
This is a repository copy of Extremism, segregation and oscillatory states emerge through 
collective opinion dynamics in a novel agent-based model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209971/

Version: Published Version

Article:

Stokes, Beth, Jackson, Samuel, Garnett, Philip orcid.org/0000-0001-6651-0220 et al. (1 
more author) (2024) Extremism, segregation and oscillatory states emerge through 
collective opinion dynamics in a novel agent-based model. The Journal of Mathematical 
Sociology. pp. 42-80. ISSN 1545-5874 

https://doi.org/10.1080/0022250X.2022.2124246

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gmas20

The Journal of Mathematical Sociology

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/gmas20

Extremism, segregation and oscillatory states
emerge through collective opinion dynamics in a
novel agent-based model

Beth M. Stokes, Samuel E. Jackson, Philip Garnett & Jingxi Luo

To cite this article: Beth M. Stokes, Samuel E. Jackson, Philip Garnett & Jingxi Luo (2024)
Extremism, segregation and oscillatory states emerge through collective opinion dynamics
in a novel agent-based model, The Journal of Mathematical Sociology, 48:1, 42-80, DOI:
10.1080/0022250X.2022.2124246

To link to this article:  https://doi.org/10.1080/0022250X.2022.2124246

© 2022 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 09 Oct 2022.

Submit your article to this journal 

Article views: 1279

View related articles 

View Crossmark data

Citing articles: 2 View citing articles 



Extremism, segregation and oscillatory states emerge 
through collective opinion dynamics in a novel 
agent-based model

Beth M. Stokesa,b, Samuel E. Jacksonc, Philip Garnettd, and Jingxi Luo a

aSchool of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK; bDepartment of 
Mathematical Sciences, University of Bath, Bath, UK; cDepartment of Mathematical Sciences, Durham 
University, Durham, UK; dSchool for Business and Society, University of York, Heslington, York, UK

ABSTRACT

Using mathematics to model the evolution of opinions among 
interacting agents is a rich and growing field. We present a novel 
agent-based model that enhances the explanatory power of 
existing theoretical frameworks, corroborates experimental find-
ings in social psychology, and reflects observed phenomena in 
contemporary society. Bespoke features of the model include: 
a measure of pairwise affinity between agents; a memory capacity 
of the population; and a generalized confidence bound called the 
interaction threshold, which can be dynamical and heteroge-
neous. Moreover, the model is applicable to opinion spaces of 
any dimensionality. Through analytical and numerical investiga-
tions, we study the opinion dynamics produced by the model and 
examine the effects of various model parameters. We prove that 
as long as every agent interacts with every other, the population 
will reach an opinion consensus regardless of the initial opinions 
or parameter values. When interactions are limited to be among 
agents with similar opinions, segregated opinion clusters can be 
formed. An opinion drift is also observed in certain settings, 
leading to collective extremisation of the whole population, 
which we quantify using a rigorous mathematical measure. We 
find that collective extremisation is likely if agents cut off connec-
tions whenever they move away from the neutral position, effec-
tively isolating themselves from the population. When 
a population fails to reach a steady state, oscillations of 
a neutral majority are observed due to the influence exerted by 
a small number of extreme agents. By carefully interpreting these 
results, we posit explanations for the mechanisms underlying 
socio-psychological phenomena such as emergent cooperation 
and group polarization.
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1. Introduction

Creating mathematical models to explain the dynamics of opinions is 

a research endeavor dating back to French (1956) and remains a frontier 
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today (Castellano et al., 2009; Flache et al., 2017; Noorazar et al., 2020). By 

quantifying the interconnections among a social group, opinion dynamics 

models provide unique insights into the stimuli behind individuals evolving 

their views, and reveal mechanisms by which the group forms a consensus or 

fails to do so. This paper puts forward a new mathematical model of the 

emergence of extremism and segregation through opinion dynamics in 

a closed community. Interpreting the term ‘opinion’ broadly, we design the 

theory to be applicable to a variety of contexts including cultural evolution, 

language dynamics, economic games, animal societies, and so on.

One of the foundational models of opinion dynamics is due to DeGroot 

(1974), where a group of agents iteratively update their positions to weighted 

averages of other agents’ positions. Extending DeGroot’s model, Friedkin and 

Johnsen (1990) incorporates exogenous variables and other effects to simulate 

conflict and conformity behaviors. The DeGroot-Friedkin paradigm, which 

represents opinion updates as linear maps, remains influential today. In an 

insightful nonlinear generalization, Dandekar et al. (2013) shows that polar-

ization can be a consequence of biased assimilation, a well-known psycholo-

gical phenomenon where one is influenced most strongly by people with 

similar views (Lord et al., 1979). An important development of the theory 

introduces the effect of stubbornness: by allowing agents to have some attach-

ment to their initial beliefs, it is found that the more stubborn agents hold 

more social power over time (Tian et al., 2021).

Bounded Confidence Models generalize the DeGroot-Friedkin paradigm by 

allowing each agent to interact only with agents whose opinions fall within 

some ‘confidence bound.’ Hegselmann and Krause (2002), for example, mod-

els the process of opinion fragmentation by updating to the average opinions 

of agents within the confidence bound. The model by Deffuant et al. (2000) has 

agents interacting in pairs and only adjusting their opinions if they fall within 

each other’s confidence bound, a process which leads to clustering. Other 

developments of Bounded Confidence Models have accounted for various 

factors that affect opinion dynamics, in order to align the models with social 

realities. Examples of such factors include group pressure and in-group favor-

itism (Alizadeh et al., 2015; Cheng & Yu, 2019); social feedback (Banisch & 

Olbrich, 2019); cultural complexity (Flache & Macy, 2011; Turner & Smaldino, 

2018); repulsion (Huet et al., 2008; Stadtfeld et al., 2020); private opinions (Ye 

et al., 2019); and randomness in the confidence bounds (Kurahashi-Nakamura 

et al., 2016).

The Voter Model by Holley and Liggett (1975) is distinct in character from 

Bounded Confidence Models; it considers a set of ‘voters’ who change their 

opinions at random to that of one of their neighbors, without accounting for 

the opinion they currently hold. Similarly, in the Neutral Model by Bentley 

et al. (2011), agents copy an existing opinion at random from the population 

or, with a low probability, invent a new opinion. To augment the Voter Model, 
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the concept of ‘inertia’ has been developed, allowing voters to have conviction 

in their previously held opinions (Stark et al., 2008a, 2008b). Inertia has 

subsequently been applied to the Noisy Voter Model which, when combined 

with supportive interactions, produce strong drifts of opinions (Artime et al., 

2018; Kononovicius, 2021).

Elsewhere, models with adaptive networks have been shown to promote the 

formation of echo chambers (Benatti et al., 2020); Weighted Balance Theory 

encompassing multiple weighted attitudes has been validated against 

American National Election Survey data (Schweighofer et al., 2020); 

a statistical physics approach has successfully integrated data from the 2008 

US presidential election (Galesic & Stein, 2019); various graph theoretical 

approaches have been developed to investigate opinion convergence (M. Cao 

et al., 2008; Hendrickx et al., 2014; Nedić & Liu, 2016; Ren & Beard, 2005); and 

models with memory-based connectivity have been shown to produce opinion 

clusters (Mariano et al., 2020).

In this paper, we develop a novel agent-based model that is nonlinear and 

deterministic; it incorporates and improves elements from the DeGroot- 

Friedkin, Bounded Confidence, Voter, and other modeling frameworks, creat-

ing a new theory with significantly enhanced explanatory power. The model 

unifies and enhances many of the aforementioned socio-psychological factors 

or phenomena, for instance: the ‘stubbornness is power’ effect, biased assim-

ilation, a dynamic confidence bound, inertia-induced opinion drift, and 

memory-based connectivity. Specific features, which are either important 

inclusions or upgrades from existing models, are as follows.

Many Bounded Confidence Models allow each agent to hold only one 

opinion. We propose that each agent holds and communicates multiple 

opinions at a time. Equivalently, we say that each agent holds an opinion 

with multiple components, which will be represented as components of 

a multi-dimensional vector. Two agents will interact if and only if the 

Euclidean distance between their opinions falls within some prescribed 

bound. Instead of taking discrete values as in Voter Models, the opinion 

vectors will take continuous values, allowing a greater variety of simulation 

outcomes to emerge. In a move akin to the introduction of inertia to Voter 

Models, we will define the concept of ‘memory capacity,’ describing the 

number of past states of the population that each agent takes into account 

when deciding whether or not to interact with another. The resulting non- 

Markovian process of opinion updating bears a stronger resemblance to real- 

world decision-making than its Markovian counterparts, and is reducible to 

the Markovian process if the memory capacity is minimized.

