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Significance

The staggering biodiversity of 
angiosperms has been difficult to 
reconcile with the gradual 
Darwinian process thought to 
create it. Changes in climate 
through the Earth’s history could 
have instigated this 
diversification, but perceived 
variability across clades and 
geography has restrained 
generalization. In this paper, we 
reconstruct the evolutionary 
history of a rich terrestrial orchid 
subfamily studied by Darwin 
(Orchidoideae, ~5,000 species) 
and use >2.5 million 
georeferenced records to test 
how and where those orchid 
species arose. We find that global 
cooling between the Miocene 
and present day spurred 
terrestrial orchid speciation 
across the Earth. This work 
resolves orchidoid phylogeny and 
provides a striking example of 
how historic climate change 
drives global patterns of 
biodiversity.
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EVOLUTION

Speciation across the Earth driven by global cooling in  

terrestrial orchids
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Edited by Nils Stenseth, University of Oslo, Oslo, Norway; received February 7, 2021; accepted June 3, 2023

Although climate change has been implicated as a major catalyst of diversification, its 
effects are thought to be inconsistent and much less pervasive than localized climate or 
the accumulation of species with time. Focused analyses of highly speciose clades are 
needed in order to disentangle the consequences of climate change, geography, and time. 
Here, we show that global cooling shapes the biodiversity of terrestrial orchids. Using 
a phylogeny of 1,475 species of Orchidoideae, the largest terrestrial orchid subfamily, 
we find that speciation rate is dependent on historic global cooling, not time, tropical 
distributions, elevation, variation in chromosome number, or other types of historic 
climate change. Relative to the gradual accumulation of species with time, models 
specifying speciation driven by historic global cooling are over 700 times more likely. 
Evidence ratios estimated for 212 other plant and animal groups reveal that terrestrial 
orchids represent one of the best- supported cases of temperature- spurred speciation yet 
reported. Employing >2.5 million georeferenced records, we find that global cooling 
drove contemporaneous diversification in each of the seven major orchid bioregions 
of the Earth. With current emphasis on understanding and predicting the immediate 
impacts of global warming, our study provides a clear case study of the long- term impacts 
of global climate change on biodiversity.

biodiversity | macroevolution | climate change | biogeography | diversification

Charles Darwin’s “abominable mystery” was why diversification can happen so rapidly  
(1, 2). The abrupt appearance of diverse clades of angiosperms was a challenge not only 
to Darwin’s theory, but to evolution itself (3). Under mounting pressure from paleobot-
anists and other groups, Darwin asserted an admittedly “wretchedly poor conjecture” that 
the patterns could be explained by an ancient origin of angiosperms on a “small isolated 
continent in the southern hemisphere” (3, letter to Joseph Hooker, 22 July 1879, Darwin 
Correspondence Project). Since then, there has been active inquiry into the forces deter-
mining distribution, geographic origins, and timing of diversification of all angiosperm 
clades (3–5).

A growing body of theory argues that the origins and contemporary distributions of 
biodiversity are largely determined by historic climate change (6, 7). The problem has 
been, however, that there are few clear supporting examples. The consequences of climate 
change on diversification are generally thought to be inconsistent, varying between closely 
related groups of taxa (8, 9), the type of climate change (10), and the ecoregion in which 
it occurs (11, 12). In contrast, a substantial proportion of biodiversity can be explained 
by the gradual accumulation of species over time (13), together with the influences of 
geographic factors including latitude (14, 15) and elevation (16, 17).

In many of the classic cases of adaptive radiation, such as cichlid fish, Darwin’s finches, 
and Anolis lizards, diversification occurred at localized scales. This makes it difficult to 
determine whether global climate change contributed to diversification. Still, the latitu-
dinal species gradient may not be caused by rapid speciation, as previously thought  
(14, 15). Global warming remains the most parsimonious temporal climatic explanation 
for diversification in many animal taxa (13). However, the ability of animals to rapidly 
shift their distributions according to prevailing ecological conditions makes it difficult to 
factor out the influence of localized geography. The critical, unresolved question is whether 
historic climate change can have consistent, global influences on the origins and distri-
butions of organismal biodiversity (9, 18). Cosmopolitan plant clades therefore offer the 
best model systems in which to disentangle the influences of climate change, geography, 
and the time of clade origins upon patterns of species richness.

The terrestrial orchid subfamily Orchidoideae (orchidoid orchids) are an ideal group in which 
to address this question. They exhibit an intriguing combination of recent origins [stem age 
c.64 Mya (19)] and extraordinary diversity, with 5,000 extant species (20). Their global bioge-
ographical distributions have been recorded in intimate detail. The timing of speciation events 
relative to other orders of monocots is well established, despite a patchy fossil record (19). 
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Geographic consistency can be established by testing for similarities 
in responses to climate change in taxa endemic to each of the seven 
major orchid bioregions (defined by Givnish et al. 21). Moreover, 
Orchidoideae encompass minimal variation in traits previously asso-
ciated with speciation, including pollinia, and they lack epiphytism, 
which contributes to accelerated speciation across all major clades of 
orchids (19).

