
to 450 Hz), full-wave rectification, and low-pass filtering
(6 Hz). Subsequently, these signals were normalized based
on the maximum voluntary contraction recorded prior to the
experiments, resulting in enveloped sEMG signals. Each trial
involving wrist movement included data on time t , sEMG
signals, and wrist joint angles. The muscle forces calculated
by the computed muscle control (CMC) tool from OpenSim
were used as ground truths in the experiments.

B. Initialization of Physiological Parameters
Among the physiological parameters of the muscle-tendon

units involved, we choose the maximum isometric muscle
force Fm

0,n and the optimal muscle fiber length lm
0,n for the

identification. The nonlinear shape factor A in the activation
dynamics also needs to be identified. Other physiological
parameters are obtained by linear scaling based on the initial
values of the generic model from OpenSim. Table I shows the
details of the initialization of all the physiological parameters
of a specific subject as an example. Since there may be
differences in terms of magnitude and scale between each
parameter due to their different physiological natures, it is
necessary to normalize them before training.

C. Evaluation Criteria
In the experiments, root mean square error (RMSE) and

coefficient of determination R2 are considered as the eval-
uation criteria to quantify the performance of the proposed
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Fig. 2. Illustration of different loss terms over the number of iterations.

method. RMSE is

RM SE =

√√√√ 1
T

T∑
t=1

(Ut − Ût )2 (11)

where T is the number of samples, Ut and Ût indicate the
ground truth and the predicted value at time t , respectively.

R2 could be calculated by

R2
= 1 −

∑T
i=1(Ut − Ût )

2∑T
t=1(Ut − U t )2

(12)

where U t denotes the mean value of all the samples.

D. Baseline Methods
To verify the effectiveness of the proposed method,

we select LSTM, gated recurrent unit (GRU), CNN, FNN,
support vector regression (SVR) and extreme learning machine
(ELM) as baseline methods in the experiments. Specifically,
the hidden dimensional of LSTM and GRU is 64, and the
number of layers is 2, and the batch size of them is 8.
CNN has convolutional layers and one FC layer. For each
convolutional layer, the kernel size, stride, and padding number
are 3, 1 and 3, respectively. The Adam optimizer is employed
for CNN training, the batch size is set as 8. FNN has four
FC blocks and two regression blocks but without the physics-
informed component. Adam optimizer is employed for FNN
training, the batch size is set as 1, and the maximum iteration
is set as 1000. The radial basis function (RBF) is selected
as the kernel function of SVR, and the parameter C , which
controls the tolerance of the training samples, is set as 100,
and the kernel function parameters γ , which controls the
range of the kernel function influence, is set as 1. ELM is
a kind of single hidden layer feed-forward neural network
with randomly generated hidden layer parameters, its hidden
node number is 64 and the Sigmoid function is utilized as the
activation function.

IV. RESULTS

In this section, we evaluate the performance of the proposed
method using the self-collected dataset. The convergence of
loss terms is first illustrated, and the parameter identification
is then demonstrated. Next, the overall comparisons depict the
outcomes of both the proposed method and baseline methods.
The robustness and generalization of the proposed method are
also investigated, including the performance in the intrasession
scenario, effects of network architectures and parameters,

TABLE II
IDENTIFIED PHYSIOLOGICAL PARAMETERS OF THE

SPECIFIC SUBJECT (WRIST CASE)

and training data number. The proposed method and all the
baseline methods are carried out under the framework of
PyTorch, they are implemented on a laptop with a GeForce
RTX 3070 Ti graphics card and 32 GB RAM.

A. Demonstration of Loss Function Convergence
Fig. 2 shows the convergence of different loss terms.

According to Fig. 2, we can observe that despite the dif-
ferences in the final convergence values, these four loss
terms demonstrate remarkably consistent convergence trends
throughout the entirety of the training process. Specifically, all
these loss terms could converge after about 800 iterations and
finally converge with fast speeds, indicating the effectiveness
of the proposed loss function. Furthermore, the total loss
L total , as well as L f d and L F , exhibit a smooth and stable
convergence pattern throughout the training period. In contrast,
the MSE loss Lq shows rapid convergence within the initial
200 epochs, followed by slight oscillations. This oscillation
could be attributed to the relatively small absolute magnitude
of Lq .

B. Evaluation of Physiological Parameter Identification
The subject-specific physiological parameters are identified

during the training of the proposed method. Table II presents
the estimation and physiological range of the parameters of
a specific subject as an example. Physiological ranges of
the parameters are chosen according to [43]. The ranges
of the maximum isometric force Fm

0 are set as ±50 % of
the initial guess, while the ranges of the optimal muscle
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Fig. 3. Evolution of the maximum isometric muscle force Fm
0 and the optimal muscle fiber length lm0 identified of the specific subject during the

training of the proposed method. The estimations are all within the physiological range and possess physiological consistency.

TABLE III
RMSE OF THE PROPOSED METHOD AND BASELINE METHODS OF MUSCLE FORCES PREDICTION (WRIST CASE)

fiber length lm
0 are set as ±0.01 of the initial guess (Details

of the initial guesses of these physiological parameters refer
to Table I). The identified physiological parameters by the
proposed method are all within the physiological range and
possess physiological consistency. The identified muscle acti-
vation dynamics parameter A is -2.29, which is physiologically
acceptable in the range of −3 to 0.01.