Concepts similar to this memory capacity have been examined in a small 

number of studies from which we have taken inspiration (Anderson & Ye, 

2019). Most notably, the network-based model by Mariano et al. (2020) 

includes a memory state variable that reflects an agent’s opinion history and 
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a parameter that controls how quickly an agent ‘forgets’ the past. In a similar 

fashion, the connectivity of agents in our model is also dependent upon the 

history of opinions, but the model’s realism is now improved by allowing the 

graph of connectivity to be directed: i need not influence j if j influences i, 

which is a sensible feature of social interactions in the real world.

Another field of research from which we have taken inspiration is the 

modeling of collective animal motion. The generalizability of collective 

motion models to the field of opinion dynamics has previously been addressed 

(M. M. Cao et al., 2008; Vicsek & Zafeiris, 2012), drawing parallels between 

convergence properties of self-synchronizing animal systems and quorum- 

finding mechanisms in social groups. The model of spontaneous order in bird 

flocks by Cucker and Smale (2007), in particular, has strongly influenced this 

paper (see, Section 2).

This paper’s scope and structure is as follows. We outline the principal ideas 

behind our model and present its mathematical formulation in Section 2, 

followed by a key theorem on consensus formation. A novel concept of 

pairwise ‘affinity’ will be introduced which describes how closely aligned two 

agents are in their recent history and is parameterized by the aforementioned 

memory capacity. In Section 3, we use numerical simulations to explore the 

phenomena of clustering, opinion drift, and extremisation, exploring real- 

world implications of the simulation results in the context of cooperative 

networks. We also examine the natural emergence of extreme views from 

the system when each agent’s threshold for interaction evolves with their 

opinions. Section 3.4 proves that the model admits periodic solutions under 

certain conditions that we specify explicitly, which is a particularly intriguing 

feature. The oscillatory dynamics that arise when the system fails to converge 

are investigated in detail. Finally, we will draw conclusions and discuss future 

directions in Section 4.

2. The model and preliminary analysis

In the model, an ‘opinion’ has any number of components, which will be 

represented as coordinates in D-dimensional space. For example, an agent’s 

preference for sweet or savory popcorn can be one dimension, while their 

conservative or liberal politics may be another. It is assumed that, in general, 

an agent evolves their entire opinion – all dimensions included – as a whole, 

rather than evolve the components independently. Thus, the opinion space is 

R
D, with the origin representing the opinion that is neutral in every dimen-

sion. The Euclidean distance from the origin to an opinion is a measure of that 

opinion’s ‘extremeness.’

We consider N � 2 agents whose opinions are represented by D- 

dimensional real-valued vectors, v1ðtÞ; v2ðtÞ; . . . ; vNðtÞ, where t ¼ 0; 1; 2; . . .
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are discrete times. To update their opinion at each time, every agent tries to 

align with a select group of other agents. More precisely, every pair of agents, i 

and j, share an affinity, aijðtÞ, which we define in Section 2.1; every agent has 

a threshold, ρiðtÞ, and agent i will try to align with agent j at time t if and only if 

aijðtÞ> ρiðtÞ. The model is therefore of the bounded confidence type, except 

pairwise influence is determined not only by the opinion difference between 

the pair, but by the more sophisticated measure of pairwise affinity which 

involves a collective memory capacity of the population. We now proceed to 

detail the mathematical model in Section 2.1, before proving a result on the 

consensus formation in Section 2.2.

2.1. Mathematical formulation

A vital element of the model is the pairwise affinity, aijðtÞ, between agents i and 

j, which we require to possess several properties. Firstly, the affinity must be 

symmetric (aij ¼ aji). Secondly, it should always take positive values no larger 

than 1, with higher values indicating that i and j are more ‘alike.’ Thirdly, the 

affinity should depend not only on the opinion difference between i and j at the 

current time, but also on a recent history of opinion differences. This memory 

property represents an important generalization from existing bounded con-

fidence models. For an affinity measure that satisfies all these requirements, we 

take 

where wðτ; t; μÞ is a weight function given by 

and we have introduced the integer parameter μ � 1, which we call the 

memory capacity, representing the number of steps (including the present 

step) that every agent takes into account when calculating affinities. If the 

current time t< μ, then the sum will be over all time-steps. If μ � t, then w 

assigns unit weight to times from t � μ þ 1 to the present while assigning zero 

weight to all prior times. We say that opinion differences prior to t � μ þ 1 

‘drop out’ of memory. The sum in the denominator of aij is a weighted sum of 

the square of opinion difference over the most recent μ time-steps, where �k k
denotes the Euclidean norm and so x� yk k denotes the Euclidean distance 

between x and y. Although we have chosen the Euclidean (l2) norm as the 

distance measure, it is worth noting that other choices of norm would also be 

suitable. In particular, the convergence results in Section 2.2 remain true for 
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the l1 and l1 norms (see details in Lemma 2.1 and Proposition 2.2), meaning 

that the same consensus behavior would be observed given an alternative 

norm. We choose the Euclidean norm as it provides the most moderate 

measure of distance out of the three candidates since, in gen-

eral, �k k1 � �k k2 � �k k1.

The choice of weight function is one of the simplest, yet it fully captures the 

affinity’s memory property. The addition of 1 in the denominator of aij ensures 

that the affinity never exceeds 1, and aij ¼ 1 (maximum affinity) if and only if: 

either i ¼ j (one has maximum affinity with oneself), or i and j have held 

exactly the same opinion in the most recent μ time-steps including current 

time. The fact that aij > 0 means no two agents will ever share exactly zero 

affinity, no matter how much their opinions differ. Moreover, if two agents i 

and j hold their opinions fixed, with viðτÞ�vjðτÞ, then their affinity aij 

decreases over time, representing the tendency for people to become less 

connected if they keep disagreeing with each other.

With the affinity measure in place, and with every agent having some 

threshold, ρi (to be defined), we let the opinions viðtÞ in the population evolve 

as follows. 

where 

We say that i ‘listens to’ j (or j influences i) at time t if cijðt; ρiÞ ¼ 1, and 

Equation (4) expresses the fact that i listens to j if and only if their affinity 

exceeds i’s threshold. Thus, Qiðt; ρiÞ is simply the number of agents that i 

listens to (including i, since every agent is self-influencing with aii ¼ 1). 

According to Equation (3), the amount by which agent i adjusts their opinion 

at each time is a weighted average of relative opinions from i to all agents that i 

listens to, with weights determined by affinities. By construction, every agent’s 

self-confidence, 1 � 1
Qi

P

j�i cijaij, and all the other weights, 1
Qi

cijaij for j�i, add 

up to 1, meaning that the system’s transition matrix is right-stochastic. Note 

that cij may not be symmetric: aij > ρi does not imply aji > ρj, since ρi and ρj 

may be different (even though aji ¼ aij). In other words, the fact that i listens 

to j does not necessarily mean j listens to i, since they may have different 
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thresholds. Note also that if ρi ¼ 0 for all i, then in the infinite-memory limit 

(μ ! 1), the model becomes analogous to Cucker and Smale (2007) which 

investigates the synchronization of bird flocks.

In this paper we consider two ways to assign thresholds to the population:

(1) Every agent is equally susceptible to change at all times: ρiðtÞ ¼ ρ for all i 

and all t, where 0 � ρ< 1 is some prescribed constant which we call the 

universal threshold. This is the simplest way to assign thresholds.

(2) Every agent’s threshold evolves over time, in such a way that the more 

extreme their opinion, the higher their threshold and hence the less 

susceptible they are to change: 

This assumption is grounded in empirical observations (Kozitsin, 2020; Lord 

et al., 1979; Tian et al., 2021). In Equation (6), ρi is a strictly increasing 

function of the extremeness k viðtÞ k of agent i’s opinion, and α> 0 is 

a constant reinforcement rate determining how sharply one’s threshold 

increases as one’s opinion becomes more extreme (see, Figure 1a). The larger 

α is, the more sharply one’s threshold increases. Note that ρi ! 1 as 

k viðtÞ k! 1, and ρi ¼ ρ if k viðtÞ k¼ 0. We therefore interpret ρ as 

a baseline threshold: the threshold that one has when one’s opinion is entirely 

neutral. Note also that in the limit α ! 0, we recover the uniformly con-

stant ρiðtÞ ¼ ρ.