Results

Phylogeny and Diversification. Diversification rate is varied across 
Orchidoideae (Fig. 1). We inferred a maximum likelihood (ML) 
phylogeny of 1,475 taxa (29.5% of the 5,000 known species), using 
nine nucleotide loci mined from Genbank. The phylogeny is well 
supported, with ~62% of internal nodes having >70% bootstrap 
support (BS) and ~37% having >90% BS. Our tree is largely 
consilient with other recent estimates (19, 22). We used 15 secondary 
calibrations from previously inferred divergence estimates (19) to 
time- calibrate our tree with an uncorrelated relaxed clock in RelTime 
(23), which performs well in large empirical datasets (24, 25). The 15 
secondary calibrations were themselves derived from plastome data 
and fossil constraints sampled across monocot orders in a Bayesian 
framework, using an uncorrelated, relaxed, lognormal clock (19).

We estimated speciation rates with Bayesian Analysis of 
Macroevolutionary Mixtures (BAMM), implemented with a 
reversible- jump Markov Chain Monte Carlo (MCMC) framework 
(26), accounting for incomplete sampling by specifying the frac-
tion of known richness of each genus that was sampled (20). In 
all analyses with BAMM, we only considered speciation rate, not 
extinction rate, which avoids potentially unreliable parameter 
estimation (27–29) and is predicted to give more accurate esti-
mates of speciation rate variability (30). We found 44- fold varia-
tion in the rate of speciation, with 36 core rate shifts in the best 
shift configuration, each of which indicated significant increases 
in speciation rate (overall rate heterogeneity: Bayes Factor >100). 
In the best shift configuration, rate shifts fell between ~26.21 Mya 
and the present day corresponding with a protracted period of 
climatic cooling in Earth’s history (31).

Crossclade Consistency in the Consequences of Cooling. To 
formally test the hypothesis that climatic cooling drove orchidoid 
speciation, we correlated 9,001 (10,000 minus 999 burn- in) 
realizations of the historical speciation curve with a reconstruction 

of Cenozoic δ18O (a proxy for mean global temperature) (29) and 
tested whether the distribution of correlation coefficients differed 
from zero. Across the subfamily, speciation rate had a strong and 
consistently negative association with Cenozoic δ

18O [average 
of DCCA (detrended cross correlation analyses) correlation 
coefficients = −0.56, P < 0.0001; Fig. 2B]. Overall, we find strong 
evidence for a negative exponential correlation between estimated 
global paleoclimatic temperature data and mean BAMM- estimated 
speciation rates (r = −0.83, P < 0.0001; Fig. 3A). We find that 
global cooling is the most probable climatic driver, not CO2 or 
sea- level variation, which is important to consider because each is 
correlated (32) and have been shown to influence the speciation 
of other clades (e.g., refs. 10, 12, 33, and 34). Though the 
distributions of correlation coefficients were significantly different 
from zero, both atmospheric CO2 and sea level were more weakly 
correlated with speciation than that with temperature (average 
of DCCA correlation coefficients: CO2 = 0.29, P < 0.0001; 
sea level = −0.25, P < 0.0001). To assess potential for method 
artifacts of time calibration, we infer an alternative framework 
under penalized likelihood, which is known to perform more 
poorly and estimate different node ages than RelTime (23–25).  
Despite different node ages (t1473 = −61.4, P < 0.0001), we find 
that the node ages of RelTime and treePL frameworks are highly 
correlated (r = 0.97, P < 0.0001), and that both frameworks show 
strong relationships between global cooling and speciation rate 
(SI Appendix, Fig. S1 and S2).

Other studies have found that the influence of climate change 
varies between closely related clades (8, 9). But, we find crossclade 
consistency in the influence of climate change on speciation. Our 
DCCA reveals a negative relationship between the speciation curve 
and historical global temperature in each of the three major subclades 
(Cranichideae/Chloraeeae −0.46, P < 0.0001; Diurideae −0.69, P < 
0.0001; and Orchideae/Diseae −0.56, P < 0.0001; Fig. 2).

Chromosomal Number and Pollination Syndromes. With data 
from the Chromosome Counts Database (35), we find that each 
of the major orchidoid subclades has more chromosomes than 
those of earlier diverging orchid subfamilies (Cranichideae/
Chloraeeae mean = 21.52, t256  = 5.43, P < 0.0001; Diurideae 
mean = 21.45, t106 = 4.53, P < 0.0001; Orchideae/Diseae mean = 
25.53, t304 = 9.31, P < 0.0001). And, as a subfamily, the orchidoids 
(mean = 23.96 ± 0.48 SE) have more chromosomes than those 
of both earlier diverging orchid subfamilies (Apostasioideae, 