Fig. 3 demonstrates the evolution of the identified physio-
logical parameters during the training of the proposed method.
In Fig. 3, the blue solid line illustrates the variation process
of the parameters and the black dashed line indicates the
estimated value by the proposed method which is the final
convergent value of evolution. According to Table II and
Fig. 3, the identified physiological parameters are within the

physiologically acceptable range, indicating that the muscle
forces calculated by the personalized Hill muscle model
embedded in the proposed method are reasonable, which
would directly benefit the guidance of the muscle force
prediction.

C. Overall Comparison
For the prediction of muscle forces, the proposed method

uses the unlabeled sEMG data in the training phase, while the
baseline methods use the labeled sEMG data. Fig. 4 shows
the representative results of the proposed method for the
prediction of muscle forces FCR, FCU, ECRL, ECRB, and
ECU. According to Fig. 4, we can find the proposed method
could predict the muscle forces well.
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Fig. 4. Representative results of the wrist case through the proposed method. The predicted outputs include FCR muscle force, FCU muscle force,
ECRL muscle force, ECRB muscle force, and ECU muscle force.

TABLE IV
R2 OF THE PROPOSED METHOD AND BASELINE METHODS OF MUSCLE FORCES PREDICTION (WRIST CASE)

Detailed comparisons of all the subjects between the pro-
posed method and baseline methods are presented in Table III
and Table IV. In the experiment, we use the data with the
same flexion speed to train and test the proposed method
and baseline methods. We randomly select 70% of the data
for training, while the rest 30% for testing. The number of
training data is 10500, and the number of testing data is 4500.
According to Table III and Table IV, deep learning-based
methods, including the proposed method, LSTM, GRU, CNN
and FNN, achieve better-predicted performance than machine
learning-based methods, i.e., SVR and ELM, as evidenced
by smaller RMSEs and higher R2 in most cases. Because
these deep learning-based methods could automatically extract
high-level features from the collected data. Furthermore, the
proposed method could achieve comparable performance with
LSTM and GRU in some situations with unlabeled data, and
the performance of the proposed method is better than that of
FNN, which indicates the effectiveness of the designed loss
function.

Fig. 5. Average RMSEs of the included muscle forces across all the
subjects (wrist case).

Fig. 5 shows the average RMSEs of muscle forces pre-
diction of the proposed method and baseline methods. The
proposed method achieves an overall performance similar to
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Fig. 6. Comparison results of the proposed method and baseline methods in the intrasession scenario.

TABLE V
TRAINING TIME OF DEEP LEARNING-BASED METHODS (H)

that of LSTM, GRU, CNN and FNN without direct reliance
on actual muscle force labels. In the training process, FNN
used in the proposed method is not only trained based on the
MSE loss but also enhanced by the physics-informed losses.
The embedded physics laws provide the potential relationships
between the output variables as learnable features for the
training.

Table V details the training time of deep learning-based
methods, including GRU, LSTM, CNN, FNN and the proposed
method. Accordingly, for all the methods, the training time
is less with the increase of the batch size, and the proposed
method has the longest training time compared to other
baseline methods. This is because the proposed method is
developed under the PINN framework, it not only involves the
minimization of the MSE of FNN but also the regularization
of physics-derived terms.

D. Evaluation of Intrasession Scenario
The performance of the proposed method in the intrasession

scenario is also demonstrated to validate its robustness. For
each subject, we train the proposed method and baseline
methods with the data of one flexion speed and then test
them using the data of another flexion speed. In the exper-
iment, we only demonstrate the comparison results of the
proposed method and deep learning methods in Fig. 6 to
make these results clearer. According to Fig. 6, the proposed
method demonstrates exceptional performance in datasets
with different distributions, but the predicted results of some
baseline methods are degraded. In particular, concerning the
predicted results of muscle forces of ECRL and ECU, the
predicted results yielded by the proposed method demonstrate
a notably enhanced congruence with the underlying ground
truth. LSTM, GRU and CNN demonstrate the ability of
motion pattern recognition since their muscle force prediction
curves are generally consistent with the trend of ground
truth. Additionally, these methods exhibit the proficiency of
dynamical tracking in part of the predicted results but the error

TABLE VI
COMPARISONS OF THE PROPOSED METHOD WITH

DIFFERENT NUMBER OF FC BLOCKS (R2 )

TABLE VII
COMPARISONS OF THE PROPOSED METHOD WITH

DIFFERENT LEARNING RATES (R2 )

remains in other predicted results, especially when it comes
to capturing peak and trough values, noticeable discrepancies
can be observed in the predicted values, which reflects the
limitation of the stability. Specifically, it demonstrates strong
performance in the prediction of FCR, FCU, and ECRL, while
it still exhibits significant discrepancies in the prediction of the
ECRB and ECU. The proposed method manifests a discernible
capability to predict muscle forces on data characterized by the
diverse distribution without label information.