Recall that the pairwise affinity aijðtÞ decreases over time unless i and j 

adjust their opinions to align with each other. The implication of this fact at 

the population level is that, unless ρiðtÞ ¼ 0 for all i and all t, then as agents fail 

to ‘come together’ in their opinions, the network of interpersonal influences 

will become less connected over time. Equivalently, given two systems with 

identical opinion histories and different memory capacities, the system with 

the larger memory capacity has a less connected network of influences. An 

illustration of this phenomenon is presented in Figure 1. Assume that agents 

1–4 have held their two-dimensional opinions fixed (e.g., due to external 

influences) for at least μ steps, at ð0; 0Þ; ð1; 0Þ; ð1; 1Þ and ð0; 1Þ, respectively. 

Then, the Euclidean distance between any pair’s opinions is fixed at either 1 or 
ffiffiffi

2
p

. Calculating the pairwise affinities by Equation (1), we find aij ¼ 1=
ffiffiffi

2
p

or 

1=
ffiffiffi

3
p

if μ ¼ 1, and aij ¼ 1=
ffiffiffi

3
p

or 1=
ffiffiffi

5
p

if μ ¼ 2. Thus, in case ρi ¼ 0:5 for all 

i: if μ ¼ 1 then everyone listens to everyone else, since 1=
ffiffiffi

2
p

> 1=
ffiffiffi

3
p

> 0:5 

(Figure 1b); if μ ¼ 2 then the most distant pairs of agents, f1; 3g and f2; 4g, do 

not communicate, since 1=
ffiffiffi

3
p

> 0:5 > 1=
ffiffiffi

5
p

(Figure 1c). On the other hand, in 

case individual thresholds evolve from baseline ρ ¼ 0:5 according to Equation 

(6) with reinforcement α ¼ 0:2: if μ ¼ 1 then f2; 4g do not communicate 

while f1; 3g communicate uni-directionally, the symmetry being broken due 
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to the heterogeneous thresholds (Figure 1d); if μ ¼ 2 then the only commu-

nications are agent 1 listening to agents 2 and 4, since no other affinity exceeds 

the relevant threshold (Figure 1e). This simple example shows that the con-

nectivity of the system depends sensitively on multiple factors: the opinions, 

thresholds and memory capacity.

In the language of complexity theory, the system is ‘simple’ if the universal 

threshold ρ is close to 0 or 1, being always highly connected in the former case 

and always barely connected in the latter; and the complexity is maximized if ρ 

takes intermediate values since the connectivity can fluctuate greatly over time, 

as the example above demonstrates. In the simplest case, ρiðtÞ ¼ 0 (meaning 

everyone listens to everyone else all the time), we establish analytically in 

Section 2.2 that any population is guaranteed to form a consensus over time, 

meaning viðtÞ converge to some common value for all i. In any other case 

(ρiðtÞ ¼ ρ> 0 or Equation (6)), the system is not analytically tractable, so we 

will investigate the opinion dynamics using numerical methods in Section 3.

2.2. Sufficient conditions for convergence and for consensus

We say that the system converges to a steady state if and only if, for all i, there 

exists some constant v�i such that viðtÞ ! v�i as t ! 1. We say that the 

system converges to consensus if and only if there exists some common 

constant v� such that, for all i, viðtÞ ! v� as t ! 1. Whenever the system 

converges to a steady state but not to consensus, we say that the system 

converges to segregation. In this section, we consider the model (1)–(5) with 

some universal threshold ρiðtÞ ¼ ρ, in which case we show that the system 

always converges to a steady state, and establish the following sufficient 

condition for consensus: ρ< ρ�, where ρ� is a critical value we will determine 

explicitly.

In Lorenz (2005), it was shown that any system Vðt þ 1Þ ¼ MðtÞVðtÞ where 

V 2 R
N�D converges to a steady state if three conditions are met: all agents 

have positive self-confidence (mii > 0); confidence is mutual 

(mij > 0 , mji > 0); and there exists some δ > 0 such that the time-sequence 

Mt, defined by Mt ¼ mini;jfmijðtÞ> 0g, satisfies Mt > δ. By expressing (3) in 

Figure 1. An example of the interplay between agents’ thresholds, pairwise affinities, and pairwise 
influences. Panel (a) shows the evolving threshold ρi of some agent i as a function of k vi k , as per 
Equation (6), with reinforcement rate α ¼ 0:1; 0:2; 0:4; 0:8. Panels (b-e) are snapshots of the 
connections among four agents with two-dimensional opinions ð0; 0Þ; ð1; 0Þ; ð1; 1Þ and ð0; 1Þ
which we assume, for this illustration, have been held fixed for at least μ time-steps. The arrows 
denote the three distinct types of pairwise influence. The numbers that annotate the arrows are 
the pairwise affinities calculated by Equation (1) to 3dp precision. Panels (b,c) have universal 
threshold ρi ¼ 0:5 for all i; panels (d,e) have evolving thresholds with baseline ρ ¼ 0:5 and 
reinforcement rate α ¼ 0:2, calculated by Equation (6) to 3dp precision. The memory capacity is 
μ ¼ 1 in (b,d) and μ ¼ 2 in (c,e).
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matrix form (putting the opinion of agent i in row i of V), we find the diagonal 

elements 

implying that the current model meets the “positive self-confidence” condi-

tion. For the “mutual confidence” condition, we look at the off-diagonal 

elements 

and note that equality holds if and only if cij ¼ 0. Since ρi ¼ ρ for all i by 

assumption and aij ¼ aji by definition, we deduce from (4) that cij ¼ cji, and 

therefore mij ¼ 0 if and only if mji ¼ 0. Lorenz’s second condition is thus met.

To show that Lorenz’s third and final condition is met, it suffices to find 

a positive lower bound for all positive off-diagonal mij for all time. To that end, 

note that 

We therefore seek some constant ρ� > 0 such that aij � ρ� for all i; j and all 

time, and we do so through the following lemma. 

Lemma 2.1. Consider the system Vðt þ 1Þ ¼ MðtÞVðtÞ, where 

t 2 f0; 1; 2; . . .g, V 2 R
N�D and M 2 R

N�N . Let Rt ¼ maxifk riðVðtÞÞ kg, 

where riðVÞ denotes the i th row of V and k � k the Euclidean norm. If k
MðtÞk1 � 1 for all t, then the sequence Rt�0 is non-increasing.

Proof. It is an established fact of linear algebra that Rt equals the ð2;1Þ-norm 

of VðtÞ (Lewis, 2010): 

Combining the submultiplicity of induced norms: 

with the assumption that k MðtÞk1 � 1, yields 

as required.                                                                                         □
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Note that Lemma 2.1 is a general result applicable to any system whose 

transition matrix has absolute row sums no larger than 1. Note also that 

Lemma 2.1 still holds if the l1 or l1 norm were used to define the pairwise 

affinity and hence Rt. This is due to the following facts which are analogous to 

Equation (10; Lewis, 2010): maxifk riðVðtÞÞk1g ¼k VðtÞk1;1, 

maxifk riðVðtÞÞk1g ¼k VðtÞk1;1. To apply Lemma 2.1 to the current 

model (1)–(5), we simply let riðVðtÞÞ ¼ viðtÞ and M be the matrix with 

elements given by (7)–(8). Then, Rt ¼ maxi k viðtÞ k is the maximum 

Euclidean magnitude of all opinions at time t. Note that Lemma 2.1 implies 

the set of opinions is always ‘shrinking’ in the sense that Rt is non-increasing, 

regardless of ρiðtÞ. A useful interpretation of this result is that the opinions 

‘shrink’ due to the agents interacting under attractive forces only, with no 

repulsive forces involved. Now, let 

then for all i; j; t, we have k vjðtÞ � viðtÞ k� 2R0 and hence 

which implies that Lorenz’s final condition for convergence is met. We are 

now ready to state the main result of the section. 

Proposition 2.2. Consider a population of agents i ¼ 1; 2; . . . ;N, evolving 

their opinions viðtÞ 2 R
D according to the model (1)–(5), with some universal 

threshold ρiðtÞ ¼ ρ for all i; t.

(1) Given any initial condition, the opinions converges to some steady state: 

limt!1 viðtÞ ¼ v�i for all i.

(2) Given any initial condition and any ρ< ρ�, where ρ� is given by (13) with 

R0 ¼ maxifvið0Þg, the opinions converge to a consensus: 

limt!1 viðtÞ ¼ v� for some common v�. Moreover, 

is the initial mean opinion of the population.