Specia�on rate

Disperis

Disa
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Galearis
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Fig. 1. Time- calibrated phylogeny of 1,475 orchidoid taxa, visualized against the geological timescale. Branches are colored by speciation rates estimated with 
Bayesian Analysis of Macroevolutionary Mixtures. Orchidoid genera representing the diversity of form are associated with arc segments colored by their mean 
speciation rate. Images were sourced from Flickr (Creative Commons and modifications allowed).D
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Cypripedioideae, and Vanilloideae mean = 15.72 ± 0.83 SE;  
t227 = 8.77, P < 0.0001) and their more recently diverged, pollinia- 
containing sister group (Epidendroideae mean = 22.22 ± 0.20 
SE; t628 = 3.37, P = 0.0008). Though these findings indicate that 
chromosome number has evolved independently within orchid 
subclades, the observed uniformity in chromosome number 
suggests it is unlikely that chromosomal count variation shaped 
diversification of terrestrial orchids.

We are unable to test for trait- driven influences on speciation, 
as the primary trait thought to drive orchidoid speciation, pollinia 
(packets of pollen), is found in all members (19). However, we 
can test for impacts of climate change in lineages with diverse 
pollination strategies. Consistent with findings across the sub-
family, we find that the speciation curve of Disa, a genus char-
acterized by a diversity of pollination syndromes with 
well- supported evidence of adaptive evolution (36, 37), is nega-
tively correlated with global mean temperature (DCCA = −0.48, 
P < 0.0001).

Temperature- , Not Time- , Dependent Speciation. For taxa 
exhibiting steady increases in speciation rate with time, time is often 
found to be the most parsimonious explanation for diversification 
(13). Although the speciation rate of orchidoids increases up to the 
present (Fig. 2), we find substantially stronger support for models 
of global cooling than time. Both Bayesian MCMC (BAMM) 
and likelihood- based [RPANDA (38)] model–fitting approaches 
estimate similar relationships between historic temperature 
change and speciation rate (Fig.  3A). In tests with RPANDA, 
we find that models specifying exponential influences of historic 
temperature on speciation fitted patterns of orchid diversification 
substantially better than comparable time- dependent models, with 
or without estimating exponential extinction (ΔAICc = 13.1 
and 248.6, respectively). Evidence ratios for temperature-  and 
time- specific exponential speciation (estimated for models with 
no extinction, constant extinction, or exponential extinction) 
reveal that temperature- driven diversification is 703.5 times 
more likely than time dependence. To assess the extent to which 
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Fig. 2. Consistency in the influence of global cooling on rapid speciation across Orchidoideae. The estimated historical speciation rate curve for the whole tree 
(red line with blue 95% CI) is plotted alongside the curve of estimated mean global paleotemperature (δ18O, black line) (A). A histogram of the DCCA coefficients 
used to infer the mean correlation coefficient across the whole tree (B). The estimated historical speciation rate curves of subclades Diurideae (C), Cranichideae 
(D), and Orchideae/Diseae (E) are reported with mean correlation coefficients indicated (all are consistently negative and significant at P < 0.0001).
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the orchidoids represent an archetypal example of temperature- 
spurred diversification, we apply this methodology to 210 animal 
groups (13) and two other plant groups [Rhododendron (39) and 
Pinus (40)]. We find that the orchidoids represent one of the most 
convincing cases of temperature- driven speciation yet recorded 
(Fig. 3B).

Lack of Temperature- Related Geographic Effects. It has long been 
held that the tropics are a “cradle” of diversity for plant and animal 
taxa (14, 15). However, previous simulations of global impacts 
of climate change on biodiversity reveal that speciation rate can 
appear to be geographically varied even when climate change is 

the central driver of that diversification (7, 41). Speciation rate 
appears to be geographically varied in orchidoids. Consistent with 
other recent studies of angiosperm diversification (10, 14, 17, 42, 
43), we find that orchidoid speciation is generally faster where it 
is cooler. Maps based on ~2.5 million georeferenced occurrence 
records (44) show that the orchidoids are globally distributed 
with peaks of richness centered in temperate regions and a peak 
in speciation rate evident in temperate regions of the Southern 
Hemisphere (Fig. 4). Although we find no significant difference 
in speciation rate when defining the tropics by temperature 
(tropics = >18 °C, nontropics = <18 °C) (SI Appendix, Fig. S3 
and Table  S1), orchidoid speciation rate is significantly lower 
in the tropics than that in temperate regions when defining the 
tropics by either binarized latitude (−23.5 to 23.5°) or continuous 
latitude (SI Appendix, Figs. S4–S6 and Table S1). However, we 
find no evidence of a causal relationship between geography and 
speciation rate, paralleling the lack of a latitudinal gradient in 
speciation rate seen across terrestrial orchids (19). After accounting 
for phylogenetic pseudoreplication, there were no associations 
between latitude and speciation rate, whether by continuous 
temperature [STRAPP (STructured Rate Permutations on 
Phylogenies), P = 0.85; Es- Sim P = 0.91], binarized temperature 
(STRAPP, P = 0.83) (45), binarized latitude (STRAPP, P = 0.77), 
or continuous absolute latitude (Es- Sim, P = 0.12; STRAPP,  
P = 0.40) (46). This implies that while there is latitudinal variation 
in speciation rate, the origin of new orchidoid species was primarily 
driven by global cooling, which cannot be explained by geographic 
influences on speciation rate.