E. Effects of Network Architectures
To investigate the effects of network architectures on per-

formance, we implement the proposed method with different
numbers of FC blocks. Table VI lists the detailed comparison
results, we can find the proposed method could achieve the
best performance with four FC blocks. Although the increase
in the number of FC blocks would help extract more rep-
resentative features, the proposed method may be overfitting
when we continue to add FC blocks, which degrades its
performance.

F. Effects of Network Parameters
We also consider the effects of network parameters on

the performance, including batch size, learning rate and type
of activation function. Table VII shows R2 of the proposed
method with different learning rates, it seems that its R2 is
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TABLE VIII
COMPARISONS OF THE PROPOSED METHOD WITH

DIFFERENT ACTIVATION FUNCTIONS (R2 )

TABLE IX
COMPARISONS OF THE PROPOSED METHOD WITH

DIFFERENT BATCH SIZES (R2 )

TABLE X
COMPARISONS OF THE PROPOSED METHOD WITH

DIFFERENT TRAINING DATA NUMBER (R2 )

without obvious fluctuations. Table VIII lists R2 of the pro-
posed method with different types of activation functions,
we can find when ReLU is selected as the activation function,
the proposed method has the best performance. Table IX
shows the effects of different batch sizes. When the batch
size is 1, the proposed method achieves better performance,
because the network could learn the representations better.

G. Effects of Training Data Number
Table X shows the experimental results of the proposed

method with a different number of training data. When the
number of training data is more than 10500, the proposed
method achieves satisfactory performance with little fluctua-
tions. Increasing the training data beyond 10500 samples does
not significantly enhance the performance of the proposed
method, as evidenced by the minimal improvements seen with
14500 and 17000 samples. Such findings highlight the impor-
tance of a balanced approach to data collection and model
training, emphasizing data quality and representativeness over
sheer quantity.

V. DISCUSSION

In this section, we discuss the generalization of the proposed
method, and potential ways to further enhance its performance
from various aspects.

TABLE XI
IDENTIFIED PHYSIOLOGICAL PARAMETERS OF

THE SPECIFIC SUBJECT (KNEE CASE)

Fig. 7. Evolution of the maximum isometric muscle force Fm
0 and the

optimal muscle fiber length lm0 identified of the specific subject during
the training of the proposed method in the knee case (The blue solid line
illustrates the variation process of the parameters and the black dashed
line indicates the estimated value by the proposed method which is the
final convergent value of evolution).

In this paper, we only use muscle forces prediction of wrist
flexion/extension as an example to demonstrate the feasibility
and effectiveness of the proposed method. Actually, the pro-
posed method can also be generalized to other joints. Table XI,
Table XII, Fig. 7 and Fig. 8 show the details of physiological
parameter identification and muscle forces prediction (includ-
ing biceps femoris short head (BFS) and rectus femoris (RF))
of knee flexion/extension. To be specific, Table XI and Fig. 7
show the results of the identified physiological parameters,
we can find all these physiological parameters are within the
physiologically acceptable range. Additionally, Table XII and
Fig. 8 detail the predicted results of BFS and RF. Accordingly,
the proposed method can fit the ground truth curve well
and obtain comparable predictions compared with FNN even
without any label information.

During the implementation of the proposed method, we par-
tially simplify the MSK forward dynamics model by reducing
the number of individualized physiological parameters. Only
the maximum isometric muscle force and the optimal fiber
length are considered to be identified, and all the other physi-
ological parameters are directly derived from the scaled wrist
model. Moreover, five primary muscles have been selected
as the key actuators for wrist flexion/extension, but these
muscle-tendon units may also affect other degrees of freedom
in wrist movements. In the future, we will try to relax
these simplifications and assumptions by considering more
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TABLE XII
RMSE AND R2 OF THE PROPOSED METHOD AND BASELINE METHODS

OF MUSCLE FORCES PREDICTION (KNEE CASE)

Fig. 8. Representative results of the knee case of the proposed method.
The predicted outputs include BFS muscle force and RF muscle force.

physiological parameters and physics laws to obtain a more
physiologically accurate representation of muscle tissues with
connective tissues and muscle fibers, making it more feasible
in practical and clinical applications. The computational time
of the proposed method is longer than baseline methods
because it is developed under the physics-informed neural
network framework, which not only involves the minimiza-
tion of the MSE of FNN but also the regularization of
physics-informed terms during the network training. In the
future, we will design a distributed framework for the pro-
posed method to accelerate its training, and also consider
pre-training an initial model with subject-specific data and
then updating the model with other subjects’ data, which
can simultaneously reduce the training time and enhance the
generalization.

VI. CONCLUSION

This paper presents a novel physics-informed deep-learning
method mainly for muscle forces estimation with unlabeled
sEMG data, and the proposed method could simultaneously
identify parameters of the Hill muscle model. Specifically, the
proposed method uses the MSK forward dynamics as the resid-
ual loss for the identification of personalized physiological
parameters and another residual constraint based on the muscle
contraction dynamics for the estimation of muscle forces
without data labels. Comprehensive experiments indicate the
feasibility of the proposed method.
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