Proof. Part (1) is already proven, by showing that the system meets all of 

Lorenz’s convergence criteria. For part (2), it follows immediately from (14) 

and ρ< ρ� that aijðtÞ> ρ for all i; j; t, which implies cijðtÞ ¼ 1 for all i; j; t. That 

is, every agent listens to every other for all time. The system therefore 

simplifies to 
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where riðVÞ ¼ vi, A is the N � N matrix with elements aij, and B is the N �
N diagonal matrix with elements 

Define the initial mean matrix, V0, with rows 

It takes a straightforward calculation to show AV0 ¼ BV0, which means 

that VðtÞ ¼ V0 is a steady state of the system. Since convergence is already 

established, and since limits in RN�D are unique, it follows that VðtÞ ¼ V0 is 

precisely the state to which the system converges. □

Recall that Lemma 2.1 holds if the system were defined using the l1 or l1
norm instead of the Euclidean norm; thus, the same can be said for 

Proposition 2.2. To apply Proposition 2.2, consider initial opinions in RN�D 

where each column is N values sampled from an independent standard normal 

distribution (as is done in Section 3). In this case, it is reasonable to assume 

that all initial opinions fall within a sphere of radius R0 ¼
ffiffiffiffiffiffi

9D
p

. 

Proposition 2.2 then implies that consensus is guaranteed whenever 

To conclude the section, we note that other than Lorenz (2005), different 

convergence criteria for opinion dynamics systems exist in the literature, for 

example, in Blondel et al. (2005). Hendrickx et al. (2014) proved general 

results concerning the existence of models that guarantee average consensus, 

using a graph-theoretic approach. Here, Proposition 2.2 can be stated in graph 

theoretical terms because a graph that represents the agents as nodes and 

pairwise influences as edges is indeed connected and undirected if ρ< ρ�. 

Overall, the model with ρ< ρ� provides a mechanism for how an interacting 

social group can find common ground from initial disagreements, through 

a process of collective assimilation.
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3. Numerical simulations: results and discussions

In this section, we investigate how the opinion dynamics are affected by the 

model parameters, focusing mainly on the threshold, ρi. Two cases are con-

sidered: ρi ¼ ρ constant for all time (in Section 3.2), and ρi evolving with 

individual opinions according to Equation (6; in Section 3.3). We also examine 

the effects of different dimensions (D) of the opinion vector, and the memory 

capacity (μ).

3.1. Methodology

Numerical simulations were run in MATLAB (code available at https://github. 

com/bmstokes/belief_dynamics/releases/tag/v.1.0.0 under the Mozilla Public 

License 2.0). Every simulation is for N ¼ 100 agents. The D components of 

every initial opinion are drawn randomly from D independent standard 

normal distributions. We adopt this simplistic initialization method on the 

basis of its universality: in the absence of any specific context, it is reasonable 

to consider a normally distributed initial population of opinions, which can 

then be standardized to enable comparison across the dimensions. We do, 

however, acknowledge that some real-world scenarios may not be well repre-

sented by this initial sampling; we will present some examples in Section 4 and 

discuss how they can be investigated using the model in future work. The 

simulation results presented here serve to demonstrate the power of the 

model: rich and varied phenomena emerge from simple initial conditions 

and hold strong explanatory power, as we will demonstrate in the following 

sections. Similarly rich phenomena are bound to emerge from more complex 

initial states, which any user of the model is always free to specify. For the 

present study, under each value of D, we generated 1000 distinct initial states; 

and for each set of other parameter values (some combination of μ; ρ; α, see, 

Table 1), we ran 1000 simulations using that common set of initial states, 

allowing us to control for the parameters μ; ρ and α.

The system is in a steady state from time t0 onwards if viðt þ 1Þ � viðtÞ ¼ 0 

for all i for all t � t0. In the special case of zero universal threshold 

(ρi ¼ ρ ¼ 0), Proposition 2.2 has established that the only possible steady 

state is consensus, and that the system converges to it from any initial state 

in the sense of viðt þ 1Þ � viðtÞ ¼ 0 for all i as t ! 1. For other choices of ρi, 

systems may converge to other (non-consensus) types of steady state, and 

some systems may not converge to any steady state. For the practical purpose 

of numerical simulations, where it is impossible to let t ! 1, we use the 

following procedure to determine whether a system has reached a (pseudo-) 

steady state, allowing us to terminate the simulation at some finite time.

(1) Two agents are in the same cluster if the Euclidean distance between 

their opinions is less than 10�6. The clustering of the population refers 
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to the partition of the N agents into their clusters. For example, if agents 

labeled by even numbers are in one cluster (all pairwise distances less 

than 10�6) while all odd-numbered agents are in a different cluster, at 

some time t, then we say that the clustering at this time 

is fð1; 3; 5; . . .Þ; ð2; 4; 6; . . .Þg.

(2) If there exists some time tc � 0 such that, for t ¼ tc þ 1; tc þ 2; . . . ; tc þ 100:

(a) The clustering of the population remains the same as the clustering at 

time tc; and

(b) No agent ‘accelerates’ by more than 10�6 in any dimension at any 

time, i.e., maxi;jfvijðt þ 1Þ � vijðtÞg � 10�6; and

(c) no agent’s opinion at t ¼ tc þ 100 is further than 10�6 away 

in any dimension from their opinion at t ¼ tc, 

i.e., maxi;jfvijðtc þ 100Þ � vijðtcÞg � 10�6;

then we say that the system has reached a (pseudo-)steady state at time tc, 

and stop the simulation. We call tc the convergence time of this system.

In short and roughly speaking, we stop the simulation at time tc if all agents 

have barely moved for 100 time-steps, and our definition of ‘barely’ is a very 

strict condition. The ‘pseudo-steady’ states therefore serve as very good 

proxies for the real (analytical) steady states of the system, so we will refer to 

them simply as steady states. If, by the criteria above, the system fails to 

converge to any steady state within 5000 time-steps, then we declare that the 

system in that particular configuration (of initial state and parameters) fails to 

converge.

Through our simulations, we find that a system with universal threshold 

(ρi ¼ ρ taking values as per Table 1) always converges to some steady state, 

regardless of the other parameters and initial state (see, Section 3.2). On the 

other hand, a system with individually evolving heterogeneous thresholds, 

where the reinforcement rate takes values as per Table 1, sometimes fails to 

converge in interesting ways (see, Section 3.3).

3.2. Universal threshold: consensus versus segregation

In this part of the investigation, we assume that all agents have the same 

threshold, which remains constant for all time. That is, ρiðtÞ ¼ ρ ¼ constant 

for all i.

Table 1. Parameters used in numerical simulations.

Parameter Values used

D (Dimensionality of every opinion) 1, 2, 3, 5
μ (Memory capacity of population) 2, 10
ρ (Universal threshold in Section 3.2; baseline threshold in Section 3.3) 0, 0.01, 0.02, . . . , 0.99
α (Reinforcement rate; only in Section 3.3) 0.1, 0.2, 0.4, 0.8
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The simulations produced two distinct types of phenomena. The system 

reaches either a steady state of consensus, in which there is exactly one cluster 

(see, Figure 2a,c), or a steady state of segregation, where more than one clusters 

co-exist (Figure 2b,d). In particular, whenever consensus is formed, the con-

sensus opinion equals the initial mean opinion of the population, as 

Proposition 2.2 predicts. When segregation is reached under a high value of ρ, 

it is typical that some agents never alter their opinion for all t > 0 (Figure 2b,d). 