Previous work indicates that diversification of Orchidaceae can 
be promoted by cooler highland distributions (43). We find ele-
vational variation in speciation rate (SI Appendix, Fig. S5); how-
ever, phylogenetic tests reveal no evidence of relationships between 
elevation and speciation rate (minimum elevation in described 
species range: STRAPP, P = 0.16; Es- Sim, P = 0.37; maximum 
elevation in described species range: STRAPP, P = 0.82; Es- Sim, 
P = 0.11).

Worldwide Cooling- Driven Speciation. Previous biogeographic 
research has divided orchid distribution into seven geographical 
regions, defined as North America, Neotropics, Eurasia, Africa, 
Southeast Asia, Australia, and Pacific (21, 47). We find that there 
are significant differences between mean speciation rates between 
some bioregions. In particular, Australia has significantly higher tip 
speciation rates compared with all other bioregions (Africa: 1.01; 
Australia: 3.21; Eurasia: 0.95; North America: 0.57; Neotropics: 
1.62; Pacific: 2.67; and Southeast Asia: 0.81). However, as 
with latitude and elevation, there is no evidence for any causal 
relationship between speciation rate and bioregion (STRAPP, 
Kruskal–Wallis, P = 0.23, SI Appendix, Fig. S6 and Tables S2–S4). 
Instead, we find negative DCCA correlations between historic 
mean global temperature and speciation rate through time 
in every bioregion except the Pacific (Africa: −0.39; Australia: 
−0.52; Eurasia: −0.37; North America: −0.41; Neotropics: −0.36; 
Pacific: 0.35; and Southeast Asia: −0.47, P < 0.0001 within each 
bioregion).

Our finding that climate cooling has global effects could be 
biased if taxa with high speciation rates are more likely to migrate 
between bioregions, or if responses to climate change occur in the 
same higher taxa predominating each bioregion. By focusing on 
species endemic to each bioregion, we confirm that speciation 
happened independently and simultaneously across the Earth. 
Although no bioregion contains just a single clade, each contains 
taxa that are phylogenetically clustered. This implies that terrestrial 
orchids have evolved independently in most bioregions, with the 

A

B

TemperatureTime

OrchidoideaePinusRhodo.

Fig. 3. Strength of historic temperature on speciation rate. (A) The correlation 
between temperature and speciation rate (without estimating extinction) in 
terrestrial orchids is reported both for MCMC Bayesian analysis (BAMM, black 
dots) and likelihood- based exponential speciation model fitting (RPANDA, 
red curve), where speciation driven by global cooling is more likely than by 
time (ΔAICc = 248.6). (B) Evidential support for nested sets of temperature- 
dependent vs. time- dependent exponential speciation models is displayed 
as log evidence ratios, with hatched lines indicating taxa in which time or 
temperature is 20 times more likely. Temperature is 703.5 times more likely 
than time to drive speciation in the Orchidoideae (red dot on Right), one of 
the best- supported examples in comparison with 210 tetrapod groups (blue 
violin plot) and Rhododendron and Pinus plant groups (red dots on the Left and 
in the Middle, respectively).
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notable exception of the Pacific (Africa D = −0.33, n = 276; 
Australia D = −0.13, n = 241; Eurasia D = 0.16, n = 77; North 
America D = −0.07, n = 32; Neotropics D = −0.29, n = 236; Pacific 
D = 0.25, n = 30; Southeast Asia D = −0.22, n = 66) (48). 
Importantly, we find that speciation rate increases with global 
cooling in all the seven bioregions in independent fits of 
rate- through- temperature curves for data spanning the last 10 My 
(Fig. 5A). Shifts in speciation rate between bioregions are also 
positively temporally correlated (Fig. 5B), providing strong sup-
port for independent, contemporaneous speciation driven by 
global cooling.

Diverse Regional Responses to Other Aspects of Climate Change. 
It is unlikely that geographic consistency in the influence of 
global cooling results from insufficient power to detect variation. 
Consistent with previous work (9–12), we find evidence of 
bioregion- specific variation of climate change on speciation 
(Table 1). Global atmospheric CO2 is positively correlated with 
speciation in each bioregion except North America. By contrast, 
there is little evidence that global sea- level variation influences 
speciation in any bioregion, despite being coupled with global 
temperature change (Table 1). Thus, though some aspects of mean 
global climate change are geographically varied, our study shows 
that global cooling drove speciation across the Earth.

Discussion

The need for a global conservation strategy is almost universally 
acknowledged (49–53), and a better understanding of the forces 
shaping biodiversity will be necessary in order to achieve this 
objective (6, 54–60). Unfortunately, it has proven difficult to dis-
entangle the impacts of local climate from the historical conse-
quences of global climate change and the passage of time. Previous 
models predict that global climate change has a role in shaping 
patterns of standing biodiversity and biodiversity change (7, 61). 
However, the notion that climate change is responsible for the 
global distribution of biodiversity has been largely dismissed. Our 
study shows that although global cooling is the major driver of 
the rise of terrestrial orchids, their species richness also has marked 
biogeographical variation. We find that the ecological variables 
influencing changes in biodiversity can be obscured unless they 
are analyzed in an evolutionary context. This finding has funda-
mental and applied implications.

Orchidoid biodiversity evolved in a manner counter to the 
predictions of many theories of diversification. Although 
Orchidoideae were not part of Darwin’s abominable mystery, since 
they originated well after the initial radiation of angiosperms 
(1–5), our findings provide a clear example in which gradual diver-
sification is not supported, and recent radiations are driven by 

Fig. 4. Global variation in orchidoid biodiversity. Species richness (A) and species richness by latitude (B) are calculated, respectively, from the number of 
orchidoid species represented in octagonal 200 m2 grid cells spanning the Earth and the average number of species in occupied grid cells by latitude fit to a 
generalized additive model. Speciation rate (C) and speciation rate by latitude (D) were modeled by BAMM, respectively, within each grid cell and averaged across 
occupied grid cells by latitude fit to a generalized additive model.
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climate change. As speciation in terrestrial orchids is driven by 
global cooling, rather than warming, our findings run counter to 
classic explanations of rapid ecological niche filling (61) and the 
metabolic theory of biodiversity (62). We find no support for 
cradles of orchid diversity, nor evidence for highlands-  or 
tropics- driven speciation (14, 17, 42, 43). Moreover, previous 
work reports great variation in the effects of climate upon diver-
sification rate, even for closely related lineages (8–10) and in 
closely similar or proximate ecoregions (11, 12). Here, by contrast, 
we find that historic temperature changes exerted a consistent 
influence on biodiversity change. It is likely that there are undi-
agnosed roles for climate change in other major radiations. Recent 
macroecological work suggests that global cooling may have a 
systemic role in angiosperm speciation (59). The variation we 
found in three lineages of angiosperms highlights the need for a 
large- scale meta- analysis of climatic effects on diversification across 
major plant groups, similar to that recently undertaken for tetra-
pods (13). Unfortunately, for many highly speciose plant clades, 
such as cacti, Euphorbia, and other succulents, there are scant 
paleoclimatic data on aridity and other abiotic factors likely to be 

of relevance. We predict that climate change will be associated 
with speciation in the largely epiphytic epidendroid orchids 
because, as in their orchidoid sister clade, they exhibit recent 
explosive radiation, a consistent pollinia phenotype, and higher 
chromosome counts than those of earlier diverging orchid clades.

There is growing evidence of the influence of climate change 
on evolution. Recent work shows that the famous diversification 
of cichlid fish was driven by a temporally complex mixture of 
tectonic activity, climate change, biotic resource flow, and inter-
specific hybridization (63, 64). Rapid evolution in response to 
climate change is well established in particular species of Darwin’s 
finches and Anolis lizards (65, 66). The persistence of ancient 
alleles in these groups (67, 68) is consistent with the presence of 
high genetic variability early in island colonization; but, it is also 
consistent with colonization events followed by climate change–
induced genetic variability. Although our study cannot differen-
tiate between these models of evolution, it does highlight the need 
for detailed, location- specific records of historic climatic variation, 
as we found bioregion- specific effects of global average CO2 on 
speciation.

How Does Climate Change Drive Evolution? It is not clear how 
global cooling drives diversification. Milankovitch (orbital) cycles 
change the exposure to annual solar energy in predictable ways, 
but responses on Earth, including biotic changes, tectonic activity, 
and climate change, can be varied (69). A role for tectonics is 
unlikely, as it is expected to have localized geographic impacts 
(69). The global expansion of C4 grasslands which peaked 4 to 
8 Ma (70–73) could have contributed to more recent orchidoid 
speciation by creating new habitats.

The relatively short- term oscillations in global temperature 
occurring during longer- term trends of global cooling may have 
a critical role in accelerating orchidoid speciation; the evidence 
for global temperature oscillations is restricted to recent time 
periods (74). While the underlying mechanism is likely to be the 
same across Orchidoideae, we note that the Australian bioregion 
has the highest inferred speciation rate and the strongest evidence 
of relationships between global temperature and speciation rate. 
As a consequence of the onset of the Antarctic Circumpolar 
Current approximately 30 Mya (75), the Australian continent 
separated from Antarctica and moved north, resulting in dramatic 
cycles of cooling and drying across Australia (76, 77). These 
repeated cooling cycles may have stimulated higher speciation 
rates relative to those in other bioregions, the signature of which 
is preserved in the high tip speciation rates seen today. Overall, 
although speciation rates appear to be higher in the Southern 
Hemisphere (Fig. 4D), we find little statistical evidence for the 
influence of latitude.