This stubbornness is exhibited only by agents whose initial opinions are 

‘extreme,’ i.e. far from 0. Since the universal threshold is high, everyone listens 

only to a small number of others, and it is likely that those who hold initial 

opinions far from everyone else will never be influenced by anyone. In the 

example of Figure 2d, the set of connections among all agents, or the connectome 

of the population, evolves in the manner displayed by Figure 3. The figure shows 
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Figure 2. Examples of one- and two-dimensional opinion trajectories of N ¼ 100 agents evolving 
according to (3), with memory capacity μ ¼ 2. Panels (a,b): One-dimensional dynamics from 
a common initial state (sampled from a standard normal distribution), with different universal 
thresholds: ρ ¼ 0 (a) and ρ ¼ 0:8 (b). Panels (c,d): Two-dimensional dynamics from a common 
initial state (the two dimensions sampled from two independent standard normal distributions), with 

different universal thresholds: ρ ¼ 0 (c) and ρ ¼ 0:8 (d); vð1Þ and vð2Þ denote the first and second 
dimensions of the opinions, respectively. Consensus is reached in (a,c), while (b) exhibits segregation 
with 6 distinct clusters, and (d) shows segregation with 9 distinct clusters.
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that even at the initial t ¼ 0, one agent is ‘their own island’: not connected to 

anyone. This agent never alters their opinion while the agents who have con-

nections evolve their positions. It is a common feature of the model that as the 

opinions evolve, the connectome becomes more disconnected in the graph- 

theoretical sense: more isolated ‘islands’ appear. In the example illustrated by 

Figure 3, the nine clusters that constitute the population’s final steady state have 

almost stabilized by t ¼ 7, at which time only a few connections remain while 

the majority of initial connections have been severed. The cutting of 

a connection occurs if the pairwise affinity drops below the relevant threshold, 

and affinity decays over time if two agents keep failing to agree with each other. 

The model dictates that agents always try to align with neighbors; the difference 

between their succeeding in coming together and failing to do so (before their 

connection is cut) gives rise to the difference between consensus and 

segregation.

The rate at which connections are lost is strongly dependent on the popula-

tion’s memory capacity, μ. Comparing Figure 3 to Figure 4, we see that given 

identical initial opinions and other parameters, the connectome evolves more 

quickly when the memory capacity is small. That is, if agents quickly forget 

past discrepancies, then the connectome gets rewired dramatically at each step, 

and the system takes few steps to stabilize. This result is reminiscent of a recent 

success story in mathematical sociology. After multiple theoretical models 

predicted that the rapid rewiring of a social network promotes cooperative 

behavior (Fu et al., 2008; Hanaki et al., 2007; Santos et al., 2006), the phenom-

enon was observed in a human experiment by Rand et al. (2011). In the 

current model, faster rewiring of the connectome accompanies not only faster 

stabilization of the population, but also the formation of fewer, larger clusters 

(see, Figure 5). This effect is most pronounced when the dimensionality of 

opinion space is D ¼ 2 or 3 and when the universal threshold is high (ρ � 0:8). 

For example, in two-dimensional simulations with ρ ¼ 0:8, the mean number 

of stable clusters formed is 19 if μ ¼ 10 and 12 if μ ¼ 2, the latter scenario 

having necessarily larger cluster sizes on average (Figure 5c,d). Even more 

dramatically, in three-dimensional simulations with ρ ¼ 0:8, the mean num-

ber of stable clusters is 48 if μ ¼ 10 and 35 if μ ¼ 2 (Figure 5e,f). By inter-

preting the large clusters (which are always close to the neutral 0 position of 

opinion space) as cooperative groups, and the small clusters (which are always 

on the periphery of opinion space) as ‘defectors’ in the language of Rand et al. 

(2011), we are able to understand the dynamics presented here as a process of 

seeking cooperation. Note that in order to make such identifications, we need 

to assume that cooperation is the neutral, or default, position; that a randomly 

sampled population will position themselves in a normal distribution around 

it. The smaller the memory capacity (or, the more ‘forgetful’ the agents), the 

more quickly the network gets rewired and cooperative clusters are formed, 
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Figure 3. Evolution of the connectome of the population as the opinions evolve in the manner of 
Figure 2d, with parameters D ¼ 2; μ ¼ 2; ρ ¼ 0:8; α ¼ 0. Opinions are represented by (blue) dots 
while connections between agents are (black) lines. The opacity of the dots increase as agents 
overlap, so that the larger the cluster, the darker the dots. Since the threshold ρ is universal, every 
connection is bidirectional: the pair of agents influence each other. The opacity of the dots increase 
as agents overlap, so that the larger the cluster, the darker the dots.
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and the larger those clusters. This finding is consistent with Rand et al. (2011) 

and the preceding theoretical predictions.

The remainder of this section focuses on the effects of the parameters D; ρ 

and μ on the simulation results, particularly on clustering and segregation. We 

reiterate that these results are contingent on the assumption of normally 

distributed initial opinions.

For any given initial state, the system reaches consensus if ρ is sufficiently 

small, and segregation if ρ is sufficiently large (all other parameters being 

fixed). That is to say, if everyone is sufficiently amenable, then consensus will 

be formed; otherwise, there will be segregation. A deeper investigation of this 

phenomenon reveals a key feature of the model. For any fixed D and μ, the 

number of clusters in the steady state tends to increase with ρ; in fact, the mean 

number of clusters formed over 1000 simulations is a monotonic function of ρ 

(see, Figure 5). If ρ � ρc for some ρc which depends on D and μ, the only 

outcome over 1000 simulations is consensus. For example, if ðD; μÞ ¼ ð1; 2Þ
then ρc ¼ 0:29 (Figure 5a); if ðD; μÞ ¼ ð1; 10Þ then ρc ¼ 0:2 (Figure 5b); and if 

ðD; μÞ ¼ ð2; 2Þ then ρc ¼ 0:27 (Figure 5c). We find that ρc is a decreasing 

Figure 4. Evolution of the connectome of the population as the 2-dimensional opinions evolve 
from the same initial state as in Figure 2d, with parameters μ ¼ 10; ρ ¼ 0:8; α ¼ 0. Opinions are 
represented by (blue) dots while connections between agents are (gray) lines. The opacity of the 
dots increase as agents overlap, so that the larger the cluster, the darker the dots. Since the 
threshold ρ is universal, every connection is bidirectional: the pair of agents influence each other.
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Figure 5. Number of clusters formed for N ¼ 100 agents with universal threshold ρ taking values 
as per Table 1; 1000 simulations per value of ρ. A common set of 1000 initial states are used. 
Dimensionality D ¼ 1 (a,b), 2 (c,d), 3 (e,f), and 5 (g,h). Memory capacity μ ¼ 2 (a,c,e,g), and 10 (b, 
d,f,h).
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function of both D and μ: the more high-dimensional the opinions, or the 

larger the collective memory capacity, the more amenable everyone must be in 

order to form a consensus. All these simulation results are consistent with the 

sufficient condition (19) for consensus. If D � 3, we find that some initial 

states lead to steady states with as many clusters as there are agents: every agent 

holds their own unique opinion and will not change them. We call such 

a steady state maximum segregation. These states are achievable (over the 

1000 simulations that we ran) only if ρ � ρs for some ρs which depends on 

D (but its dependence on μ is negligible). For example, if D ¼ 3 then ρs ¼ 0:97 

(Figure 5ef); and if D ¼ 5 then ρs ¼ 0:83 (Figure 5gh). We find that ρs is 

a decreasing function of D: the more high-dimensional the opinions, the easier 

it is for the system to reach maximum segregation. In particular, for D ¼ 5, the 

mean number of clusters formed resembles a sigmoid function of ρ where, for 

ρ � 0:93, even the mean number is greater than 99.5, indicating that max-

imum segregation is extremely likely.

We also find that if ρ � ρnc for some ρnc which depends on D and μ, then the 

population never forms a consensus. For example, if ðD; μÞ ¼ ð1; 2Þ then ρnc ¼
0:85 (see, Figure 5a); if ðD; μÞ ¼ ð1; 10Þ then ρnc ¼ 0:78 (Figure 5b); and if 

ðD; μÞ ¼ ð2; 2Þ then ρnc ¼ 0:71 (Figure 5c). If ðD; μÞ ¼ ð5; 10Þ, then ρnc 

becomes as small as 0.34. The more high-dimensional the opinions, or the 

larger the collective memory capacity, the easier it is for consensus to be 

impossible.

The convergence time, tc (defined in Section 3.1), is strongly dependent on 

the memory capacity, μ (see, Figure 6). When μ ¼ 2, no simulations take more 

than 50 steps to converge, and 95% of simulations take fewer than 25 steps to 

converge (Figure 6a,c,e,g). Raising the memory capacity to μ ¼ 10 approxi-

mately doubles the convergence time (Figure 6b,d,f,h). The mean convergence 

time is maximized by a ρ-value that is negatively correlated with both D and μ. 

When D ¼ 3 or 5, simulations with large ρ can yield zero convergence time 

(Figure 6e,f,g,h). Indeed, if the affinity threshold is so high that there are no 

interactions between agents in the initial state, then no agent would ever 

deviate from their initial opinion, leading to maximum segregation with 100 

distinct clusters (see, Figure 5e,f,g,h).

We define the opinion drift of a system as the Euclidean distance from the 

initial mean opinion of the population to the steady-state mean opinion. The 

simulations reveal that the mean opinion drift over all simulations is max-

imized at some ρ ¼ ρd which depends on D and μ (see, Figure 7). While ρd is 

a decreasing function of both D and μ, the maximum value of mean opinion 

drift increases with D and μ, reaching approximately 0.11 when 

ðD; μÞ ¼ ð5; 10Þ. The opinion drift is zero for sufficiently small ρ, a result 

consistent with the fact that (19) is a sufficient condition for convergence to 

the mean initial opinion. The phenomenon of opinion drift demonstrates that 
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Figure 6. Convergence time for N ¼ 100 agents with universal threshold ρ taking values as per 
Table 1; 1000 simulations per value of ρ. A common set of 1000 initial states are used. 
Dimensionality D ¼ 1 (a,b), 2 (c,d), 3 (e,f), and 5 (g,h). Memory capacity μ ¼ 2 (a,c,e,g), and 10 
(b,d,f,h).
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Figure 7. Opinion drift for N ¼ 100 agents with universal threshold ρ taking values as per Table 1; 
1000 simulations per value of ρ. A common set of 1000 initial states are used. Dimensionality D ¼
1 (a,b), 2 (c,d), 3 (e,f), and 5 (g,h). Memory capacity μ ¼ 2 (a,c,e,g), and 10 (b,d,f,h). The grouping 
precision of opinion drift is 0.001; that is, the histogram bins are the intervals 
½0; 0:001Þ; ½0:001; 0:002Þ, and so on.
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the population’s average opinion tends to change over time as the agents 

evolve into clusters, and it tends to change more for more complex systems 

(recall that the system is most complex at intermediate values of ρ). The 

simplest systems, with extreme values of ρ, tend to exhibit very small amounts 

of opinion drift as the agents either form a consensus (small ρ) or barely adjust 

their opinions (large ρ). A similar fact holds for the convergence time: the 

more complex systems tend to take longer to reach steady state (Figure 6).

3.3. Evolving heterogeneous thresholds: extremisation and oscillations

In this second line of investigation, we allow agents to evolve their thresholds 

from some baseline value, ρ, according to Equation (6; see, Figure 1). Recall 

that the reinforcement rate, α> 0, determines how sharply one’s threshold 

increases as one’s opinion becomes more extreme. Agents with more extreme 

views will have higher thresholds and therefore be less inclined to listen to 

other agents, thus making those extreme agents appear ‘stubborn.’ This cor-

relation between extremeness of views and stubbornness has been studied in 

formal models and observed in real data (Kozitsin, 2020; Tian et al., 2021). For 

simplicity, we fix the dimensionality of opinion space at D ¼ 2 throughout this 

section.

Unlike the scenario with a universal threshold (which can be recovered in 

the limit α ! 0) where every initial state leads to a steady state, we find that 

when α is sufficiently large, not all initial states induce a steady state (see, 

Figure 8). The number of failures to reach steady state in 1000 simulations, 

Fμ;αðρÞ, is negatively correlated with the baseline threshold, ρ, and positively 

correlated with the memory capacity, μ. Given any combination of ðμ; α; ρÞ
within the range as per Table 1, the number of simulations that reach steady 

state is always at least 950, providing a suitably large pool of results to analyze. 

We consider the cases that fail to converge, and the collective dynamics that 

arise, in more detail in Section 3.4.

For every setting of ðμ; α; ρÞ, the 1000 � Fμ;αðρÞ simulations that do reach 

steady state provide us with results on cluster formation and on convergence 

time, enabling comparisons with corresponding results in the case of universal 

thresholds. Firstly, the mean number of clusters formed is an increasing 

function of ρ, α and μ (see, Figure 9a,b), and consistently higher than the 

counterpart under a universal threshold (Figure 5c,d). Thus, a system where 

agents become more stubborn as their opinions become extreme tends to 

become more segregated than a system with a universal threshold. Meanwhile, 

for sufficiently small ρ, the mean convergence time is much larger under 

evolving heterogeneous thresholds than under universal thresholds (compare 

Figure 9c,d with Figure 6c,d). A larger reinforcement rate α is therefore 
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responsible not only for more splintering of the population, but also for longer 

times taken by any sub-population to reach an agreement.

The most striking result that we observe from simulations relates to the 

extremisation of opinions. We define the extremisation measure of the system 

as the difference between two Euclidean norms: 

where N is the population size (always 100 in this study), viðtÞ are the opinions 

and tc is the convergence time. Recall that the origin in D-dimensional opinion 

space represents the neutral opinion, and that the Euclidean norm of any 

position in the opinion space is a measure of how extreme it is. Thus, the 

extremisation measure represents the extent to which the population’s average 

view becomes more extreme over the course of the opinion dynamics; 

a positive (negative) value indicates that the average view becomes more 

extreme (more moderate). Note that extremisation is unlikely to be negative 

when we generate the initial opinions from normal distributions, which 

necessarily results in an initial mean close to 0. Nevertheless, the fashion in 

which positive extremisation occurs is illuminating, as we now proceed to 

demonstrate.

In many instances, we observe that the mechanism by which the average 

view becomes more (or less) extreme over time is a collective drift (see, 

Figure 10), in which a large group of agents form an unstable drifting cluster 

with more members than any stable cluster. These drifting agents first coalesce 

around some neutral opinion, before collectively moving away from it, being 

drawn to a small number of fringe agents.The drifting cluster eventually 

Figure 8. Under evolving heterogeneous thresholds, with reinforcement rate α> 0, a small number 
of simulations out of the total 1000 fail to produce a steady state. That number, Fμ;αðρÞ, depends 
on α, the memory capacity μ, and the baseline threshold ρ. Panel (a): ðD; μÞ ¼ ð2; 2Þ. Panel (b): 
ðD; μÞ ¼ ð2; 10Þ.
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stabilizes, merging with the fringe attractors, so the population reaches 

a steady state. The drift toward the extremities of the opinion space equates 

to a positive extremisation measure for the population. This phenomenon 

where fringe agents exert great influence over the moderate amenable major-

ity, pulling their opinions to the extremes, has been widely studied in the 

context of radicalization. For example, it has been observed that when uni-

versity students without strong existing social identities are exposed to a large 

variety of strong views, they become at high risk of radicalization (Hollewell & 

Longpré, 2022). More generally, it has been proposed that fair-minded indi-

viduals become radicalized through deepening engagement with extremists on 

a gradually narrowing ‘Staircase to Terrorism’ (Moghaddam, 2005).

A detailed view of the dynamics depicted in Figure 10a is presented in 

Figure 11. We see that three fringe clusters have formed by the time t ¼ 6, after 

which they exert influence over the relatively neutral majority without moving 

their own positions. At a much later time, one of the fringe groups begins 

moving under the influence of the majority due to its close proximity, and 

eventually merges with the majority, stabilizing the entire population.
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Figure 9. Under evolving heterogeneous thresholds, the mean number of clusters formed (a,b) 
and the mean convergence time (c,d) are taken, for each parameter setting ðμ; α; ρÞ, from all 
simulations that result in steady states. Panels (a,c): μ ¼ 2. Panels (b,d): μ ¼ 10. Other parameters 
used for each panel: D ¼ 2, α ¼ 0:1; 0:2; 0:4; 0:8, and ρ ¼ 0; 0:01; 0:02; . . . ; 0:99.
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The simulations show that a short memory capacity (μ ¼ 2) tends to induce 

larger extremisation measures than a long one (μ ¼ 10), suggesting that 

a population who takes a long history of itself into account is less likely to 

become extremised (comparing Figure 12a,c,e,g with b,d,f,h). This finding 

supports the theory that, the more strongly one’s recent memory influences 

one’s online behavior, the more rapidly one tends to become sympathetic to 

extremist views (Z. Z. Cao et al., 2018). If the baseline threshold ρ is close to 1, 

then almost all simulations produce extremisation measures close to zero, 

simply because these systems tend not to induce any changes in opinions at all. 

If the reinforcement rate α is small, then the majority of simulations produce 

zero extremisation (even though outliers with enormous extremisation skew 

the mean value away from the median; see, Figure 12a,b). If α is suitably large 

and ρ sufficiently small (a population where the neutral agents are highly 

amenable but the fringe agents are highly stubborn), then the mean and 

median values of extremisation measure closely align, and we infer that the 

population’s most likely behavior is high extremisation (Figure 12e,f,g,h). In 

such cases, for every fixed ðμ; αÞ pair, the mean/mode extremisation measure is 

maximized by ρ ¼ 0. In particular, for ðμ; α; ρÞ ¼ ð2; 0:4; 0Þ, the mean/mode 

extremisation measure is just over 1 (Figure 12e), which is a substantial 

distance in the normalized opinion space. That is to say, the agents tend to 

move a long way from their initial positions to become their extremised final 

selves.