Fig.  5. Geographic consistency in diversification driven by global cooling. 
Rate- through- temperature curves (A) of endemic lineages within each 
orchid bioregion were estimated by fitting exponential models to BAMM- 
derived speciation rate data covering the last 10 My. The correlation matrix 
of speciation rate through time curves (B) displays the degree to which 
diversification happened independently and simultaneously in endemic 
lineages across the Earth, from strong, +0.52 (light blue), to very strong, +0.99 
(dark blue), correlations in each bioregion.

Table 1. Geographic variation in the consequences of 
mean global atmospheric CO2 and sea level

Bioregion Atmospheric CO2 Sea level

Africa 0.33** −0.12

Australia 0.42** −0.28

Eurasia 0.40** −0.18

Neotropics 0.40** −0.18

North America 0.15 −0.13

Pacific 0.17* −0.27

Southeast Asia 0.44** −0.18
DCCA correlations between speciation rate and climate indices within each bioregion are 
reported with significance indicated (*P < 0.05, **P < 0.001).D
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Global cooling could disrupt gene flow, thereby stimulating 
diversification, by influencing the physiology of plants, symbiotic 
fungi, and/or pollinators. Terrestrial orchids are sensitive to tem-
perature variability (78, 79). The symbiotic mycorrhizal fungi of 
orchids provide cold- assisted improvements in germination (80), 
but also contribute to population subdivision (81). The tight coev-
olution between orchidoids and their pollinators first identified 
by Darwin (82, 83) may also provide a mechanism for rapidly 
generating barriers to gene flow. Indeed, pollination can be 
reduced by the influences of climate change on plant phenology 
and by the physiological limitations of pollinating insects in colder 
temperatures (84).

Although we find consistent responses to global cooling across 
orchid bioregions and the three major tribes of terrestrial orchids, 
this does not preclude the possibility of differential speciation in 
response to global cooling. Our analysis suggests that in the major 
tribes, Orchideae/Diseae, Cranichideae, and Diurideae, increased 
speciation might be concentrated in Habenaria in the first, in 
Pterostylis in the second, and across the clade in the third. In 
Diurideae and Pterostylis, it is highly plausible that climate dete-
rioration could have provided an advantage for deceit pollination, 
which may have contributed to rapid speciation in those groups.

Climatic cooling could also drive rapid speciation by increasing 
genetic variability. Several studies show that biotic and abiotic factors, 
particularly temperature, can alter meiotic recombination in ways 
which can accelerate adaptation (85, 86). Major changes in genome 
size and GC content are associated with orchidoid diversification 
(87, 88). Although we find that each of the major orchidoid sub-
clades has more chromosomes than those of earlier evolving orchid 
taxa, without evidence of cooling- induced changes in chromosomal 
number, the more parsimonious hypothesis is that high chromo-
somal numbers evolved early. Our finding of a well- resolved orchi-
doid phylogeny with high speciation rates is consistent with 
speciation occurring simultaneously in reproductively isolated pop-
ulations, perhaps as a consequence of climate- mediated stress (89), 
and, occasionally, allotetraploidy events (90).

Implications for Conservation. This research provides a large and 
well- supported case study of the long- term impacts of climate 
change on biodiversity. Preserving hot spots of diversity has 
been a central tenet of conservation, with substantial theoretical 
support (91). However, these hot spots have not typically been 
identified by accounting for the ecological processes that generate 
the biodiversity we are trying to conserve. If global speciation from 
climate change is common and unrelated to localized biodiversity, 
then conserving areas with low species richness may be just as 
important for preserving evolutionary potential.

Resolving whether climate change stimulates adaptive radiation 
through stronger selection, population fragmentation or increased 
genetic variability has implications for conservation. There has 
been substantial interest in whether plants have sufficient standing 
genetic variation to respond to predicted gradual global warming 
(92). But, the history of the Earth is marked by catastrophic shifts 
in climate (93), while climate change can impose strong breeding 
system selection (e.g., refs. 94 and 95). The most relevant question 
for conservation could therefore be whether plant species have 
sufficient capacity to generate genetic variation in response to 
climate- induced stress. Our finding that global cooling inde-
pendently stimulated the formation of the thousands of orchidoid 
species within a short period (30 Ma) demonstrates that changes 
in climate can have predictable influences on speciation. Our study 
establishes terrestrial orchids as an excellent model system for 
understanding how interactions between climate change and phys-
iological traits drive rapid speciation.