All the extremisation results mirror the well-known socio-psychological 

effect of group polarization, where a group moves toward a view more extreme 

than most individual views that were held before their exposure to social 

influence (Moscovici & Zavalloni, 1969; Myers & Lamm, 1976). A similar 

Figure 10. Two examples of collective drift of opinions under evolving heterogeneous thresholds. 
The first and second dimensions of the opinions are denoted by vð1Þ and vð2Þ, respectively. Drifting 
begins at some t which is chosen to best illustrate the trajectory (rather than rigorously defined). 
Final opinions are taken at the convergence time, tc. Parameters: μ ¼ 2; ρ ¼ 0; α ¼ 0:8:

THE JOURNAL OF MATHEMATICAL SOCIOLOGY 67



Figure 11. Key steps in the evolution of the connectome of the population as the opinions evolve 
in the manner of Figure 10a, with parameters D ¼ 2; μ ¼ 2; ρ ¼ 0; α ¼ 0:4. Opinions are repre-
sented by (blue) dots, bidirectional connections are dark (gray) lines and unidirectional connec-
tions are light (blue) lines. The opacity of the dots increase as agents overlap, so that the larger the 
cluster, the darker the dots. Since the threshold ρ is heterogeneous, unidirectional connections 
may exist, where agent j influences agent i without reciprocation.

68 B. M. STOKES ET AL.



0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u

en
cy

Low

High
(a)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u

en
cy

Low

High
(b)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u
en

cy

Low

High
(c)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u
en

cy

Low

High
(d)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u
en

cy

Low

High
(e)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u
en

cy

Low

High
(f)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u

en
cy

Low

High
(g)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
x
tr

em
is

at
io

n
 m

ea
su

re

F
re

q
u

en
cy

Low

High
(h)

Figure 12. Extremisation measure for N ¼ 100 agents with evolving heterogeneous thresholds 
ρiðtÞ; the baseline threshold ρ takes values as per .Table 1. A thousand simulations are performed 
per value of ρ and a common set of 1000 initial states are used for each ρ. Dimensionality D ¼ 2. 
Memory capacity μ ¼ 2 (a,c,e,g), and 10 (b,d,f,h). Reinforcement rate α ¼ 0.1 (a,b), 0.2 (c,d), 0.4 (e, 
f), and 0.8 (g,h). The grouping precision of extremisation measure is 0.01; that is, the histogram 
bins are intervals of size 0.01, giving the same number of bins as in Figure 7.
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effect has been observed in the increasing polarization of the US senate over 

time (Liu & Srivastava, 2015). The present model provides a detailed view of 

the mechanics underlying the group polarization effect; for example, we have 

described the collective drift mechanism, where the majority abandon their 

moderate initial agreement and become extremised by fringe agents. 

A sociologically significant lesson arising from these results is that, if the fringe 

agents, who hold extreme views to begin with, were more amenable to change 

(i.e. if α were smaller in the model), then such collective extremisation would 

not occur.

3.4. Failure to converge: collective oscillations

As seen in Figure 8, when agents possess evolving heterogeneous thresholds, 

a small number of simulations fail to converge to a steady state. Before 

presenting the dynamics produced by the numerical results, we will first 

explicitly construct a system with evolving heterogeneous thresholds as per 

eq. (6), which fails to converge to any steady state and instead exhibits 

oscillatory dynamics.

Consider N � 3 agents in D ¼ 1 dimension, with opinions denoted by vi for 

i ¼ 1; 2; . . . ;N. Let the memory capacity μ ¼ 1 and baseline threshold ρ ¼ 0. 

At t ¼ 0, let v1 ¼ L< 0, v2 ¼ R> 0. We require R þ L�0 and assume without 

loss of generality that R þ L> 0, then define 

Let the initial v3 ¼ v4 ¼ � � � ¼ vN ¼ v� for some v� 2 ð0;CÞ. The following 

facts about the affinities aN1 and aN2 are easily established through elementary 

calculus.

(1) aN1 is a strictly decreasing, smooth, positive function of v� 2 ð0;CÞ;
(2) aN2 is a strictly increasing, smooth, positive function of v� 2 ð0;CÞ;
(3) aN2 < aN1 for all v� 2 ð0;CÞ, with aN1ðv� ! CÞ ¼ aN2ðv� ! CÞ ¼ 1

ffiffiffiffiffiffiffiffi

1þX2
p , 

where we have defined the half-distance between R and 

L, X ¼ ðR � LÞ=2> � L.

Whatever R and v� are, we choose a reinforcement rate α> 0 such that the 

threshold ρN coincides with aN2; that is, 

which we rearrange to give 
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We therefore have ρ3 ¼ ρ4 ¼ � � � ¼ ρN ¼ aN2 < aN1, meaning that when 

agents 3; 4; . . . ;N are at position v�, they listen to agent 1 and do not listen 

to agent 2. As a corollary, since 1 � e�αR > 1 � e�αv� and 

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ðR � viÞ2
q

< 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ðR � v�Þ2
q

for all vi < v�, agent 2 (while at posi-

tion R) listens to no opinions less than or equal v�. We take R and v� to be such 

that α satisfies the constraint 

which ensures that agent 1 (while at position L) listens to no opinions greater 

than or equal to 0.

We proceed to find further conditions under which, for agents 3; 4; . . . ;N 

initialized at v�, the subsequent dynamics are periodic: 

v3ðt > 0Þ ¼ � � � ¼ vNðt > 0Þ ¼ f0; v�; 0; v�; . . .g. To begin, we seek to make 

their common opinion zero at t ¼ 1; that is, 

which implies the quadratic equation for L, 

Equation (26) has real solutions if and only if 

if and only if � 1=n< v� < 1=n. Since v� > 0 by construction, we use the 

constraint 0< v� < 1=n. Thus, (26) has exactly one negative solution, which 

also solves (25): 

According to (28), L is a strictly decreasing function of v�; for all 

v� 2 ð0; 1=nÞ, we have L< ð1 � nÞv� < � v� . Next, we make 

v3ðt ¼ 2Þ ¼ � � � ¼ vNðt ¼ 2Þ ¼ v�. Since their common threshold when v3 ¼
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� � � ¼ vN ¼ 0 is 0, all those agents listen to both agent 1 and agent 2, so we 

require 

It is clear that for all v� > 0, any R> 0 and L< 0 satisfying (29) must be related 

by R> � L. To ensure that (29) has a real R solution, we impose the constraint 

which implies Nv� � L=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ L2
p

< 1 (since L< 0), and therefore R=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ R2
p

¼
Nv� � L=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ L2
p

can be solved for R. Now, using (28) to write L in terms of v�
in (30) yields 

which translates to v� <m=n, where 

Note that v� <m=n is a stricter condition than v� < 1=n.

So far, we have established that any v� 2 ð0;m=nÞ, and the corresponding 

value of L< � v� determined by (28), guarantee the existence of some R> � L 

satisfying (29). The question remains as to whether for some such v�, the 

reinforcement rate α according to (23) is able to satisfy the constraint (24). To 

that end, we need 

We will prove that (33) holds if n is sufficiently large and v� appropriately 

defined in terms of n. Let 

for some ϕ which satisfies 

The left-hand side of (35) is a strictly increasing function of ϕ 2 ½0; arcsin m�, 
with sinð0Þ þ tanð0Þ ¼ 0 and sinðarcsin mÞ þ tanðarcsin mÞ ¼ mð1 þ
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � m2
p

Þ ¼ 1 by definition of m; while the right-hand side is strictly 

decreasing from cosð0Þ ¼ 1 to cosðarcsin mÞ< 1. Therefore, (35) has exactly 
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one solution ϕ 2 ð0; arcsin mÞ, so that v� 2 ð0;m=nÞ. Putting (34) into (28), 

we find 

and hence jLj=v� ¼ n sec ϕ � 1. Using the identity R=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ R2
p

; sinðarctan RÞ, 
re-arranging (29) yields 

and using the identities 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ R2
p

; cosðarctan RÞ and 

cosðarcsin ZÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � Z2
p

, we further deduce 

where the final equality follows from (34) and (36). By (35), we then find 

Since v� 2 ð0;RÞ, it then follows that 

We find that FðnÞ is a strictly decreasing function of n � 0 with Fðcos ϕÞ ¼ 1 

and limn!1 FðnÞ ¼ 0. Moreover, we have 

which is a strictly increasing function of n � cos ϕ with Gðcos ϕÞ ¼ 0 and 

limn!1 GðnÞ ¼ 1 � cos ϕ> 0. Therefore there exists some nmin � cos ϕ such 

that, for all n � nmin, we have FðnÞ � GðnÞ. Thus, (33) holds for all n � nmin.
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We have now shown that the common opinion of agents 3; 4; . . . ;N moves 

from v��0 at t ¼ 0, to 0 at t ¼ 1, back to v� at t ¼ 2. In the meantime, agents 1 

and 2 do not move since that they are too ‘stubborn’ to listen to any opinions 

in ½0; v��. Thus, the system has returned at t ¼ 2 to its original state, and will 

continue to oscillate with period 2. We have therefore constructed an N-body 

system, with explicitly specified parameters and initial condition, which fol-

lows periodic dynamics. It is interesting that this particular construction is 

possible only if the number of agents sharing the oscillatory opinion is 

sufficiently large, i.e. n � 1 � nmin � 1.

This condition is borne out by our numerical simulations of the model 

(even in higher dimensions and with larger memory capacities), where we see 

oscillations of the ‘neutral majority’ being pulled back and forth by a small 

number of extreme agents. In our simulations, whenever a system fails to reach 

a steady state, a number of stable clusters are formed, while the remaining 

agents form an unstable cluster that oscillates collectively by small amounts 

,Oð10�3Þ along each dimension (see, Figure 13).These collective oscillations 

have a long timescale compared to the memory capacity of the population. 

Moreover, the oscillatory cluster is always the majority, having more members 

than any of the stable clusters. The oscillations are facilitated by the majority 

agents’ evolving thresholds. As exemplified by Figure 13, while the majority 

cluster near position ð0:07;�0:62Þ moves toward the neutral ð0; 0Þ position 

due to an attraction to the fringe cluster near position ð�2:35; 0:18Þ, the 

majority agents’ thresholds decrease according to Equation (6). When these 

thresholds become sufficiently low, the fringe agents further away ‘on the other 

Figure 13. Example of a system that fails to reach a steady state under evolving heterogeneous 
thresholds. The time periods 0–10, 0–100, and 4500–5000 are shown. In particular, the top-right 
inset in each panel shows only the large-time dynamics of the oscillatory cluster. Panels (a,b) show 
the first and second dimensions of the opinions, respectively. Each cluster is shown in a different 
color. Parameters: D ¼ 2; μ ¼ 2; ρ ¼ 0; α ¼ 0:4.
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side’ become able to exert influence on the majority, pulling them back toward 

the other extreme. While the majority move away from the neutral position, 

their thresholds increase again until they become so high that only the fringe 

cluster closest to them, near position ð�2:35; 0:18Þ, can exert influence. This 

oscillatory process continues indefinitely. While the moderate majority swing 

from one position to another, failing to settle, the peripheral agents hold firm 

their positions, having such high thresholds that they fail to listen to any other 

cluster.

4. Conclusions and future directions

We have presented a novel agent-based model of opinion dynamics capable of 

mimicking many socio-psychological phenomena. The model extends several 

existing frameworks through bespoke elements such as an agent’s interaction 

threshold (generalizing the confidence bound), a measure of pairwise affinity 

between agents, and a system-wide memory capacity. The resulting dynamics 

is a non-Markovian, nonlinear process of opinion updating. We have analyzed 

the mathematical properties of the model, and explored the rich variety of 

simulated behavior that emerges from the dynamics, focusing on consensus, 

segregation, and extremisation.

The agents’ interaction thresholds are assigned in one of two ways: either 

prescribing a universal and constant threshold for all agents, or allowing each 

agent to evolve their own threshold such that the more extreme agents are less 

susceptible to change. When all agents are given a universal threshold, the 

system achieves a steady state of either consensus or segregation. We have 

proved that if all agents are assigned a sub-critical universal threshold ρ< ρ�, 

where ρ� is dependent on parameters μ and D as per (13), then consensus is 

formed regardless of the initial configuration of opinions, and the consensus 

view equals the average (mean) opinion of the initial state. The system transi-

tions from consensus to segregation as the interaction threshold increases. 

Through numerical simulations, we have investigated the effects of the model 

parameters on the opinion clustering, convergence time, and opinion drift. It 

is found that a high universal threshold promotes segregation in generic D- 

dimensional opinion space, extending similar findings by Hegselmann and 

Krause (2002) in one-dimensional opinion space. The simulations also reveal 

that the connectome of the population becomes more disconnected as the 

opinions evolve, and the rate at which the connectome rewires itself is strongly 

dependent on the system’s memory capacity. The opinion dynamics can be 

seen to represent a process of seeking cooperation, reflecting recent theoretical 

and experimental results (Rand et al., 2011).

In the case where the agents individually evolve their thresholds with some 

reinforcement rate (a model parameter controlling the rate at which agents 
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become more stubborn), we have examined the system’s clustering behavior. 

Steady states are not always achieved in this case. By explicitly constructing an 

N-body system that forms an oscillatory cluster near the neutral position, we 

have proven that the model admits periodic solutions. Extreme agents ‘on 

either side’ of the cluster exert their influence in turn, resulting in the oscilla-

tions. The construction shows that periodic solutions are possible only if the 

oscillatory cluster is sufficiently large. Numerical simulations reveal oscillatory 

behavior of large clusters under various parameter settings. Both the analytic 

and numerical results in Section 3.4 demonstrate the power of stubborn fringe 

agents over the neutral majority. By introducing an extremisation measure, we 

have quantified the extent to which the collective opinion becomes more 

extreme over time. Extremisation is maximized when the baseline threshold 

(of entirely neutral agents) is small but the reinforcement rate is large. 

A population that takes a longer history of itself into account (larger memory 

capacity) is less likely to become extremised than a population that quickly 

forgets the past. These results echo the socio-psychological phenomena of 

group polarization (Moscovici & Zavalloni, 1969; Myers & Lamm, 1976) and 

online extremism (Z. Z. Cao et al., 2018), providing a mechanistic explanation 

for the behaviors. When extremisation is large, it tends to involve a process of 

collective drift, where a large cluster of moderate agents moves toward a small 

cluster of extremists. The fact that extremisation occurs when fringe agents 

have a low tolerance to others corroborates the theory of Deffuant et al. (2000).

For simplicity of methodology and ease of interpretation, we have assumed 

that the initial opinions in each dimension of opinion space follow a normal 

distribution. It is worth reiterating that the system’s subsequent behaviors are 

rich in variety despite the simplistic initial states. We expect an even richer 

range of phenomena to emerge from more sophisticated initial opinion dis-

tributions that may be better fits for real-world scenarios. For example, when 

a new political issue arises and a population forms initial opinions on the 

matter, those opinions may already be polarized rather than normally dis-

tributed, especially if media-driven tribalisation encourages immediate segre-

gation (Llewellyn & Cram, 2016; Meredith & Richardson, 2019). The current 

model is capable of simulating the opinion dynamics in this context; one 

simply needs to input the appropriate data describing the initial opinions of 

the population. Moreover, when modeling multi-dimensional issues, it may be 

appropriate to sample initial opinions from correlated distributions, rather 

than independent distributions as we have done in this paper (Bartels, 2018).

It is also worth noting that other frameworks for performing a stability 

analysis on state dependent networks exist (Etesami, 2019; Proskurnikov & 

Tempo, 2018). In particular, the paper by Etesami (2019) contains some 

mathematical tools that could be used in the future for analysis of the model 

we have proposed. Other potential extensions to the model may include: 

a repulsive force, where low-affinity pairs do not merely ignore each other 
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but actively move away from each other’s views; stochastic fluctuations in the 

agents’ interaction thresholds, representing externally-driven variations in 

one’s openness to other people; and a hierarchical population where some 

agents are assigned a much higher interaction threshold than the majority, 

describing powerful individuals exerting influence with little reciprocation. 

Overall, the modeling framework developed in this study generates various 

sociologically relevant phenomena under simple assumptions, while being 

sufficiently versatile to suit more elaborate contexts, and integration with 

experimental data in future work will help to further enhance the theory.
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