Methods

Supermatrix Assembly. We mined Genbank for Orchidoideae sequences 
using the OneTwoTree pipeline (96), filtering intraspecific varieties, hybrids, and 
open nomenclature. We corrected nomenclature against The Plant List (www.
theplantlist.org), which reduces the impact of poor taxonomic assignment within 
Genbank. OneTwoTree clustered sequences into orthologous groups, which we 
inspected and edited by reclustering partial sequences with full sequences. 
Although this could have resulted in unreliable alignments, OneTwoTree selected 
the longest sequence for every species, and we visually inspected resulting align-
ments. We downloaded Orchid outgroup sequences from Genbank and aligned 
these with ingroup sequences using Mafft - add (97). We trimmed unreliably 
aligned positions with trimAl - gappyout command (98) and concatenated align-
ments into a supermatrix using Alignment Manipulation And Summary (AMAS) 
(99). Finally, we removed taxa with identical sequences, since these are known to 
create short terminal branches that distort phylogenetic inference (100).

Phylogenetic Reconstruction. We produced a time- calibrated phylogeny 
in three steps. After an initial ML search with 1,000 BS replicates using RAxML 
V8 (101), we identified and removed taxa exhibiting rogue behavior in the BS 
replicates using RogueNaRok (102). This is an especially important procedure 
when using published sequences, reducing the impact of "chimeric taxa" cre-
ated when sequences are misidentified and concatenated, and which would 
therefore contain conflicting phylogenetic signal (103). We performed another 
ML search on this pruned dataset in order to obtain the final molecular phylog-
eny used for our divergence time analysis. ML searches were performed in the 
Cyberinfrastructure for Phylogenetic Research (104). Each ML search used 1,000 
BS replicates to assess branch support and applied an individual GTR model 
of nucleotide substitution to each locus partition. We enforced the monophyly 
of three clades in both searches: tribes Orchideae/Diseae, tribe Diurideae, and 
tribe Cranichideae (see ref. 20), in order to improve the likelihood calculation, as 
in other large phylogenies (105). Because large datasets pose a computational 
burden for molecular dating methods that rely on Bayesian MCMC sampling, we 
calibrated the ML phylogeny against geological time using the relaxed- clock ML 
method RelTime (23–25). Orchids are poorly represented in the fossil record, with 
only one orchidoid fossil assigned with certainty [to subtribe Goodyerinae (106, 
107)]. Instead, we used robust secondary calibrations (19), applying minimum 
and maximum ages for 15 major clades as uniform constraints, according to the 
upper and lower bounds of 95% CIs.

In order to assess the robustness of our method of time calibration, we recon-
structed an alternate framework using penalized likelihood with treePL (108). 
The alternate framework employed the same node age constraints as RelTime. 
An initial treePL run was used to prime parameters for the final analysis, in which 
multiple smoothing parameters were tested and crossvalidated. We plotted the 
distribution of node ages in both frameworks and confirmed similarity with a 
Pearson’s product–moment correlation (0.97, P < 0.0001).

Speciation Analysis. We reconstructed speciation history using the BAMM 
framework (26), sampling four MCMC chains of 25 million generations every 
2,500th generation. We set priors with the R package BAMMtools (109) and 
used a conservative prior of one rate shift. Rate shifts were permitted only in 
clades of more than five species, to improve convergence. Genus- level sampling 
fractions were derived from a recent checklist (20) and were specified in order 
to account for heterogeneous sampling across clades. We excluded the first 
10% of generations as burn- in, and assessed convergence with the R package 
Coda (110), confirming that the effective sample size of each parameter was 
>400. We ignored reconstructions of extinction rate, which are known to be 
unreliable when modeled from phylogenies containing only extant taxa (27). 
We plotted speciation rates through time against temperature curves for both 
frameworks and found that the relationship between global cooling and spe-
ciation rate was robust in both frameworks (SI Appendix, Fig. S2). The results 
are presented for the RelTime framework, which is known to be more accurate 
than penalized likelihood (24, 25).

We fitted time-  and temperature- dependent ML models of diversification to the 
orchidoid phylogeny using the R package R: Phylogenetic ANalyses of DiversificAtion 
(RPANDA) (38), using code adapted from ref. 111. Initially, we fitted 18 models start-
ing from the simplest to models with increasing complexity. For each of time and 
temperature, these included constant speciation with no extinction; linear speciation D
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with no, constant, linear, or exponential extinction; and exponential speciation with 
no, constant, linear, or exponential extinction. We excluded constant speciation mod-
els from further analysis because of their poor explanatory power. We excluded linear 
speciation and extinction models because they are known to be problematic (112) 
and are biased against finding temperature- driven speciation. For example, we find 
that 80% (66/82) of the taxa with best support (delta AIC < 4) for temperature- driven 
speciation and extinction in a large study of tetrapods (13) exhibit nonlinear model 
fits over relevant temperature ranges which give a false impression of better fit to 
models of time than temperature. For direct comparisons of influences between 
temperature and time, we ultimately fitted 3 models (exponential speciation with no, 
constant, or exponential extinction) for both temperature and time to the orchidoid 
phylogeny by ML. We calculated the corrected Akaike Information Criterion (AICc), the 
ΔAICc, and the Akaike weight (AICω) to assess likelihood support. We calculated the 
ΔAICc between specific models to test support for temperature and time and plotted 
the best- performing model against temperature and BAMM- estimated speciation 
rates. To compare the relative support for temperature vs. time across the three mod-
els, we calculated evidence ratios, estimated as Σ AICω temperature models/Σ AICω 
time models, for orchidoids in addition to published RPANDA parameters from 210 
phylogenies (13) and estimated parameters for two published plant phylogenies 
[Rhododendron (39) and Pinus (40)]. The distribution of the relative support for time-  
vs. temperature- driven diversification across the 213 phylogenies was displayed as 
violin plots of log- transformed evidence ratios to improve visualization.

DCCA. We performed DCCA with the 9,001 post- burn in realizations of the speci-
ation curve in R, using code from Davis et al. (8). Briefly, we Tukey- smoothed pale-
oclimatic proxies and interpolated values to the times recorded in the speciation 
rate curves. We calculated correlation coefficients between each of the 9,001 post 
burn- in speciation curves and paleoclimatic proxy and plotted the distribution. 
A −1 indicates perfect negative correlation, 0 indicates no correlation, and +1 
indicates perfect positive correlation (8). DCCAs were chosen over traditional 
correlation methods such as Pearson’s product–moment correlation, because 
the time series are autocorrelated over shorter timespans. A Wilcoxon rank- sum 
test assessed significance of the distribution from the null hypothesis of zero 
(no correlation). Note, we did not include the monotypic tribe Codonorchideae 
in the analysis of crossclade consistency. Paleoclimatic proxies of global mean 
temperature, atmospheric CO2, and sea- level were sourced from Zachos et al. (31), 
Bergmann et al. (113), and Miller et al. (114), respectively.

Chromosomal Counts. We downloaded available chromosomal counts for all 
Orchidaceae from the Chromosome Count Database (35), using the median value 
where multiple counts were reported for a species.

Biogeographical Analyses. We downloaded georeferenced occurrences from 
the Global Biodiversity Information Facility (GBIF) (44) using rgbif (115) and 
cleaned coordinates with the R package CoordinateCleaner (116). We removed 
coordinates with uncertainty >10 km, and those near capital cities, biodiversity 
institutions, those with equal longitude and latitude values, and within seas, 
resulting in >2.5 million cleaned records. To test for causal influences of spatial 
climatic variation, we used STRAPP (45), Es- Sim (46), and phylogenetic signal 
calculated for binary traits with the D statistic (48) in the R package caper (117). 
In our analysis of tropical and nontropical speciation rates, two definitions of 

tropical and nontropical were used: a geographical definition and a tempera-
ture definition. Species were defined as tropical geographically if >50% of their 
occurrence localities lay within ±23.5° of the equator. Species were defined as 
tropical according to temperature if the year- round monthly temperature at >50% 
of their occurrence localities exceeded 18 °C (118, 119). To calculate the latter, 
we retrieved data of mean annual temperature (1981 to 2010) from CHELSA 
V2.1 (120). These binary trait- dependent speciation analyses were performed 
with STRAPP, using 1,000 permutations, and significance was assessed with a 
Mann–Whitney test. In our analysis of speciation rates of major bioregions, we 
sorted taxa into seven bioregions defined by Givnish et al. (21) (Africa, Australia, 
Europe, North America, the Pacific, and Southeast Asia), excluding taxa present in 
>1 bioregion. We conducted another STRAPP test, using 1,000 permutations, and 
assessed significance with a Kruskal–Wallis test. We used BAMMtools to estimate 
mean speciation rate through time curves for each bioregion and tested temporal 
relationships between bioregions with Pearson’s correlations. In our analysis of 
elevation- dependent speciation, we acquired minimum and maximum elevation 
from the Internet Orchid Species Photo Encyclopaedia (http://orchidspecies.com/) 
and assessed elevation- dependent speciation with STRAPP and Es- Sim, with both 
tests implementing 1,000 permutations. Es- Sim uses a Pearson’s test to assess 
significance, and we used a Spearman test in the STRAPP analysis. Elevation data 
from orchidspecies.com are likely to be partially qualitative, but elevation data 
in GBIF were poor. When performing DCCAs for regional speciation, we used all 
9,001 post burn- in speciation curves when investigating the role of global cool-
ing, but used mean speciation rate when correlating regions with each other, and 
with atmospheric CO2 and sea level. For comparability, within bioregion, DCCA 
correlations between atmospheric CO2 and sea level were estimated for the same 
time period of 37.8 Mya to the present day. We visualized variation in the rela-
tionship between speciation rate and temperature across bioregions in the most 
recent 10 Ma, the timeframe encompassing the most dramatic radiations. To do 
this, we fitted exponential models between historical speciation rate of bioregion- 
endemic species and paleotemperature (d18O) (31) and plotted the outcome.

Data, Materials, and Software Availability. Nucleotide accessions, phylogenetic 
trees, input and output files for analyses have been deposited in Data Dryad (121). 
All study data are included in Dryad and/or SI Appendix.
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